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Abstract: Data measured using electromagnetic induction (EMI) systems are known to be susceptible
to measurement influences associated with time-varying external ambient factors. Temperature
variation is one of the most prominent factors causing drift in EMI data, leading to non-reproducible
measurement results. Typical approaches to mitigate drift effects in EMI instruments rely on a tem-
perature drift calibration, where the instrument is heated up to specific temperatures in a controlled
environment and the observed drift is determined to derive a static thermal apparent electrical
conductivity (ECa) drift correction. In this study, a novel correction method is presented that models
the dynamic characteristics of drift using a low-pass filter (LPF) and uses it for correction. The
method is developed and tested using a customized EMI device with an intercoil spacing of 1.2 m,
optimized for low drift and equipped with ten temperature sensors that simultaneously measure the
internal ambient temperature across the device. The device is used to perform outdoor calibration
measurements over a period of 16 days for a wide range of temperatures. The measured temperature-
dependent ECa drift of the system without corrections is approximately 2.27 mSm−1K−1, with a
standard deviation (std) of only 30 µSm−1K−1 for a temperature variation of around 30 K. The use
of the novel correction method reduces the overall root mean square error (RMSE) for all datasets
from 15.7 mSm−1 to a value of only 0.48 mSm−1. In comparison, a method using a purely static
characterization of drift could only reduce the error to an RMSE of 1.97 mSm−1. The results show
that modeling the dynamic thermal characteristics of the drift helps to improve the accuracy by a
factor of four compared to a purely static characterization. It is concluded that the modeling of the
dynamic thermal characteristics of EMI systems is relevant for improved drift correction.

Keywords: electromagnetic induction (EMI); frequency domain electromagnetic induction (FDEMI)
systems; apparent electrical conductivity (ECa); low-pass filter (LPF); data acquisition unit (DAQ);
root mean square error (RMSE); drift correction

1. Introduction

Electromagnetic induction (EMI) measurements allow a fast non-contact measurement
of the soil apparent electrical conductivity (ECa), which is directly related to the bulk soil
electrical conductivity and thus to soil properties such as clay content, salinity and water
content. EMI measurements have been used for soil mapping in precision agriculture in a
wide range of studies [1–4]. For instance, Cameron et al. [5], Visconti and Miguel de Paz [6]
and Corwin and Rhoades [7] found that EMI allowed the fast mapping of the soil to obtain
a clear delineation of field-scale salinity profiles. A range of EMI studies have also targeted
hydrological properties to relate EMI measurements to soil water content and ground water

Sensors 2022, 22, 3882. https://doi.org/10.3390/s22103882 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22103882
https://doi.org/10.3390/s22103882
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5868-4466
https://orcid.org/0000-0003-1517-6597
https://orcid.org/0000-0002-1327-0945
https://doi.org/10.3390/s22103882
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22103882?type=check_update&version=1


Sensors 2022, 22, 3882 2 of 16

dynamics [8–10]. For example, Kachanoski et al. [11] used EMI measurements to show
that bulk soil electrical conductivity accounts for up to 96% of the spatial variation in soil
water content.

In frequency domain EMI systems, a transmitter coil (Tx) is energized with an alter-
nating current to produce a time-varying primary electromagnetic field that diffuses into
the ground. As described by Faraday’s law of induction, this will induce eddy currents in
the conductive subsurface that are proportional to the conductivity of the soil but shifted
in phase with respect to the primary current from the Tx. These eddy currents generate a
secondary magnetic field, whose strength depends on the subsurface electrical conductivity,
the intercoil spacing and orientation and the operating frequency. The superposition of the
primary and secondary magnetic fields is sensed at the receiver coil (Rx). The ratio of sec-
ondary to primary magnetic field has an in phase (real component) and a quadrature phase
(imaginary component) and it can be shown that the quadrature phase is proportional to
the electrical conductivity of the conductive subsurface [12].

