
Citation: Wu, W.; Mao, W. An

Efficient and Scalable Algorithm to

Mine Functional Dependencies from

Distributed Big Data. Sensors 2022, 22,

3856. https://doi.org/10.3390/

s22103856

Academic Editor: Danda B. Rawat

Received: 24 April 2022

Accepted: 17 May 2022

Published: 19 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

An Efficient and Scalable Algorithm to Mine Functional
Dependencies from Distributed Big Data
Wanqing Wu 1,2 and Wenyu Mao 1,2,*

1 College of Cyber Security and Computer, Hebei University, Baoding 071000, China; wuwanqing8888@126.com
2 Key Laboratory of High Trusted Information System in Hebei Province (Hebei University),

Baoding 071000, China
* Correspondence: mwy070017@163.com

Abstract: A crucial step in improving data quality is to discover semantic relationships between data.
Functional dependencies are rules that describe semantic relationships between data in relational
databases and have been applied to improve data quality recently. However, traditional functional
discovery algorithms applied to distributed data may lead to errors and the inability to scale to
large-scale data. To solve the above problems, we propose a novel distributed functional dependency
discovery algorithm based on Apache Spark, which can effectively discover functional dependencies
in large-scale data. The basic idea is to use data redistribution to discover functional dependencies
in parallel on multiple nodes. In this algorithm, we take a sampling approach to quickly remove
invalid functional dependencies and propose a greedy-based task assignment strategy to balance
the load. In addition, the prefix tree is used to store intermediate computation results during the
validation process to avoid repeated computation of equivalence classes. Experimental results on real
and synthetic datasets show that the proposed algorithm in this paper is more efficient than existing
methods while ensuring accuracy.

Keywords: data mining; functional dependency; distributed computing; big data

1. Introduction

In the information age, data has become the most important asset of a company,
and data-driven decisions can bring good results to every organization and company [1].
However, with the explosive growth of data volume and the variety of data sources,
low quality data inevitably appears. Specifically, the collected data may contain missing,
redundant, and semantic contradictions. For example, in the process of interaction with
the environment, the sensor network is easily damaged under the influence of the natural
environment such as sunlight and rain, resulting in equipment failure and an inability to
return data or leading to the return of incorrect data [2]. Business decisions made with
low-quality data can lead to huge financial losses and irreversible consequences [3,4].

Therefore, data cleaning has grown up to be a necessary prerequisite for designing
and completing system engineering and has received extensive attention from many sci-
entific researchers and related practitioners. According to statistics, in applications such
as machine learning and data mining, researchers spend more than 60% of their time and
energy on data preprocessing [5]. It can be seen that the theory and method of improving
data quality have significant research significance and value.

Taking measures at the data source to avoid the generation of low-quality data is
usually not achievable, so the main method to improve data quality is to perform error de-
tection and repair on the dataset [6]. Many scholars have studied the process of automatic
data detection and repair, including outlier detection [7–9], dependency conflict detec-
tion [10–12], and duplicate value detection [13,14]. Dependency-based methods [10–12] detect
errors and repair data through semantic relations between data, which are represented

Sensors 2022, 22, 3856. https://doi.org/10.3390/s22103856 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22103856
https://doi.org/10.3390/s22103856
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3471-0065
https://doi.org/10.3390/s22103856
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22103856?type=check_update&version=3

Sensors 2022, 22, 3856 2 of 19

by various integrity constraints [15], such as functional dependencies [16], conditional
functional dependencies [17], and denial constraints [18]. Detecting and repairing data
through dependency-based methods [19,20] still requires end-user input of integrity con-
straints, and the system utilizes these inputs to detect units that conflict with dependencies.
However, manually writing integrity constraints are inefficient and requires sufficient
domain knowledge, so it is usually necessary to mine the dependencies on the dataset with
the help of automatic discovery algorithms.

Functional dependency [15] is one of the most basic and important integrity constraints.
In the process of using functional dependencies to improve data quality, the primary
problem is how to efficiently and automatically discover functional dependencies from
table data. The study in [21] shows that the existing seven important functional dependency
discovery algorithms are only suitable for small-scale centralized data sets, and cannot be
extended to table data with hundreds of columns or millions of rows, and in the case of
data distributed storage, these algorithms can lead to erroneous results. Therefore, with
the advent of the era of big data, the amount of data has increased dramatically, and the
wide application of distributed databases has brought new problems and challenges to
functional dependency discovery.

Example 1. Given a relation R, as shown in Figure 1a, R is horizontally divided into two parts
R1 and R2 and distributed on different nodes, as showen in Figure 1b. According to Figure 1b, for
any two tuples ti and tj on R1 or R2, ti[A] = tj[A], then ti[B] = tj[B], the functional dependency
A→ B can be obtained holds on either R1 or R2.

Sensors 2022, 22, x FOR PEER REVIEW 2 of 19

methods [10–12] detect errors and repair data through semantic relations between data,
which are represented by various integrity constraints [15], such as functional
dependencies [16], conditional functional dependencies [17], and denial constraints [18].
Detecting and repairing data through dependency-based methods [19,20] still requires
end-user input of integrity constraints, and the system utilizes these inputs to detect units
that conflict with dependencies. However, manually writing integrity constraints are
inefficient and requires sufficient domain knowledge, so it is usually necessary to mine
the dependencies on the dataset with the help of automatic discovery algorithms.

Functional dependency [15] is one of the most basic and important integrity
constraints. In the process of using functional dependencies to improve data quality, the
primary problem is how to efficiently and automatically discover functional dependencies
from table data. The study in [21] shows that the existing seven important functional
dependency discovery algorithms are only suitable for small-scale centralized data sets,
and cannot be extended to table data with hundreds of columns or millions of rows, and
in the case of data distributed storage, these algorithms can lead to erroneous results.
Therefore, with the advent of the era of big data, the amount of data has increased
dramatically, and the wide application of distributed databases has brought new
problems and challenges to functional dependency discovery.

Example 1. Given a relation R, as shown in Figure 1a, R is horizontally divided into
two parts 𝑅𝑅1 and 𝑅𝑅2 and distributed on different nodes, as showen in Figure 1b.
According to Figure 1b, for any two tuples 𝑡𝑡𝑖𝑖 and 𝑡𝑡𝑗𝑗 on 𝑅𝑅1 or 𝑅𝑅2 , 𝑡𝑡𝑖𝑖[𝐴𝐴] = 𝑡𝑡𝑗𝑗[𝐴𝐴], then
𝑡𝑡𝑖𝑖[𝐵𝐵] = 𝑡𝑡𝑗𝑗[𝐵𝐵], the functional dependency 𝐴𝐴 → 𝐵𝐵 can be obtained holds on either 𝑅𝑅1 or
𝑅𝑅2.

(a) (b)

Figure 1. (a) Relation 𝑅𝑅; (b) The horizontal segmentation 𝑅𝑅1 and 𝑅𝑅2 of 𝑅𝑅

However, functional dependencies that pass local validation do not necessarily hold
on global data. According to Figure 1a, it can be concluded that the functional dependence
𝐴𝐴 → 𝐵𝐵 does not hold on 𝑅𝑅 . Therefore, the existing centralized functional dependency
discovery algorithms cannot be directly applied to the distributed environment.

In distributed scenarios, functional dependency discovery for large-scale data has
gradually become a research hotspot. In the distributed functional dependency discovery
algorithm, FDcent_discover [22] presents a distributed database functional dependency
discovery framework. Firstly, functional dependency discovery is performed at each
node, and then the data of each node is sent to the master node, where the centralized
discovery algorithm is used to discover. The HFDD [23] and FDPar_Discover [24]
algorithms adopt the data redistribution scheme to group candidate functional
dependencies using the left-hand features of the functional dependencies, and send the
tuples with the same common attribute values to the same node, the functional
dependency discovery algorithm is performed in parallel at each node. However, there
are still the following problems: First, the characteristics of the data set itself are not

Figure 1. (a) Relation R; (b) The horizontal segmentation R1 and R2 of R.

However, functional dependencies that pass local validation do not necessarily hold
on global data. According to Figure 1a, it can be concluded that the functional dependence
A→ B does not hold on R. Therefore, the existing centralized functional dependency
discovery algorithms cannot be directly applied to the distributed environment.