EMI measurements can be obtained with different coil configurations, which results
in differences in the induced eddy currents and the associated secondary magnetic field.
The most popular coil configurations used for EMI measurements are the vertical coplanar
(VCP) and horizontal coplanar (HCP) configurations (Figure 1). The HCP configuration has
effectively twice the exploration depth of the VCP configuration. The sensitivity of the VCP
configuration is highest at the surface and decreases with depth, while the sensitivity of the
HCP configuration peaks at a depth of 0.4 times the intercoil separation [12,13]. Multi-coil
EMI instruments consisting of a single Tx coil and multiple Rx coils are increasingly being
used [14–16]. Additionally, multi-frequency EMI instruments operating at different fre-
quencies are also widely used [15,17,18]. Both multi-coil and multi-frequency EMI systems
offer the advantage that sensing over different depth ranges can be done, with the accuracy
of measured ECa depending, on the one hand, on coil separation and configuration [18,19]
and, on the other hand, on frequency [17,18].
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Figure 1. The vertical coplanar and horizontal coplanar coil configurations. The coils in VCP
configuration have a dipole (arrow) horizontal to the plane of the soil. The coils in HCP configuration
have a dipole (arrow) perpendicular to the plane of the surface.

The accuracy of EMI measurements has been a topic of concern in many studies as
the measurements are sensitive to external ambient conditions. Temperature generally
has the greatest effect on the drift of EMI instruments. Due to temperature dependencies,
Abdu et al. [20] recommend mapping on cooler days or protecting the instruments from
direct sunlight. Sudduth et al. [21] performed investigations with the EM38 instrument
by varying ambient temperatures from 23 ◦C to 35 ◦C over 8 h and found that the mea-
sured ECa rose from 32.2 mSm−1 to 42.3 mSm−1. Huang et al. [22] showed that changes
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in ECa measured using the DUALEM–41S and DUALEM–21S instruments were also af-
fected by ambient temperature variations. Partial shading of EMI instruments causes even
more extreme and difficult-to-correct drift effects in the measurement data. For instance,
Robinson et al. [23] performed experiments to investigate the stability of the temperature
calibration of the EM38, and found that differential ambient heating by direct exposure
to sunlight is one of the main reasons for drifts in measured EMI data. Clearly, there is
therefore a need to compensate EMI data for signal drift.

Some studies have attempted to correct temperature-dependent drifts in EMI systems
by analyzing the internal compensation circuits of commercial EMI instruments [20,21]
and by using optimization, but they were typically not able to satisfactorily mitigate the
effect of temperature on measured EMI data. Robinson et al. [23] claimed that the used
internal compensation circuit of the EM38 instrument was unable to fully compensate
for instrument heating for temperatures > 40 ◦C. They concluded that the drifts are a
combination of instrument characteristics, such as the circuit design, and the performance
of the instrument components under heating. Mester et al. [24] analyzed the effects of
temperature drift on a custom EMI instrument. They corrected the significant thermal drifts
of the receiver coils by measuring the temperature-dependent coil impedances. However, a
complete correction of all drifts caused by various system components was not performed.

One method to improve the accuracy of EMI systems is drift calibration of the full
EMI instrument using a look-up table. This is typically done by heating the measurement
system up in an environment with controllable temperature. For system calibration with
a range of steady-state temperatures, it is important to wait the required delay time after
each temperature change until the EMI device returns to a stable state. A look-up table that
relates temperature and drift can thus be established. Robinson et al. [23], Abdu et al. [20]
and Hanssens et al. [25] performed such measurements and showed that it was possible
to determine the relationship between signal drift and ambient temperature to obtain
corrected EMI measurements. However, this method has at least two disadvantages. First,
the derivation of such look-up tables is cumbersome and not only requires a suitable
temperature-controlled room, but also requires that, for each calibration step, the delay
time for attaining steady-state temperatures must be observed. Standard rooms in labora-
tories cannot be used for this purpose due to the influence of metals and electromagnetic
interference. To avoid such interferences, outdoor measurements with thermal isolation
boxes and cooling systems are an alternative for calibration measurements [26]. However,
it is very difficult to achieve a homogeneous temperature with an accuracy better than 1 K
in an outdoor environment. Second, the correction with look-up tables is only effective for
stable temperature distributions or slow temperature variations. Drifts caused by abrupt
changes in ambient temperature are more difficult to correct than drifts due to slow ambient
temperature variations. This was demonstrated by Tan et al. [26], who showed that there is
a delayed response between instrument temperature and measured ECa. Huang et al. [22]
also observed hysteresis effects while studying temperature-dependent drifts. These stud-
ies thus suggest that it is currently not possible to efficiently correct drifts caused by rapid
changes in ambient temperatures using look-up tables only.

The aim of this paper is to develop a novel drift error correction procedure that
mitigates measurement errors associated with rapid ambient temperature fluctuations
for typical EMI measurements on sunny cloud-free days with internal temperatures of
up to 50 ◦C. The novel procedure involves a numerical drift model to reconstruct the
temperature-dependent dynamic drift characteristics of the EMI instruments and will help
to better understand the effects of temperature variation on EMI instruments. In addition,
it provides a simple strategy to calibrate an EMI system using outdoor measurements.

In the following sections, the EMI system with integrated temperature sensors used
for the investigation is presented first. Next, the drift model for error correction is intro-
duced. In addition, the calibration measurement setup and the corresponding optimization
methods to determine the model calibration parameters are presented. Finally, the main
results are presented and discussed and the conclusions are provided.
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2. Materials and Methods
2.1. EMI Measurement System with Temperature Sensors

We use a customized EMI measurement system designed by Mester et al. [24] and
described by Tan et al. [26]. It consists of one Tx and three Rx coils, a generator unit
(Gen) to power the transmitting coil, a microcontroller (µC) for measuring temperatures
and for hardware configuration, an integrated computer (IC) and an analog to digital
converter (ADC) (Figure 2). The intercoil spacings are 0.4 m, 0.8 m and 1.2 m and the
operating frequency is 10 kHz. This study is focused on the intercoil spacing of 1.2 m.
The measurement instrument is powered by an external 12 V DC power supply (battery).
The measurement data from the coils are collected and processed by means of an ADC.
The ADC is a 24-bit sigma-delta ADC (National Instruments USB-4432) with a rated input
voltage range of ±10 V and a resolution of 0.1 µV/

√
Hz. Each Rx coil has a readout circuit

to amplify and transmit the measured signal to the ADC. The measurement system is
operated by means of customized MATLAB software executed in the IC. The measurement
program is controlled remotely over wireless LAN from an external notebook (PC). After
the measurements, the data are transferred from the IC to the PC. The circuit design has
been optimized for low drift effects, but without any active compensation circuits.
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Figure 2. (a) Photo of the electromagnetic induction (EMI) instrument; (b) simplified representation 

of the EMI measurement setup. A polyvinyl chloride (PVC) pipe carries a transmitter (Tx) coil and 

three receiver (Rx) coils together with their readout circuits. An analog to digital converter (ADC), 

Figure 2. (a) Photo of the electromagnetic induction (EMI) instrument; (b) simplified representation
of the EMI measurement setup. A polyvinyl chloride (PVC) pipe carries a transmitter (Tx) coil and
three receiver (Rx) coils together with their readout circuits. An analog to digital converter (ADC),
a generator unit (Gen), a microcontroller (µC) and an integrated computer (IC) all constitute the
data acquisition unit (DAQ). The entire system is powered by an external battery and controlled
remotely with the help of WLAN and a personal computer (PC). Sensor 9 measures the temperature
of the printed circuit board (PCB); sensors 3, 4 and 5 monitor the air temperature inside the PVC tube;
sensors 1, 2 and 6 measure the PVC temperature; sensor 8 measures the temperature at the Tx coil;
sensor 7 measures the temperature of the heat sink, and sensor 10 measures the temperature of the
ADC casing.
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Ten temperature sensors were distributed within the EMI device to determine the
temperature distribution and the temperature of specific components. The temperature
sensors were placed at different locations, ranging from the generator and polyvinyl
chloride (PVC) pipe on one end of the device to the Rx coils and readout circuits on the
other end. The temperature measurements were made with ten digital thermometers
(Dallas Semiconductor DS18S20), which have a measurement range from –55 ◦C to 125 ◦C
with ± 0.5 ◦C accuracy and a 9-bit resolution.

Details on the EMI measurement system are shown on the signal flow diagram with a
single Tx–Rx arrangement in Figure 3. The generator (Gen) supplies a sinusoidally varying
voltage UG at a specific frequency to the Tx coil. This produces a sinusoidal primary current
Ip in the Tx coil and subsequently a primary magnetic field Hp. The current Ip is determined
through a current measurement circuit Imeas, which measures the voltage drop Up over a
shunt resistor connected serially to the Tx coil. Ideally, the phase of Hp and Up is identical
and is denoted with φp subsequently. Hp diffuses into the soil and induces eddy currents
in the conductive subsurface, which generate a secondary magnetic field Hs, shifted in
phase by 90◦ with respect to Hp at the position of the Rx coil. The measured magnetic field
(Hm = Hp + Hs) at the Rx coil induces a voltage Um with corresponding phase φm. After
amplification (AMP), Um is fed together with Up to the data acquisition (DAQ) unit. An
ADC digitalizes both signals, and after further computation, the observed phase φo, which
is the difference φo = φm − φp between Hm and Hp, is computed at the output, assuming
that Hp and the reference signal Ip have the same phase φp. It should be noted that each of
the system components can cause parasitic phase drifts and phase offsets.
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2.2. Phase Drift Model