In distributed scenarios, functional dependency discovery for large-scale data has
gradually become a research hotspot. In the distributed functional dependency discovery
algorithm, FDcent_discover [22] presents a distributed database functional dependency
discovery framework. Firstly, functional dependency discovery is performed at each node,
and then the data of each node is sent to the master node, where the centralized discov-
ery algorithm is used to discover. The HFDD [23] and FDPar_Discover [24] algorithms
adopt the data redistribution scheme to group candidate functional dependencies using
the left-hand features of the functional dependencies, and send the tuples with the same
common attribute values to the same node, the functional dependency discovery algorithm
is performed in parallel at each node. However, there are still the following problems: First,
the characteristics of the data set itself are not considered, which leads to the verification of
many invalid function dependencies and increases the computational cost. Second, in dis-

Sensors 2022, 22, 3856 3 of 19

tributed scenarios, when the distribution of attribute values is uneven, the load unbalance
is expected to result in a waste of computing resources. Third, the repeated computation
of equivalence classes in the process of verifying candidate functional dependencies leads
to inefficiency.

The contributions of this paper are as follows:

1. A spark-based distributed functional dependency discovery algorithm is proposed.
2. Aiming at the unbalanced load caused by the uneven distribution of attribute values,

the greedy-based task assignment strategy is proposed to balance the computing tasks
of each node and avoid the unbalanced load causing too long computing time.

3. A dynamic memory management strategy is proposed to store calculated equivalence
classes in memory and periodically clear equivalence classes that have not been
accessed for a long time to maximize the use of memory space.

4. Verify the distributed functional dependency discovery algorithm proposed in this
paper on real and artificial data sets through experiments.

This paper is organized as follows. In Section 2, the definitions and related work
are introduced. Section 3 presents the algorithm structure and implementation process of
the algorithm DisTFD. Section 4 presents the experimental results and the comparison of
existing methods. Section 5 is the conclusion and outlook for future work.

2. Preliminaries
2.1. Definition

This section introduces definitions related to FD discovery. Let R be a relational
schema and r be an instance on R. t[X] represents the projection of a tuple t in R onto the
subset X ⊆ R.

Definition 1. Functional dependency. A functional dependency X → A specifies that the value
of X functionally determines the value of A, where X ⊆ R and A ∈ R. If all tuple pairs t1, t2 ∈ r
in R satisfy t1[X] = t2[X], then t1[A] = t2[A], then the functional dependency X → A on the
instance r of R is established. Let X be the left part (LHS) of the FD and A be the right part (RHS)
of the FD.

Definition 2. Non-trivial functional dependency. If a functional dependency X → A holds and
A /∈ X, then X → A is said to be a non-trivial functional dependency.

Definition 3. Minimum functional dependency. If a functional dependency X → A holds and
any proper subset X of X cannot determine the value of attribute A, that is, for any X ∈ X,
X ∈ X ∈ A does not hold, then we call X → A the minimum functional dependency.

Definition 4. Equivalence class. The equivalence class of a tuple t ∈ r is expressed as
[t]X = {u ∈ r|∀A ∈ X t[A] = u[A]}. Taking the relation R in Example 1 as an example, an
equivalence class of the tuple t1 on the attribute C is {1, 4}.

Definition 5. Partition. Divide all tuples in r into multiple equivalence classes based on the
attribute set X ∈ R. The partition ΠX = {[t]X |t ∈ r} of relation r on attribute set X is the
set of all equivalence classes, and |ΠX | represents the number of equivalence classes in ΠX. In
Example 1, the relation R can be divided into multiple equivalence classes on the attribute set
{C}: ΠC = {{1, 4}, {2, 5}, {3}}, |ΠC| = 3.

Definition 6. Stripped partition. The stripped partition Π̂X of relation r on attribute set X refers
to the partition obtained by removing all equivalence classes with 1 element on the basis of ΠX . In
Example 1, the relation R is divided into ΠC = {{1, 4}, {2, 5}, {3}} based on the attribute set {C},
then its stripped partition Π̂C = {{1, 4}, {2, 5}}.

Sensors 2022, 22, 3856 4 of 19

2.2. Related Work

Functional dependency discovery. Existing functional dependency discovery algo-
rithms are mainly used in centralized environments and can be divided into three categories:
lattice search algorithms, difference and consensus set algorithms, and hybrid algorithms.

Lattice search algorithm: the typical representatives are TANE [25], FUN [26], and
FD_Mine [27] algorithms. The search space is modeled as the lattice of attribute combina-
tions to represent all candidate functional dependencies, and a bottom-up search strategy
is adopted to verify the candidate functional dependencies at each layer. The time com-
plexity of the lattice search algorithm mainly depends on the size of the lattice, and the
size of the lattice depends on the number of attributes of the dataset. Therefore, the lattice
search algorithm has better row scalability and is suitable for large-scale datasets with
fewer columns.

Difference set and consistent set algorithm: the typical representatives are Dep-
Miner [28] and FastFDs [29] algorithms. Based on the comparison between tuples, the
consistent set and the difference set are obtained, and finally the candidate functional
dependency is verified according to the difference set. The time complexity of difference
and consistent set algorithms depends on the number of tuples. Therefore, the difference set
and consistent set algorithms have better column scalability and are suitable for small-scale
datasets with many columns.

Hybrid Algorithm: HyFD [30] uses a hybrid discovery strategy to combine the advan-
tages of the lattice search algorithm and the difference set and consistent set algorithms,
and has better scalability in rows and columns. HyFD first generates a consensus set from
the sampled data, identifies candidate functional dependencies from the consensus set,
and uses FDTree to represent the corresponding attribute set. Then, HyFD is transformed
into the lattice search algorithm, and candidate functional dependencies are verified by
traversing the FDTree.

Approximate functional dependency discovery. In 1992, Kivinen and Mannila [31]
first proposed an error metric for approximate functional dependencies. Subsequently,
CORDS [32] automatically discovered unary approximate functional dependencies from
relational data. To further speed up the discovery of approximate functional dependencies,
the authors of [33] used heuristics to prune the candidate space of approximate func-
tional dependencies. Mandros and Boley [34] represented the approximation of functional
dependencies more precisely by scores.

The authors of [35] use a machine learning approach to infer approximate functional
dependencies by comparing tuples with each other. The method finds all conflicting
functional dependencies by tuple pair comparison, applies an error threshold to remove in-
frequent conflicting tuple pairs, and finally, inferring approximate functional dependencies
from the remaining conflicting tuple pairs.

In recent work, Caruccio and Deufemia [36] proposed a new candidate approximate
functional dependency verification method to discover multiple types of approximate
functional dependencies by constructing a difference matrix of attributes. AFDDPar [37]
proposed a parallel approach in a distributed environment for discovering approximate
functional dependencies in a distributed environment, balancing the load of individual
nodes before data redistribution, and pruning candidate approximate functional dependen-
cies quickly after data redistribution.

3. The Distributed Algorithm for Mining Functional Dependency

In this chapter, a description of the distributed functional dependency discovery
problem and a general overview of the algorithm DisTFD are given. In this paper, functional
dependency discovery is carried out in a distributed big data environment, a distributed
processing method is designed, and intermediate results are reasonably stored. On the
premise of ensuring the correct rate, the load of each computing node is balanced as much
as possible to reduce the time consumption of the algorithm.

Sensors 2022, 22, 3856 5 of 19

3.1. Algorithm Architecture Overview

The algorithm DisTFD consists of multiple components, which are divided into differ-
ent logical modules. The framework of the algorithm DisTFD is shown in Figure 2.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 19

3.1. Algorithm Architecture Overview
The algorithm DisTFD consists of multiple components, which are divided into

different logical modules. The framework of the algorithm DisTFD is shown in Figure 2.

Figure 2. DisTFD logical structure diagram.

The components of DisTFD can be divided into three modules: Master Module,
WorkerModule, and Partition Management Module.

The Master Module mainly performs data input, output, control sampling ratio, and
data preprocessing. The master module can only be located on the master node. The
worker module has several work nodes, which are mainly responsible for data storage
and generation and verification of candidate function dependencies, and send the
verification results to the master node. The partition management module merges the
results calculated by multiple worker nodes, and stores the partition used for verifying
candidate functional dependencies.

The specific functions of the components in the three modules are as follows:
ResultSet. The ResultSet component stores the invalid functional dependencies and

the valid functional dependencies as two sets, respectively.
CandidateGen. The CandidateGen component generates candidate functional

dependencies in the form of the lattice and sends the candidate functional dependencies
to each worker node. After each validation, CandidateGen prunes candidate function
dependencies according to the validation results in the ResultSet.

Sampler. The Sampler component samples the data according to the ratio set in the
master node and is responsible for verifying the received candidate FD on the sampling
data set 𝐷𝐷`. If the verification result is true, the candidate function will be sent to the work
nodes for further verification. If the verification result is false, the candidate functional
dependency will be sent to the ResultSet.

PartitionMgr. The PartitionMgr component accepts the request for partition by the
work node, and if there is a partition of the request in the PartitionCache, it will be sent to
the corresponding work node. If the requested partition does not exist in PartitionCache,
Worker will calculate the partition and merge calculation results by PartitionMgr. Then,
PartitionMgr stores calculated partitions in the PartitionCache, and periodically clears the
partitions that have not been accessed for a long time.

Worker. The Worker component verifies the candidate functional dependencies, and
sends the result to the ResultSet and requests a new verification job from CandidateGen.

Figure 2. DisTFD logical structure diagram.

The components of DisTFD can be divided into three modules: Master Module,
WorkerModule, and Partition Management Module.

The Master Module mainly performs data input, output, control sampling ratio, and
data preprocessing. The master module can only be located on the master node. The
worker module has several work nodes, which are mainly responsible for data storage
and generation and verification of candidate function dependencies, and send the verifi-
cation results to the master node. The partition management module merges the results
calculated by multiple worker nodes, and stores the partition used for verifying candidate
functional dependencies.

The specific functions of the components in the three modules are as follows:
ResultSet. The ResultSet component stores the invalid functional dependencies and

the valid functional dependencies as two sets, respectively.
CandidateGen. The CandidateGen component generates candidate functional de-

pendencies in the form of the lattice and sends the candidate functional dependencies
to each worker node. After each validation, CandidateGen prunes candidate function
dependencies according to the validation results in the ResultSet.

Sampler. The Sampler component samples the data according to the ratio set in the
master node and is responsible for verifying the received candidate FD on the sampling
data set D′. If the verification result is true, the candidate function will be sent to the work
nodes for further verification. If the verification result is false, the candidate functional
dependency will be sent to the ResultSet.

PartitionMgr. The PartitionMgr component accepts the request for partition by the
work node, and if there is a partition of the request in the PartitionCache, it will be sent to
the corresponding work node. If the requested partition does not exist in PartitionCache,
Worker will calculate the partition and merge calculation results by PartitionMgr. Then,
PartitionMgr stores calculated partitions in the PartitionCache, and periodically clears the
partitions that have not been accessed for a long time.

Worker. The Worker component verifies the candidate functional dependencies, and
sends the result to the ResultSet and requests a new verification job from CandidateGen.

Sensors 2022, 22, 3856 6 of 19

WorkerMgr. The WorkerMgr component records the load of each node after data
redistribution. When the node load is unbalanced, the task assignment algorithm is called
to assign the task to achieve load balance.

This paper proposes a distributed functional dependency discovery algorithm DisTFD
based on attribute space traversal as shown in Algorithm 1:

Algorithm 1. Distributed Functional Dependency Discovery Algorithm DisTFD

Input: dataset D = (D1, . . . , Dn−1, Dn), attribute set X
Output: Minimum non-trivial functional dependency set Σ

/* Set the sampling ratio n data preprocessing output sorted attribute set*/

1. D′ = Sampler(D, n)
/* Data preprocessing output sorted attribute set */

2. SortedAttribute = Pre_processing(D′, X)
/* Generate candidate function dependencies */

3. Candidate_FD = CandidateGen(X)
4. SamplingValidate(ϕ, D′)
5. for each Ai ∈ SortedAttribute do
6. ReDistributedDataSet(D, Ai)
7. if (Ai ∈ SkewAttribute){
8. Assignment (D)
9. }

/* task assignment to balances the load of worker nodes*/
/*Verify that each function in the candidate space depends on ϕ ∈ Candidate_FD*/

10. if (GlobalValidate(ϕ, D) == true) {
11. Pruning(Candidate_FD, ϕ)
12. Σ = Σ ∪ ϕ

13. }
14. end for
15. Return Σ

3.2. Data Preprocessing

The preprocessor preprocesses the data, including statistical attribute cardinality and
attribute value frequency. In the case of a large amount of data and distributed storage,
it is necessary to summarize the results for all data statistics multiple times, which make
the cost extremely high. Therefore, this article counts attribute-related information on the
sampling data set and will introduce the sampling method in Section 3.3.

The number of types of attribute values is called the cardinality of the attribute, and
the number of tuples corresponding to each attribute value is called the frequency of the
attribute value. Based on the statistics of the cardinality and frequency information, the
skewness of each attribute is then calculated. Given an attribute A, let c be the cardinality of
attribute A, V be the set of all values of attribute A, f requency(Vk) represents the frequency
of the k-th value of attribute A, then the skewness of attribute A is expressed as:

Inc(A) = max
1≤k≤c

f requency(Vk)

n
(1)

where,k ∈ [1, c], n is the total number of tuples in the dataset. The data preprocessing
process is shown in Algorithm 2.

Sensors 2022, 22, 3856 7 of 19

Algorithm 2. Pre_processing

Input: sample data set D′, attribute set X
Output: Sorted attribute set SortedAttribute

1. Set the Skew threshold t
2. For Ai ∈ X do

3. Inc(Ai) = max
1≤k≤c

f requency(Vk)
n

4. If (Inc(Ai) > t){ SkewAttribute← Ai }
5. else{ NonSkewAttribute← Ai }
6. end for
7. SortByCardinality(NonSkewAttribute)
8. SortedAttribute← NonSkewAttribute ∪ SkewAttribute
9. Return SortedAttribute

After calculating the skewness of each attribute, the attributes are divided into Skew
attribute and non-Skew attribute according to the given threshold. Then, sort all the
attributes, and specify that the Skew attribute is ranked after the non-Skew attribute.

3.3. Sampling Validation Framework

Sampling refers to taking a part of the population of the research objects for inves-
tigation or statistics according to a certain procedure, so as to make inferences about the
population of the research objects. In this paper, the statistical attribute information of the
sampling data set reflects the situation of the attribute in the overall data set.

Sampler uses systematic sampling [38] to sample population data. According to the
preset sample size n, determine an integer k closest to N/n, randomly select an integer r in
the range of [1, k] as the starting unit of the sample, and then select a unit every k as a
sample unit until n samples are drawn.

The size of the sampled data set D′ is much smaller than the overall data set D and is
only stored on the master node. Therefore, the cost of functional dependency discovery on
the sampled data set D′ is small. The functional dependencies found in D and D′ have the
following two properties:

1. Completeness: A functional dependency ϕ that holds on D also holds on D′.
2. Minimality: The minimum functional dependence ϕ that holds on D′, if the func-

tional dependence holds on D, then the functional dependence ϕ is also the smallest
functional dependence on D.

According to the above two properties, the invalid or non-minimum functional de-
pendencies can be quickly verified in the sampled data set, saving the time of distributed
verification and improving the efficiency of the algorithm.

3.4. Search and Prune

The row-efficient functional dependence discovery algorithm is appropriate for large-
scale data sets with many tuples. Therefore, this paper uses the lattice of TANE, FUN
and other algorithms to generate candidate functional dependence search space. Given a
relational schema R = {A, B, C, D}, all of its candidate functional dependencies are shown
in Figure 3.

Sensors 2022, 22, 3856 8 of 19Sensors 2022, 22, x FOR PEER REVIEW 8 of 19

Figure 3. Candidate FDs composed of attribute sets A, B, C, D.

The LHS of the candidate FDs is all possible attribute combinations in 𝑅𝑅 , the
connection between the first node of Level-5 and the first node of Level-4 represents the
candidate function dependency 𝐴𝐴𝐴𝐴𝐴𝐴 → 𝐷𝐷, the connection between the first node at level
3 and the first node at level 2 represents the candidate function dependency 𝐴𝐴 → 𝐵𝐵, and
so on.