To predict the temperature drift characteristics of EMI measurements, we propose the
phase drift model shown in Figure 4. The model is composed of two paths, a dynamic
phase drift model (blue path) and a static phase drift model (red path), which only differ in
either applying the low-pass filter (LPF) to the input or not. The LPF is used to determine
the delayed response of the internal temperature of the system components to external
temperature changes. To facilitate the interpretation of temperature information in terms of
phase values, a look-up table with cubic spline interpolation is used. These two components
(LPF and look-up table) make up the complete dynamic phase drift model and are discussed
in more detail in the following section. For the static phase drift model, the LPF is bypassed,
such that the measured temperatures are directly converted into modeled phase values
using the look-up table. The phase drift model is controlled by the calibration parameters:
the time constant τ of the LPF, the phase offsetφoff of the system, the gain G and a non-linear
term NL.
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Figure 4. Schematic overview of the phase drift model. The mean Teff of the selected observed
temperatures Tobs1 to TobsN is used as input for the low-pass filter (LPF). The LPF output is a
modeled temperature Tm, which is converted into a phase φmod by spline interpolation with three
reference points. φmod is subtracted from the observed phase φo and gives the corrected phase
φcorr, which is converted to ECa by the McNeill [12] approximation. The system’s offsets are also
considered by including a parameter φoff. The inclusion of the LPF results in dynamic modeling
(blue path) and bypassing the LPF results in static modeling (red path), whereby phase calibration is
done by the look-up table alone.

2.2.1. Effective Temperature Variation

The effective temperature variation (Teff) inside the EMI device can be determined by
evaluating the mean value of various temperatures across the device. For this purpose,
temperature sensors are selected which, on the one hand, have fast response times to
the external temperature change and, on the other hand, are distributed over the entire
length of the instrument so as to obtain a representative value for the internal temperature.
Furthermore, the selection excludes sensors that show deviating temperatures due to local
heating or cooling. The average value over the selected sensors provides the effective time
series of the temperature for the model. In terms of statistical uncertainty, the mean value
is also more accurate than the signals from the individual sensors.

By calculating the correlation coefficients of the selected temperature time series, it is
checked whether the changes in the temperature values are uniform, i.e., that the selected
sensors change identically with the external temperature and thus the condition for a
representative temperature signal applies to the entire interior.

2.2.2. Low-Pass Filter

To determine the influence of fast external temperature variations on the internal
temperatures of the measurement system and components, a time domain digital LPF was
used. The input and output signals of the LPF here are both temperature signals. In this
paper, an infinite impulse response (IIR) filter is used, which filters an input signal using
the present and delayed forms of the input signal in addition to a delayed form of the
output signal. An IIR filter with a general time domain input and output relationship at
time n is represented by the following difference equation (e.g., [27–29]):

y(n) = ∑M
i=0 bix(n− i)−∑N

i=1 aiy(n− i) (1)

where ai and bi are the filter coefficients, x(n) is the present and the past M input signals,
and y(n) is the past N output signals. The Z-transformed input–output relationship of a
dynamic system such as that given by Equation (1) in the time domain is:

G(z) =
Y(z)
X(z)

=
∑M

i=0 biz−i

∑N
i=0 aiz−i

=
b0 + b1z−1 + . . . + bMz−M

a0 + a1z−1 + . . . + aNz−N (2)
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where z is the complex Z-transformed variable. To design a first-order digital IIR filter
(M = 1, N = 1 in Equation (2)), it is customary to use an analog equivalent simple first-order
LPF with a transfer function Ha given by:

Ha(s) =
ωc

s +ωc
, ωc =

1
τ

(3)

where ωc is the cut-off frequency of the LPF, the subscript a stands for analog, s is the
Laplace operator, and τ is the time constant of the LPF. The digitization of the analog filter
is achieved by bilinear transformation, which maintains the frequency characteristics of the
filter. This is done by replacing the Laplace operator s by the term

s =
2
T

z− 1
z + 1

(4)

where T is the sampling period. The Z-transform of the transfer function for the digital IIR
filter is given as:

Hd(z) =
b0 + b1z−1

1− a1z−1 (5)

where the subscript d stands for digital. By substituting the value of s in Equation (4)
into Equation (3) and comparing the results with Equation (5), the filter coefficients of the
first-order digital filter can be determined:

b0 = b1 =
ωcT

2

1 + ωcT
2

, a1 =
1− ωcT

2

1 + ωcT
2

(6)

where a1, b0 and b1 are the filter coefficients determined from the cut-off frequencyωc and
the sampling period of T. Using these filter coefficients, the following filter function can be
derived from Equation (1) with modeled temperature Tm:

Tm(n) = b0Teff(n) + b1Teff( n− 1) + a1Tm(n− 1). (7)

Tm is obtained at sampling point n using the effective input temperature Teff.

2.2.3. Phase Value Calculation and Correction

Cubic spline interpolation with three reference temperature points (Trefmin = 0.0 ◦C,
Trefmid

= 25.0 ◦C and Trefmax = 50.0 ◦C) with their corresponding reference phases φrefmin
,

φrefmid
and φrefmax , respectively, is used to convert the modeled temperature Tm into a

modeled phase for correction of the observed phase. This approach is also intended to
account for the non-linear relationships between temperature and phase.

The reference temperature points span the observed ambient temperature range during
EMI field measurements. The three corresponding phase points are calculated using φoff,
G and NL. The first calibration phase point is the phase at 0.0 ◦C and represents the
phase offset:

φrefmin
= φoff (8)

The third calibration point is calculated from the gain while considering the phase offset:

φrefmax = φoff + G
(
Trefmax − Trefmin

)
. (9)

The middle calibration point is determined from the non-linear term NL:

φrefmid
= φoff + NLG

(
Trefmid

− Trefmin

)
(10)

An NL value of 1 indicates a strictly linear behavior. Figure 5 shows three possible
cases with the corresponding calibration points for the selected temperature range. Setting
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an NL value different from 1 will generate a non-linear temperature–phase relationship
after spline interpolation, which will shift the curve either upwards or downwards.
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Finally, to obtain the corrected phase

φcorr = φo −φmod (11)

The modeled phase φmod is subtracted from the measured phase φo.

2.3. ECa Calculation

The apparent electrical conductivity (ECa) is obtained using the approximation pro-
posed by McNeill [12], where the imaginary component of the magnetic field sensed by the
EMI instrument varies linearly with ECa [12]:

ECa =
4

ωµ0x2 Im
(

Hs

Hp

)
(12)

whereω is the angular frequency, µ0 is the conductivity of free space, and x is the intercoil
spacing. For a small ratio of Im(Hs/Hp), the ratio corresponds to the phase φ between Hs
and Hp (Im(Hs/Hp) = tan(φ) ≈ φ). Based on the system description from Figure 3, the
ratio Im(Hs/Hp) is equal to Im((Hs + Hp)/Hp) and therefore equal to the phase difference
φ between the measured phase φm of the magnetic field (Hp + Hs) and the phase φp
of the primary field Hp. Equation (12) can therefore be simplified by the small phase
angle approximation:

ECa =
4

ωµ0x2φ (13)

This method for ECa calculation relies on the low induction number approximation
(LIN). The LIN approximation is applicable to measurements performed on or above the
ground surface with small intercoil spacings between Tx and Rx coils, low soil conduc-
tivities and at low frequencies [12]. Equation (13) is now used to estimate the necessary
phase measurement accuracy. The approximated φ increases monotonically to the square
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of the separation between the Tx and Rx coils. With respect to the system in Figure 2, very
small phase values in the order of ~28 µrads are obtained for an intercoil spacing of 1.2 m
and an ECa of 1 mSm−1. Such accuracy of 28 µrads can only be achieved with additional
drift correction.