Lemma 1. Given the attribute set {𝐴𝐴1，…，𝐴𝐴𝑛𝑛} defined on the relational schema 𝑅𝑅,
then the number of all non-trivial minimum functional dependencies is 𝑛𝑛 ∗ 2𝑛𝑛−1 − 𝑛𝑛.

Proof of Lemma 1: Consider only the nontrivial minimal functional dependencies for
which RHS has one property. For all candidate functional dependencies on the relation R,
the number of attributes of the LHS takes the value [1,𝑛𝑛 − 1]. The number of candidate
functional dependencies of LHS with only one attribute is 𝐶𝐶𝑛𝑛1 ∗ 𝐶𝐶𝑛𝑛−11 , the number of
candidate functional dependencies of LHS with two attributes is 𝐶𝐶𝑛𝑛2 ∗ 𝐶𝐶𝑛𝑛−21 , and the
number of candidate functional dependencies of LHS with three attributes is 𝐶𝐶𝑛𝑛3 ∗ 𝐶𝐶𝑛𝑛−31 ,…,
and the number of candidate functional dependencies of LHS with 𝑛𝑛 − 1 attributes is
𝐶𝐶𝑛𝑛𝑛𝑛−1 ∗ 𝐶𝐶11. Therefore, the total number of non-trivial minimum functional dependencies
for which RHS has a property is:

𝐶𝐶𝑛𝑛1 ∗ 𝐶𝐶𝑛𝑛−11 + 𝐶𝐶𝑛𝑛2 ∗ 𝐶𝐶𝑛𝑛−21 + 𝐶𝐶𝑛𝑛3 ∗ 𝐶𝐶𝑛𝑛−31 + ⋯+ 𝐶𝐶𝑛𝑛𝑛𝑛−1 ∗ 𝐶𝐶11

= 1 ∗ 𝐶𝐶𝑛𝑛1 + 2 ∗ 𝐶𝐶𝑛𝑛2 + 3 ∗ 𝐶𝐶𝑛𝑛3 + ⋯+ (𝑛𝑛 − 1) ∗ 𝐶𝐶𝑛𝑛𝑛𝑛−1

= 0 ∗ 𝐶𝐶𝑛𝑛0 + 1 ∗ 𝐶𝐶𝑛𝑛1 + 2 ∗ 𝐶𝐶𝑛𝑛2 + ⋯+ (𝑛𝑛 − 1) ∗ 𝐶𝐶𝑛𝑛𝑛𝑛−1 + 𝑛𝑛 ∗ 𝐶𝐶𝑛𝑛𝑛𝑛 − 𝑛𝑛

∗ 𝐶𝐶𝑛𝑛𝑛𝑛 = �𝑗𝑗 ∗ 𝐶𝐶𝑛𝑛
𝑗𝑗

𝑛𝑛

𝑗𝑗=0

− 𝑛𝑛 ∗ 𝐶𝐶𝑛𝑛𝑛𝑛 = 𝑛𝑛 ∗ 2𝑛𝑛−1 − 𝑛𝑛

When verifying candidate functional dependencies, most existing lattice searches
verify candidate functional dependencies one by one in a bottom-up or top-down order
and the set of candidate functional dependencies is pruned using the following lemma:

Lemma 2. Let 𝑋𝑋,𝑌𝑌,𝑍𝑍 be the three attribute sets of the relation 𝑅𝑅. If 𝑌𝑌 ⊂ 𝑋𝑋 and 𝑋𝑋 ↛
𝑍𝑍, then 𝑌𝑌 ↛ 𝑍𝑍.

Lemma 3. Let 𝑋𝑋,𝑌𝑌,𝑍𝑍 be the three attribute sets of the relation 𝑅𝑅. If 𝑌𝑌 ⊂ 𝑋𝑋 and 𝑌𝑌 →
𝑍𝑍 hold, then 𝑋𝑋 → 𝑍𝑍 holds.

According to Lemma 2, the top-down search strategy can be used to prune functional
dependencies that do not hold in lower levels. For example, it has been verified that
functional dependencies 𝐴𝐴𝐴𝐴𝐴𝐴 → 𝐷𝐷 do not hold, then 𝐴𝐴𝐴𝐴 → 𝐷𝐷 and 𝐴𝐴𝐴𝐴 → 𝐷𝐷 do not hold.
Therefore, if most of the functional dependencies at the upper level are valid and those at

Figure 3. Candidate FDs composed of attribute sets A, B, C, D.

The LHS of the candidate FDs is all possible attribute combinations in R, the connection
between the first node of Level-5 and the first node of Level-4 represents the candidate
function dependency ABC → D , the connection between the first node at level 3 and the
first node at level 2 represents the candidate function dependency A→ B , and so on.

Lemma 1. Given the attribute set {A1, . . . , An} defined on the relational schema R, then the
number of all non-trivial minimum functional dependencies is n ∗ 2n−1 − n.

Proof of Lemma 1: Consider only the nontrivial minimal functional dependencies for
which RHS has one property. For all candidate functional dependencies on the relation R,
the number of attributes of the LHS takes the value [1, n− 1]. The number of candidate
functional dependencies of LHS with only one attribute is C1

n ∗ C1
n−1, the number of can-

didate functional dependencies of LHS with two attributes is C2
n ∗ C1

n−2, and the number
of candidate functional dependencies of LHS with three attributes is C3

n ∗ C1
n−3, . . . , and

the number of candidate functional dependencies of LHS with n− 1 attributes is Cn−1
n ∗ C1

1 .
Therefore, the total number of non-trivial minimum functional dependencies for which
RHS has a property is:

C1
n ∗ C1

n−1 +C2
n ∗ C1

n−2 + C3
n ∗ C1

n−3 + . . . + Cn−1
n ∗ C1

1
= 1 ∗ C1

n + 2 ∗ C2
n + 3 ∗ C3

n + . . . + (n− 1) ∗ Cn−1
n

= 0 ∗ C0
n + 1 ∗ C1

n + 2 ∗ C2
n + . . . + (n− 1) ∗ Cn−1

n

+n ∗ Cn
n − n ∗ Cn

n =
n
∑

j=0
j ∗ Cj

n − n ∗ Cn
n

= n ∗ 2n−1 − n

�

When verifying candidate functional dependencies, most existing lattice searches
verify candidate functional dependencies one by one in a bottom-up or top-down order
and the set of candidate functional dependencies is pruned using the following lemma:

Lemma 2. Let X, Y, Z be the three attribute sets of the relation R. If Y ⊂ X and X 9 Z, then
Y 9 Z.

Sensors 2022, 22, 3856 9 of 19

Lemma 3. Let X, Y, Z be the three attribute sets of the relation R. If Y ⊂ X and Y → Z hold,
then X → Z holds.

According to Lemma 2, the top-down search strategy can be used to prune functional
dependencies that do not hold in lower levels. For example, it has been verified that
functional dependencies ABC → D do not hold, then AB→ D and AC → D do not hold.
Therefore, if most of the functional dependencies at the upper level are valid and those
at the lower level are not, then the top-down strategy will verify more useless functional
dependencies and reduce the verification efficiency.

According to Lemma 3, the bottom-up search strategy can be used to prune the func-
tional dependencies at higher levels. For example, it has been verified that the functional
dependencies AB→ D holds, then ABC → D must hold, and bottom-up search strategy
can avoid the verification of non-minimal functional dependencies. However, when there
are many lower levels functional dependencies that do not hold, the search space cannot be
effectively pruned.

In this paper, we adopt the validation method in [39] and use a two-way alternating
search validation strategy in the sampling validation process. The validation is alternated
from both ends of the search space. It is assumed that there are n levels of candidate
functional dependencies. DisTFD verify the Level-i (i ≤ n/2) firstly, if the verification
result is true, Lemma 2 is used to prune the functional dependencies greater than the
Level-i. Then, verify the Level-j (j = n + 1− i), Lemma 3 is used to prune the functional
dependencies smaller than the Level-j if the verification result is false, and then verify the
Level-(i+1), and so on until all candidate functional dependencies are verified. For example,
in the 4-attribute search space shown in Figure 3, the verification order is Level-2: ∅→ A ;
Level-4: ABC → D ; Level-2: ∅→ B ; . . . ; Level-3: CD → B .

3.5. Global Validation

Candidate function dependencies verified by sampling are further verified using
data redistribution.

3.5.1. Partition Caching

Calculating the number of equivalence classes in a partition to verify candidate func-
tional dependencies. For example, verifying X → Y requires comparing |ΠX | = |ΠXY|
for equality.

Theorem 1. A functional dependency X → Y hold if and only if |ΠX | = |ΠXY|.

Proof of Theorem 1: Since |ΠX | = |ΠXY| by definition 4 and definition 5, the number of
equivalence classes in X is equal to the number of equivalence class in XY so the total
number of tuples contained in the X and XY equivalence classes is equal. That is, for any
tuple ti, if ti is in an equivalence class of X, then ti is also in the same equivalence class
of XY, and ti[X] = tj[X] is satisfied for two tuples if ti and tj in the same equivalence
class |ΠX |, then ti[Y] = tj[Y], in line with the definition of functional dependency, it can be
concluded that X → Y is hold. �

The partition ΠXY can be derived from ΠX
⋂
ΠY, a process called computing the inter-

section of partition. As shown in Figure 1, ΠA = {{1, 3, 4}, {2, 5}}, ΠC = {{1, 4}, {2, 5}},
the process of calculating ΠAC is as follows: First, ΠC is converted into the attribute vector
vc = (1, 2, 0, 1, 2), the value that appears only once is coded as 0, and the other values are
coded as 1, 2, . . . , n in sequence. Then, group the equivalence classes in ΠA according to
the value other than 0 in vc, ΠA = {{1, 3, 4}, {2, 5}} can be divided into 1→ {1, 4} and
2→ {2, 5} . Finally, among all the obtained groups, groups with size greater than 1 form a
new partition, ΠAC = {{1, 4}, {2, 5}}. The computational complexity of this process is high
and a large amount of intermediate data will be generated during the calculation process,

Sensors 2022, 22, 3856 10 of 19

resulting in a long calculation time. Therefore, this paper stores the intermediate results in
the partition cache to avoid repeated calculations in the verification process.

DisTFD stores the calculated partition in the prefix tree [40] shown in Figure 4 for easy
query. Each node stores the partition corresponding to the path, and the number on the
node indicates the size of the partition. In the above example, to calculate ΠAC, the attribute
set {A, C} is converted into an attribute list (A, C) according to the attribute order in the
relational schema R, and then (A, C) is used as a keyword to query in the prefix tree.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 19

Figure 4. Prefix tree cache partition.

When using the partition in the cache, the following two rules should be followed:
1. When calculating the results, the number of partition intersections should be as few

as possible.
2. In each calculation of Π𝑋𝑋⋂Π𝑌𝑌, the |Π𝑋𝑋| and |Π𝑌𝑌| should be minimized as much as

possible.
Algorithm 3 gives the execution process of using partition to cache the calculation

results under the two rules above.

Algorithm 3. RetrievePartition
Input: Partition cache Cache, attribute set 𝑋𝑋
Output: Partition Π𝐶𝐶
1. 𝛷𝛷 ← Query the partition of all 𝑋𝑋 subsets in the Cache
2. Π𝑌𝑌 ← Find the smallest stripped partitioning in 𝛷𝛷
3. 𝐿𝐿 ← 𝑛𝑛𝑛𝑛𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐶𝐶 ← 𝑌𝑌
4. For 𝐶𝐶 ⊂ 𝑋𝑋 do
5. Π𝑍𝑍 ← Find the partition in 𝛷𝛷 that satisfies |𝑍𝑍| = max {|𝑋𝑋/𝐶𝐶|}
6. 𝐿𝐿 = 𝐿𝐿. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(Π𝑍𝑍) 𝐶𝐶 ← 𝐶𝐶 ∪ 𝑍𝑍
7. End for
8. Sort the partition in 𝐿𝐿 in ascending order
9. 𝐶𝐶 ← 𝑌𝑌
10. For Π𝑍𝑍 ∈ 𝐿𝐿 do
11. Π𝐶𝐶∪𝑍𝑍 = Π𝐶𝐶 ∩ Π𝑍𝑍 𝐶𝐶 ← 𝐶𝐶 ∪ 𝑍𝑍
12. Return Π𝐶𝐶

In Algorithm 3, the partitions of all subsets of attribute set 𝑋𝑋 are first queried in the
cache and stored in the query result 𝛷𝛷, the smallest number of partitions is found as the
starting unit of the partition intersection calculation. Next, according to rule 1, select the
partition with the most newly added attributes in 𝛷𝛷 to calculate the intersection, until all
attributes in 𝑋𝑋 appear at least once in the selected partition. Finally, the order of partition
intersection calculation is determined according to Rule 2, the partition with a small
number of equivalence classes should perform intersection calculation as soon as possible.

For example, assuming that Π𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is currently calculated using the partition
caching shown in Figure 4, 𝛷𝛷 = {Π𝐴𝐴,Π𝐵𝐵 ,Π𝐶𝐶 ,Π𝐷𝐷 ,Π𝐸𝐸 ,Π𝐴𝐴𝐴𝐴 ,Π𝐴𝐴𝐴𝐴 ,Π𝐶𝐶𝐶𝐶}is searched in the prefix
tree, and the smallest Π𝐶𝐶𝐶𝐶 is selected as the starting unit, Then, select Π𝐴𝐴𝐴𝐴 with the most
newly added attributes, and then select Π𝐷𝐷. After the partition selection of the intersection
calculation is completed, the order of intersection calculation is determined from small to
large, and finally Π𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = Π𝐶𝐶𝐶𝐶 ∩ Π𝐴𝐴𝐴𝐴 ∩ Π𝐷𝐷 can be obtained.

When caching partitions, memory resources are usually limited. If all partitions are
cached, excessive memory space may be occupied. Most partitions are only used for a

Figure 4. Prefix tree cache partition.

When using the partition in the cache, the following two rules should be followed:

1. When calculating the results, the number of partition intersections should be as few
as possible.

2. In each calculation of ΠX
⋂
ΠY, the |ΠX | and |ΠY| should be minimized as much

as possible.

Algorithm 3 gives the execution process of using partition to cache the calculation
results under the two rules above.

Algorithm 3. RetrievePartition

Input: Partition cache Cache, attribute set X
Output: Partition ΠC

1. Φ← Query the partition of all X subsets in the Cache
2. ΠY ← Find the smallest stripped partitioning in Φ

3. L← new list C ← Y
4. For C ⊂ X do
5. ΠZ ← Find the partition in Φ that satisfies |Z| = max{|X/C|}
6. L = L.append(ΠZ) C ← C ∪ Z
7. End for
8. Sort the partition in L in ascending order
9. C ← Y
10. For ΠZ ∈ L do
11. ΠC∪Z = ΠC ∩ΠZ C ← C ∪ Z
12. Return ΠC

In Algorithm 3, the partitions of all subsets of attribute set X are first queried in the
cache and stored in the query result Φ, the smallest number of partitions is found as the
starting unit of the partition intersection calculation. Next, according to rule 1, select the
partition with the most newly added attributes in Φ to calculate the intersection, until all
attributes in X appear at least once in the selected partition. Finally, the order of partition
intersection calculation is determined according to Rule 2, the partition with a small number
of equivalence classes should perform intersection calculation as soon as possible.

Sensors 2022, 22, 3856 11 of 19

For example, assuming that ΠABCDE is currently calculated using the partition caching
shown in Figure 4, Φ = {ΠA,ΠB,ΠC,ΠD,ΠE,ΠAB,ΠAD,ΠCE} is searched in the prefix
tree, and the smallest ΠCE is selected as the starting unit, Then, select ΠAB with the most
newly added attributes, and then select ΠD. After the partition selection of the intersection
calculation is completed, the order of intersection calculation is determined from small to
large, and finally ΠABCDE = ΠCE ∩ΠAB ∩ΠD can be obtained.

When caching partitions, memory resources are usually limited. If all partitions are
cached, excessive memory space may be occupied. Most partitions are only used for a
period of time, DisTFD save the memory space by clearing partitions that are no longer
used [41]. Each time the partition cache is returned, PartitionMgr records the access time of
each partition and periodically clears the recently unused partitions.

3.5.2. Task Assignment and Validation

Select the sorted attributes in turn as public attributes for data redistribution. In the
process of data redistribution, the tuples with the same value on the common attribute
are sent to the same node by calculating the hash value of the common attribute value.
When the non-Skew attribute is used as the public attribute, it is directly verified after data
redistribution, and when the skewed attribute is selected as the public attribute, DisTFD
assignment the task based on the greedy strategy to achieve load balancing [42].