2.4. Drift Calibration Measurements

Calibration measurements are necessary to determine the calibration parameters of
the phase drift model. For this purpose, the influence of the soil on the system’s thermal
drift should be as small as possible and the calibration method should be practicable in the
field. Hence, the EMI instrument was mounted on a wooden rack and elevated to a height
of 0.70 m in a garden near Niederzier, Germany in July 2020. Care was taken to ensure
that there were no power lines in the vicinity of the instrument to avoid interferences.
To investigate the temperature effects on the measurement system, sixteen sets of ECa
measurements were performed in VCP configuration for 30 h (i.e., 16 day and night
cycles). The measured temperature inside the EMI instrument ranged from approximately
25 ◦C to 58 ◦C during the measurements. The height of 0.70 m was used to provide a
suitable compromise between ease of experimentation and the minimization of soil effects
on the observed data. The calibration measurements were preferably done in the VCP
configuration because changes in soil properties (e.g., temperature and water content) have
the lowest effect on observed ECa for the given height [23]. After the measurements, the
model parameters were determined for each of the 16 datasets.

Appropriate values for the calibration parameters m = (φoff, τ, G, NL) of the phase
drift model were estimated by minimizing the misfit between observed phase φo and
modeled phase φmod using an objective function with the L2-norm:

L2(m) = ||φo −φmod(m)||2 = ||φcorr(m)||2. (14)

The Simplex algorithm [30] was used to minimize this objective function. The starting
values for the minimization were calculated by fitting a linear model to the phase and tem-
perature data, which provided initial values for φoff and G. The time constant τ (in seconds)
and non-linear term NL were both assigned an initial value of one. For further evalua-

tion of the optimization, the root mean square error RMSE =
√

∑n
1 (φcorr(n) – mean(φcorr(n)))2

n
is considered.

3. Results and Discussion
3.1. Measured Temperature Distribution

The observed temperature for all ten sensors (Tobs) for calibration measurement #16 is
exemplarily shown in Figure 6. The temperatures shown are almost the same in terms of
variation. However, sensors 7, 9 and 10 have higher overall temperature values than the
other sensors due to local self-heating of the modules to which the sensors are attached.
These sensors do not represent the uniform internal temperature of the device and are
therefore not considered for drift correction. In addition, the temperature curves of sensors
1 and 3 indicate delayed reaction times. These sensors were therefore also excluded from
the analysis.

Finally, sensors 2, 4, 5, 6, 8 were used to calculate the effective time series for the
model for all measurements. To check whether all selected sensors always showed the
same temperature variations, i.e., whether a uniform temperature variation was measured
in the entire device, the correlation coefficients of the selected temperatures were calcu-
lated. The smallest correlation coefficient between the selected temperature curves of
all 16 measurements was never less than 0.994, indicating a uniform temperature inside
the system.
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Figure 6. Time series of observed temperature Tobs obtained for calibration measurement #16. The
10 temperature sensors were spread across the EMI instrument and measured temperature variation
in the instrument.

3.2. Performance of Calibration

The 16 calibration measurements were analyzed separately to evaluate the robustness
of the calibration method. Table 1 shows the results of fitting each individual calibration
measurement, as well as the respective root mean square error (RMSE1) of the ECa values.
The RMSE1 varied from 0.31 mSm−1 to 0.56 mSm−1 across all 16 datasets, with a median of
0.42 mSm−1 (equivalent phase of ~11.9 µrad). The calibration parameters τ, G and NL were
similar for all calibration measurements, which indicates the reliability of the calibration
method and calibration approach. The time constant τ is an indication of the response time
of the individual components of the measurement system to temperature changes. The
median τ suggests that it takes ~1107 s (~18 min) for the components of the measurement
system to respond to the internal measured temperature. It is expected that this delay
is mostly associated with the coils due to their large thermal inertia [13,15]. The fitted G
is expressed as a drift in ECa, and it varied around a median value of 2.27 mSm−1K−1

(phase of ~64.5 µrad/K). Accurate determination of G is extremely important for the drift
correction. The standard deviation (std) of the fitted ECa drift was only 0.03 mSm−1K−1,
which is low relative to the median G. NL varied around a median value of 1.19, which
means that the phase values are non-linearly related to temperature (Figure 5), showing
that this non-linear term is also necessary for the correction. By setting NL to 1.0 (i.e., a
linear model), the median of the RMSE1 increased from 0.42 mSm−1 to 1.2 mSm−1.