Each attribute value of the public attribute is represented by keyi(1 ≤ i ≤ m), and the
process of the task assignment shown in Figure 5 is as follows:

1. Sort keys from small to large according to the frequency of each attribute value
counted in data preprocessing.

2. Add up all key frequencies to calculate mean Avg relative to the number of nodes.
3. Traverse the key, if the key frequency is greater than Avg, split it and assign it to a

node with a load of 0, record the corresponding relationship between the key and the
node allocation, and subtract the Avg from the frequency of the key. Repeat this step
until the frequency of the key is less than Avg. If the frequency of the key is not 0, the
key is re-inserted into the queue.

4. Repeat step 3 until all keys with a frequency greater than avg are processed.
5. Select the remaining nodes that are not involved in step 3, traverse the key queue and

find the sum of the node load and key frequency, if Sum is less than Avg, assign the
key to the current node, and Sum is used as the load of the current node, then delete
the information of the key in the queue. Repeat the above steps until all keys in the
queue are processed.

6. Repeat step 5 to balance the load of the remaining nodes, and record the correspon-
dence between keys and node assignments.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 19

period of time, DisTFD save the memory space by clearing partitions that are no longer
used [41]. Each time the partition cache is returned, PartitionMgr records the access time
of each partition and periodically clears the recently unused partitions.

3.5.2. Task Assignment and Validation
Select the sorted attributes in turn as public attributes for data redistribution. In the

process of data redistribution, the tuples with the same value on the common attribute are
sent to the same node by calculating the hash value of the common attribute value. When
the non-Skew attribute is used as the public attribute, it is directly verified after data
redistribution, and when the skewed attribute is selected as the public attribute, DisTFD
assignment the task based on the greedy strategy to achieve load balancing [42].

Each attribute value of the public attribute is represented by 𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖(1 ≤ 𝑖𝑖 ≤ 𝑚𝑚), and
the process of the task assignment shown in Figure 5 is as follows:
1. Sort keys from small to large according to the frequency of each attribute value

counted in data preprocessing.
2. Add up all key frequencies to calculate mean Avg relative to the number of nodes.
3. Traverse the key, if the key frequency is greater than Avg, split it and assign it to a

node with a load of 0, record the corresponding relationship between the key and the
node allocation, and subtract the Avg from the frequency of the key. Repeat this step
until the frequency of the key is less than Avg. If the frequency of the key is not 0, the
key is re-inserted into the queue.

4. Repeat step 3 until all keys with a frequency greater than avg are processed
5. Select the remaining nodes that are not involved in step 3, traverse the key queue and

find the sum of the node load and key frequency, if Sum is less than Avg, assign the
key to the current node, and Sum is used as the load of the current node, then delete
the information of the key in the queue. Repeat the above steps until all keys in the
queue are processed.

6. Repeat step 5 to balance the load of the remaining nodes, and record the
correspondence between keys and node assignments.

Figure 5. Task assignment to achieve load balancing.

Algorithm 4 describes the process of Task assignment. Lines 1–3 calculate the sum of
the key frequencies and calculate the average load Avg on m nodes. Lines 4–11 split the
partitions with a load greater than the average, and record the assignment relationship
between keys and nodes. Lines 12–20 traverse the Key queue, merge the partitions with a
load less than the average, and record the relationship between keys and node
assignment.

Figure 5. Task assignment to achieve load balancing.

Sensors 2022, 22, 3856 12 of 19

Algorithm 4 describes the process of Task assignment. Lines 1–3 calculate the sum
of the key frequencies and calculate the average load Avg on m nodes. Lines 4–11 split
the partitions with a load greater than the average, and record the assignment relationship
between keys and nodes. Lines 12–20 traverse the Key queue, merge the partitions with a
load less than the average, and record the relationship between keys and node assignment.

Algorithm 4. Assignment

Input: dataset D = (D1, . . . , Dn−1, Dn)
Output: true
1. Read the frequency of Key in preprocessing and record it to Kfreq
2. Klist = SortByFreq (Kfreq)
3. Avg = Sum/m

/* Split Keys with greater than average frequency*/
4. for each Key ∈ Klist
5. if (Key.size > Avg)
6. For Key.size > Avgdo

/*Key is assigned to the node with a load of 0*/
7. Node.add(Key, i) Key.size −=Avg
8. end for

/* Re-insert the split Key into the queue */
9. Klist.Sort (Key)
10. Else break
11. end for
12. for each node do
13. for each Key ∈ Klist
14. If (Avg ≥ node.size + Key.size)
15. node.add (Key, i) node.size+ = Key.size
16. Klist.remove (Key)
17. end for
18. end for
19. Return true

After the load balance is achieved, the local equivalence classes are obtained by
computing the partitions in parallel at each node, and the local equivalence classes with
the same value are merged. Finally, the partition of the candidate function dependent on
LHS and LHS∪RHS is obtained. The process of merging local equivalence classes is shown
in Figure 6.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 19

Algorithm 4. Assignment
Input: dataset 𝐷𝐷 = (𝐷𝐷1，…，𝐷𝐷𝑛𝑛−1，𝐷𝐷𝑛𝑛)
Output: true
1. Read the frequency of Key in preprocessing and record it to Kfreq
2. Klist = SortByFreq (Kfreq)
3. Avg=Sum/m

/* Split Keys with greater than average frequency*/
4. for each 𝐾𝐾𝐾𝐾𝐾𝐾 ∈ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾
5. if (𝐾𝐾𝐾𝐾𝐾𝐾. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 𝐴𝐴𝐴𝐴𝐴𝐴)
6. For 𝐾𝐾𝐾𝐾𝐾𝐾. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 𝐴𝐴𝐴𝐴𝐴𝐴 do

/*Key is assigned to the node with a load of 0*/
7. Node.add(Key, i) Key.size−=Avg
8. end for

/* Re-insert the split Key into the queue */
9. Klist.Sort (Key)
10. Else break
11. end for
12. for each node do
13. for each Key ∈ Klist
14. If (Avg ≥ node.size + Key.size)
15. node.add (Key, i) node.size += Key.size
16. Klist.remove (Key)
17. end for
18. end for
19. Return true

After the load balance is achieved, the local equivalence classes are obtained by
computing the partitions in parallel at each node, and the local equivalence classes with
the same value are merged. Finally, the partition of the candidate function dependent on
LHS and LHS∪RHS is obtained. The process of merging local equivalence classes is shown
in Figure 6.

.

Figure 6. The process of merging the local equivalence classes of each node.

Let 𝐴𝐴 be a set of common attributes of candidate function dependencies, 𝑑𝑑 =
(𝑑𝑑1，…，𝑑𝑑𝑚𝑚−1，𝑑𝑑𝑚𝑚) is the data after redistributing the attribute value of A ,then

|Π𝑋𝑋| = � �Π𝑋𝑋𝑋𝑋�
𝑚𝑚

𝑗𝑗=1
 (2)

where, 𝑚𝑚 is the number of keys, 𝑗𝑗 ∈ [1,𝑚𝑚].

Figure 6. The process of merging the local equivalence classes of each node.

Let A be a set of common attributes of candidate function dependencies,
d = (d1, . . . , dm−1, dm) is the data after redistributing the attribute value of A, then

|ΠX | = ∑m
j=1

∣∣ΠXj
∣∣ (2)

Sensors 2022, 22, 3856 13 of 19

where, m is the number of keys, j ∈ [1, m].
Algorithm 5 shows the process of parallel verification of selected function dependen-

cies at each node.