The median values of the calibration parameters obtained from the 16 datasets were
also applied to the 16 datasets, which resulted in 16 additional root mean square error
(RMSE2) values that were slightly higher than the RMSE1 values. The median value of
these RMSE2 values obtained using a single set of calibration parameters was 0.48 mSm−1,
which is only slightly higher than the median value of the RMSE1 values obtained using the
individual calibration parameters, which was 0.42 mSm−1. The similar results obtained for
both individual and median calibration parameters over 16 days show the reproducibility
of the calibration parameters and thus also the long-term calibration ability of the system.
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Table 1. Calibration parameters time constant (τ), Gain (G converted to ECa) and non-linear term
(NL) and the resulting root mean square error (RMSE) for all 16 calibration measurements. The
median and standard deviation (std) of the fitted parameters are also provided.

Data τ

(s)
G

(mSm−1K−1) NL RMSE1
(mSm−1K−1)

RMSE2
(mSm−1K−1)

1 1201.10 2.27 1.17 0.36 0.37
2 1176.82 2.36 1.05 0.39 0.42
3 1038.07 2.25 1.18 0.40 0.47
4 968.33 2.23 1.22 0.40 0.64
5 1198.90 2.25 1.18 0.41 0.46
6 1076.17 2.25 1.19 0.31 0.32
7 1121.04 2.25 1.08 0.31 0.42
8 1038.55 2.24 1.24 0.44 0.59
9 1147.57 2.28 1.25 0.39 0.48
10 1154.75 2.26 1.16 0.56 0.61
11 1122.22 2.26 1.21 0.39 0.39
12 1041.29 2.26 1.22 0.37 0.47
13 1152.85 2.25 1.18 0.55 0.57
14 1007.87 2.29 1.25 0.37 0.41
15 1177.05 2.32 1.29 0.53 0.63
16 1104.52 2.26 1.20 0.48 0.49

median 1107.94 2.27 1.19
std 71.78 0.03 0.06

The calibration ability and the efficiency of the drift correction can also be demon-
strated using the time series of the ECa values. For instance, the uncorrected and corrected
ECa values of measurement #16 using the individual calibration parameters, as well as the
median calibration parameters, are shown in Figure 7a,b, respectively. The peak-to-peak
ECa value of the uncorrected data in Figure 7a is approximately 62 mSm−1, while the
ECa value of the corrected data is approximately 3 mSm−1. Figure 7b shows furthermore
that the ECa values for the individual and median calibration parameters are similar. The
RMSE of the corrected ECa values is 0.48 mSm−1 for individually calibrated parameters
and 0.49 mSm−1 for the median calibration parameters.
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3.3. Advantage of Implementing the LPF in the Drift Correction Model

In this section, we will demonstrate the advantages of dynamic correction with an LPF
in comparison to the static correction of temperature drift without an LPF. Figure 8 shows
the observed ECa, the ECa obtained from dynamic correction and the ECa obtained from
static correction (all shifted to have a mean of zero to represent ECa differences instead of
absolute values) as a function of temperature. The occurrence of temperature-dependent
hysteresis loops arising from the fluctuation of the internal ambient temperature of the
measurement device is apparent. The hysteresis loops are an accumulation of present and
prior warming and cooling cycles, as also reported by Huang et al. [22]. Figure 8 shows that
the static approach alone is not sufficient to effectively analyze the measurement device’s
drift properties over time, as it does not reproduce the hysteresis loops present in the
measured data. Applying the dynamic approach enables the reproduction and correction
of these hysteresis effects.
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To illustrate the importance of the LPF, the effects of correction with the dynamic
(Figure 9a) and static approach (Figure 9b) on the measured time series of measurement #16
are shown and the RMSE of the two cases for single parameter correction are also analyzed.
The peak-to-peak range of ECa values obtained with static correction is around four
times higher than the range obtained with dynamic correction, and the RMSE1 increases
to 1.94 mSm−1 when the LPF is not taken into account, compared to 0.42 mSm−1 with
dynamic correction.
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3.4. Effect of Soil Conductivity Changes on the Calibration

To investigate the possible influence of temperature-related changes in soil properties
on the presented instrument calibration, a two-layer model was assumed, where the first
layer with a thickness of 0.70 m consisted of air (0 mSm−1) and the second layer with infinite
thickness consisted of a homogeneous soil. The sensitivity of the measurement system was
modeled using the cumulative response function (CRF) described by McNeill [12]. This
analysis showed that an increase in soil electrical conductivity (in the first few meters) by
1 mSm−1 resulted in an increase in measured ECa of 0.37 mSm−1 for the VCP configuration
with an intercoil spacing of 1.20 m at a height of 0.70 m. If it is now considered that the soil
conductivity changes by around 2% per K [1], then the expected ECa drift due to the effect
of temperature on soil conductivity is 0.74% per K. This value should be considered as a
worst-case scenario since the soil will not be heated instantaneously. By assuming a typical
soil electrical conductivity (EC) of 10 mSm−1 and considering that the relative ECa change
due to soil temperature is less than 0.74 % per K of the soil EC, the expected worst-case ECa
change due to soil temperature change is ~0.07 mSm−1K−1. Compared with the system
drift of 2.27 mSm−1K−1, it is safe to conclude that for an intercoil spacing of 1.2 m, the
effect of changes in the soil electrical conductivity during the calibration measurements
is very small and can therefore be neglected. For smaller coil spacings, the influence of
the soil becomes even smaller. For example, at a smaller intercoil spacing of 0.4 m, the
expected ECa change due to soil temperature change is only ~0.03 mSm−1K−1 and the
expected system drift is ~20.4 mSm−1K−1, assuming that the measured phase values of the
system drifts are independent of intercoil spacing. For larger intercoil spacings, the effect
of the soil becomes stronger because of the increased sensing depth. For instance, at an
intercoil spacing of 6 m, the expected ECa change due to soil temperature change would
be ~0.15 mSm−1K−1 and the expected system drift is only 0.09 mSm−1K−1. The system
drift for such large coil spacing is even smaller as there is an inverse square relationship
between the ECa values and phase values (Equation (13)). Note that these estimates are
all worst-case estimates because it is assumed that soil temperature changes uniformly
throughout the entire sensing volume. In reality, only the temperature of the top soil
will change.

4. Conclusions

A novel temperature-dependent drift correction method for electromagnetic induction
(EMI) measurements that accounts for the transient response of system components to
varying ambient temperature conditions was introduced. The method makes use of a



Sensors 2022, 22, 3882 14 of 16

low-pass filter (LPF) to reproduce the dynamic characteristics of measured drifts. To
verify the correction method, a customized EMI instrument at a height of 0.70 m above
ground was used to simultaneously measure the apparent electrical conductivity (ECa)
and internal ambient temperature across the device using sensors at ten locations. The
measurement system used is optimized for low drift, but does not use internal drift
correction circuitry. In total, 16 measurements with a respective duration of 30 h were
measured and evaluated, showing a median drift of approximately 2.27 mSm−1K−1 with
a standard deviation (std) of 30 µSm−1K−1 between different measurements. Without
further corrections, drifts of 2.27 mSm−1K−1 would falsify the measurements extremely
at varying outdoor temperatures. For this reason, commercial EMI systems typically use
further internal correction circuits or additional correction tables. However, the results
presented here show that these drifts are quite stable, with a variation of only 30 µSm−1K−1,
and can be corrected for the most part with the shown correction method. After correcting
the 16 calibration datasets with the median value of all calibration parameters, the median
RMSE of all data sets is only 0.48 mSm−1. When compared with raw observed data, the
dynamic approach corrects observed ECa values by a factor of 30. The results also showed a
delayed response of the dominant drift source of around 18 min to the internal temperature
changes. The relevance of considering this delay was shown by comparing results obtained
with static modeling and correction, which resulted in an RMSE with a median value
of 1.94 mSm−1. The presented results show that the novel model-based dynamic drift
correction method using LPF offers four times higher accuracy in drift correction compared
to static correction and is a reliable approach for mitigating temperature drift effects in
EMI data, even in the case of the rapid temperature changes that may occur in typical
field measurements. In addition, the model-based calibration method presented here
no longer requires stable temperature levels, as is the case with typical calibration in
thermostatically controlled rooms. It can therefore be applied very easily, without much
effort. Simple outdoor measurements with a sufficient temperature response are perfectly
sufficient for calibration. With the assistance of manufacturers, the novel correction method
could be easily applicable to state-of-the-art commercial EMI systems. With the required
temperature sensors installed on the instruments and the application of the novel dynamic
correction method, the accuracy of temperature-related drift correction in EMI systems can
be increased in comparison to standard static correction. This correction method could be
useful for a wide range of agricultural applications where near-surface ECa measurements
are needed.
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