Algorithm 5. GlobalValidate

Input: dataset D = (D1, . . . , Dn), candidate function dependency ϕ : X → Y
Output: true or false

1. ΠZ = RetrievePartition(X, Cache)
2. /* Each node computes ΠX/Z in parallel*/
3. Compute(d, X/Z)
4. for each ΠX/Zij in nodei

5. If
(∣∣∣ΠX/Zij

∣∣∣ 6= ∣∣∣ΠX/Z∪Yij

∣∣∣)
6. Return false
7. for k ∈ [1, n]
8. If (k 6= i)
9. ΠX/Zj ← ΠX/Zij ∪ΠX/Zkj

10. end for
11. end for

12. |ΠX/Z| = ∑m
j=1

∣∣∣ΠX/Zj

∣∣∣
13. If (|ΠX/Z| 6= |ΠX/Z∪Y |)
14. Return false
15. ΠX ← ΠX/Z ∩ΠZ
16. Cache← ΠX
17. If (|ΠX | = |ΠX∪Y |){
18. Return true
19. }else {
20. Return false
21. }

The input of Algorithm 5 is the redistributed data set D, the candidate function
dependency ϕ : X → Y , and the output is the verification result. The algorithm first sends
a request to the partitioned cache to obtain partial results, then computes the partition of
the remaining attributes in X. Then, verify the candidate functional dependency on a single
node, if the functional dependency is true on each node, merge the results with the same
Key. Before storing the partition in the cache, the merged result is used to verify again
to avoid storing invalid partition, and finally output the verification result of candidate
function dependency.

4. Experiment

In this chapter, experiments are performed on real and synthetic datasets, and com-
pared with other existing algorithms to verify the efficiency, scalability, and accuracy of the
proposed algorithm.

4.1. Experimental Setup

In this experiment, a cluster consisting of 8 servers connected through a local area
network is used. The configuration of each server is as follows: the CPU is Intel Xeon2
processor, 32GB memory, and the operating system is Ubuntu 10.4. The algorithm is written
in Java and runs on Apache Spark and the HDFS distributed file system.

Three different types of datasets are used in the experiments: (1) A dataset with
0.5 million tuples generated by ONTS [43], the US Department of Transportation’s flight
statistics. (2) Airline, a dataset with large number of columns, with 109 attributes and
0.5 million tuples [44]. (3) Synthetic dataset, a synthetic dataset Stud with 2 million
tuples and 25 attributes. (4) Abalone, a small-scale dataset to evaluate the accuracy of
the algorithm.

A summary of the experimental dataset is shown in Table 1.

Sensors 2022, 22, 3856 14 of 19

Table 1. Summary of experimental dataset.

DataSet #Tuples #Attributes

ONTS 0.5 64
Airline 0.5 109

Stud 2 25
Abalone 0.004177 9

4.2. Scalability

In this section, the scalability of DisTFD (Node scalability and Data scale scalability) is
evaluated and compared with other algorithms.

Node Scalability. By changing the number of nodes |V|, 3 ≤ |V| ≤ 8, the dataset
scale is fixed, evaluate the scalability of this algorithm to the number of nodes. Figure 7a,b
show the response times of algorithms Cet, HFDD and DisTFD under different numbers
of nodes.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 19

Table 1. Summary of experimental dataset.

DataSet #Tuples #Attributes
ONTS 0.5 64
Airline 0.5 109

Stud 2 25
Abalone 0.004177 9

4.2. Scalability
In this section, the scalability of DisTFD (Node scalability and Data scale scalability)

is evaluated and compared with other algorithms.
Node Scalability. By changing the number of nodes |𝑉𝑉|, 3 ≤ |𝑉𝑉| ≤ 8, the dataset

scale is fixed, evaluate the scalability of this algorithm to the number of nodes. Figure 7a,b
show the response times of algorithms Cet, HFDD and DisTFD under different numbers
of nodes

(a) ONTS (b) Stud

Figure 7. (a) Response time with different number of nodes (ONTS) (b) Response time with different
number of nodes (Stud).

As shown in Figure 7a,b, as the number of nodes increases, the response time of the
algorithm HFDD and the algorithm DisTFD decreases significantly, and the response time
of the algorithm Cet increases slowly. The algorithm Cet verifies the candidate functional
dependencies by concentrating the data into master node. When the number of nodes
increases, the data of each node migrates to the master node, the amount of data migration
becomes larger and the load is unbalanced, which leads to an increase in response time.
Algorithm HFDD and algorithm DisTFD verify candidate function dependencies in
parallel, so as the number of nodes increases, the response time will be significantly
reduced, but when the number of nodes is same, algorithm DisTFD is more efficient than
algorithm HFDD. The results show that the algorithm DisTFD has better node scalability.

Data scale scalability. By changing the scale of the data set |𝐷𝐷|, the scalability of the
algorithm for the data scale is evaluated. The fixed number of nodes |𝑉𝑉| = 4, and the
value range of the data scale is 20%–100%. Figure 8a,b show the response times of
algorithms Cet, HFDD and DisTFD under different data scales, respectively.

Figure 7. (a) Response time with different number of nodes (ONTS) (b) Response time with different
number of nodes (Stud).

As shown in Figure 7a,b, as the number of nodes increases, the response time of the
algorithm HFDD and the algorithm DisTFD decreases significantly, and the response time
of the algorithm Cet increases slowly. The algorithm Cet verifies the candidate functional
dependencies by concentrating the data into master node. When the number of nodes
increases, the data of each node migrates to the master node, the amount of data migration
becomes larger and the load is unbalanced, which leads to an increase in response time.
Algorithm HFDD and algorithm DisTFD verify candidate function dependencies in parallel,
so as the number of nodes increases, the response time will be significantly reduced, but
when the number of nodes is same, algorithm DisTFD is more efficient than algorithm
HFDD. The results show that the algorithm DisTFD has better node scalability.

Data scale scalability. By changing the scale of the data set |D|, the scalability of the
algorithm for the data scale is evaluated. The fixed number of nodes |V| = 4, and the value
range of the data scale is 20–100%. Figure 8a,b show the response times of algorithms Cet,
HFDD and DisTFD under different data scales, respectively.

Sensors 2022, 22, 3856 15 of 19

Sensors 2022, 22, x FOR PEER REVIEW 15 of 19

(a) ONTS (b) Stud

Figure 8. (a) Response time at different data scale (ONTS) (b) Response time at different data scale
(Stud).

From Figure 8a,b, it can be concluded that with the expansion of the data scale, the
response times of algorithms Cet, HFDD, and DisTFD show an increasing trend. Under
the same conditions, the distributed discovery algorithms HFDD and DisTFD have less
response time than the centralized discovery algorithm Cet. Compared with the algorithm
HFDD, the algorithm DisTFD has a significant improvement in execution efficiency. From
the above, it can be concluded that the algorithm DisTFD proposed in this paper has better
scalability in terms of data scale.

4.3. Evaluation of Accuracy
In this section, we evaluate the accuracy of the algorithm by comparing the results of

algorithms Cet, HFDD, and DisTFD with those of the TANE[25] algorithm, respectively,
using the method in the literature [45].

We consider Precision, Recall, and F1measure as the metric of algorithm accuracy.
The confusion matrix for classification results is shown in Table 2. Precision, Recall, and
F1measure can be calculated as:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) (3)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) (4)

𝐹𝐹1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 2 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅/(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) (5)

Table 2. Confusion matrix for classification results.

Truth
Predicted

Positive Negative
Positive TP FN

Negative FP TN

As shown in Table 2, the results can be divided into four categories：true positive
(TP), false positive (FP), true negative (TN), and false negative (FN). We take the results
of algorithm TANE as Truth, and the results of algorithms Cet, HFDD, and DisTFD as
prediction values, and calculate Precision, Recall, and F1measure of the three algorithms
and compare them, respectively. The comparison results are shown in Table 3.

Figure 8. (a) Response time at different data scale (ONTS) (b) Response time at different data
scale (Stud).

From Figure 8a,b, it can be concluded that with the expansion of the data scale, the
response times of algorithms Cet, HFDD, and DisTFD show an increasing trend. Under
the same conditions, the distributed discovery algorithms HFDD and DisTFD have less
response time than the centralized discovery algorithm Cet. Compared with the algorithm
HFDD, the algorithm DisTFD has a significant improvement in execution efficiency. From
the above, it can be concluded that the algorithm DisTFD proposed in this paper has better
scalability in terms of data scale.

4.3. Evaluation of Accuracy

In this section, we evaluate the accuracy of the algorithm by comparing the results of
algorithms Cet, HFDD, and DisTFD with those of the TANE [25] algorithm, respectively,
using the method in the literature [45].

We consider Precision, Recall, and F1measure as the metric of algorithm accuracy.
The confusion matrix for classification results is shown in Table 2. Precision, Recall, and
F1measure can be calculated as:

Precision = TP/(TP + FP) (3)

Recall = TP/(TP + FN) (4)

F1measure = 2 ∗ Precision ∗ Recall/(Precision + Recall) (5)

Table 2. Confusion matrix for classification results.

Truth
Predicted

Positive Negative

Positive TP FN

Negative FP TN

As shown in Table 2, the results can be divided into four categories: true positive
(TP), false positive (FP), true negative (TN), and false negative (FN). We take the results
of algorithm TANE as Truth, and the results of algorithms Cet, HFDD, and DisTFD as
prediction values, and calculate Precision, Recall, and F1measure of the three algorithms
and compare them, respectively. The comparison results are shown in Table 3.

Sensors 2022, 22, 3856 16 of 19

Table 3. Comparison of Cet, HFDD, and DisTFD accuracy on Abalone.

Precision Recall F1measure

Cet 0.9852 0.9708 0.9780

HFDD 1 0.9781 0.9890

DisTFD 1 0.9854 0.9926

As shown in Table 3, the algorithms Cet, HFDD, and DisTFD have little difference
in Precision, Recall, and F1measure, and the F1measure of DisTFD is slightly improved,
indicating that all the above algorithms have higher accuracy, but the algorithm DisTFD is
more efficient with similar accuracy.

4.4. Evaluation of Performance

In this section, the effectiveness of the proposed method is evaluated by two sets of
experiments, respectively.

Evaluation of partition cache. By changing the number of columns in the ONTS and
Airline datasets, we evaluate the effect of turning off and on the partition cache on the
response time of the algorithm. The fixed number of nodes |V| = 4, and the range of
the number of data columns is 10–60%. Figure 9a,b shows the change of the response
time of the DisTFD algorithm with the partition cache turning on or off as the number of
columns increases.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 19

Table 3. Comparison of Cet, HFDD, and DisTFD accuracy on Abalone.

 Precision Recall F1measure
Cet 0.9852 0.9708 0.9780

HFDD 1 0.9781 0.9890
DisTFD 1 0.9854 0.9926

As shown in Table 3, the algorithms Cet, HFDD, and DisTFD have little difference in
Precision, Recall, and F1measure, and the F1measure of DisTFD is slightly improved,
indicating that all the above algorithms have higher accuracy, but the algorithm DisTFD
is more efficient with similar accuracy.

4.4. Evaluation of Performance
In this section, the effectiveness of the proposed method is evaluated by two sets of

experiments, respectively.
Evaluation of partition cache. By changing the number of columns in the ONTS and

Airline datasets, we evaluate the effect of turning off and on the partition cache on the
response time of the algorithm. The fixed number of nodes |𝑉𝑉| = 4, and the range of the
number of data columns is 10%–60%. Figure 9a,b shows the change of the response time
of the DisTFD algorithm with the partition cache turning on or off as the number of
columns increases.

(a) ONTS (b) Airline

Figure 9. (a) Evaluation of effectiveness of partition cache (ONTS) (b) Evaluation of effectiveness of
partition cache (Airline).

As shown in Figure 9, When the number of columns is large, partition caching can
significantly reduce the response time of the algorithm. When the number of columns is
small, the response time of turning on or off the partition cache does not change
significantly. As the number of columns increases, the partition cache significantly
improves the execution efficiency of the algorithm.

Evaluation of load balancing. By injecting attribute values with different skewness
into the synthetic dataset Stud, the performance of the algorithm under different
uniformity of attribute values is evaluated. The fixed number of nodes |𝑉𝑉| = 4 , and
according to the ratio of the number of tuples corresponding to the attribute value with
the largest attribute value at the left end of the functional dependence to the total number
of tuples in the data set from the lowest 10% to the highest 60%, the experiment is carried
out. Figure 10 shows the response time of algorithms Cet, HFDD and DisTFD under the
different skewness of attribute values.

Figure 9. (a) Evaluation of effectiveness of partition cache (ONTS) (b) Evaluation of effectiveness of
partition cache (Airline).

As shown in Figure 9, when the number of columns is large, partition caching can sig-
nificantly reduce the response time of the algorithm. When the number of columns is small,
the response time of turning on or off the partition cache does not change significantly. As
the number of columns increases, the partition cache significantly improves the execution
efficiency of the algorithm.

Evaluation of load balancing. By injecting attribute values with different skewness
into the synthetic dataset Stud, the performance of the algorithm under different uniformity
of attribute values is evaluated. The fixed number of nodes |V| = 4, and according to the
ratio of the number of tuples corresponding to the attribute value with the largest attribute
value at the left end of the functional dependence to the total number of tuples in the data
set from the lowest 10% to the highest 60%, the experiment is carried out. Figure 10 shows
the response time of algorithms Cet, HFDD and DisTFD under the different skewness of
attribute values.

Sensors 2022, 22, 3856 17 of 19

Sensors 2022, 22, x FOR PEER REVIEW 17 of 19

Figure 10. Evaluation of effectiveness of load balancing.

As shown in Figure 10, the response time of algorithm Cet increases slightly with the
increase in skewness, and the response time of algorithm HFDD increases significantly in
the case of larger skewness. However, the algorithm DisTFD has no significant change in
response time as the skewness increases. Therefore, the algorithm DisTFD has better
performance in the case of uneven distribution of attribute values.

5. Conclusion and Future Work
Aiming at the problems existing in the process of centralized functional dependency

discovery, this paper proposes an algorithm to discover functional dependencies from
distributed data. This paper proposes a functional dependency discovery algorithm
suitable for distributed data, focusing on reducing the response time of distributed
functional dependency discovery. In order to improve the efficiency of functional
dependency discovery in a distributed environment, the intermediate results in the
calculation process are stored in the cache to reduce the repeated calculation of
equivalence classes. Balance the load during the verification process to avoid inefficiencies
caused by the unbalanced load. The proposed algorithm is validated on real and synthetic
datasets. The results show that the algorithm has good scalability in terms of node and
data scale, and significantly improves the execution efficiency compared with existing
methods. In future work, we will consider discover approximately functional
dependencies and discover functional dependencies in the case of incomplete data. In
addition, how to improve the column scalability of the algorithm is also a problem that
needs to be considered.

Author Contributions: Conceptualization, W.W. and W.M.; methodology, W.W. and W.M.;
software, W.M.; validation, W.W.; formal analysis, W.W. and W.M.; writing—original draft
preparation, W.M.; writing—review and editing, W.W.; supervision, W.W.; project administration,
W.W.; funding acquisition, W.W. All authors have read and agreed to the published version of the
manuscript.

Funding: The authors are supported by the Science and Technology Research Project of Higher
Education of Hebei Province Nos. ZD2021011.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 10. Evaluation of effectiveness of load balancing.

As shown in Figure 10, the response time of algorithm Cet increases slightly with the
increase in skewness, and the response time of algorithm HFDD increases significantly in
the case of larger skewness. However, the algorithm DisTFD has no significant change
in response time as the skewness increases. Therefore, the algorithm DisTFD has better
performance in the case of uneven distribution of attribute values.

5. Conclusions and Future Work

Aiming at the problems existing in the process of centralized functional dependency
discovery, this paper proposes an algorithm to discover functional dependencies from dis-
tributed data. This paper proposes a functional dependency discovery algorithm suitable
for distributed data, focusing on reducing the response time of distributed functional de-
pendency discovery. In order to improve the efficiency of functional dependency discovery
in a distributed environment, the intermediate results in the calculation process are stored
in the cache to reduce the repeated calculation of equivalence classes. Balance the load
during the verification process to avoid inefficiencies caused by the unbalanced load. The
proposed algorithm is validated on real and synthetic datasets. The results show that the
algorithm has good scalability in terms of node and data scale, and significantly improves
the execution efficiency compared with existing methods. In future work, we will consider
discover approximately functional dependencies and discover functional dependencies
in the case of incomplete data. In addition, how to improve the column scalability of the
algorithm is also a problem that needs to be considered.

Author Contributions: Conceptualization, W.W. and W.M.; methodology, W.W. and W.M.; soft-
ware, W.M.; validation, W.W.; formal analysis, W.W. and W.M.; writing—original draft preparation,
W.M.; writing—review and editing, W.W.; supervision, W.W.; project administration, W.W.; funding
acquisition, W.W. All authors have read and agreed to the published version of the manuscript.

Funding: The authors are supported by the Science and Technology Research Project of Higher
Education of Hebei Province Nos. ZD2021011.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Provost, F.; Fawcett, T. Data science and its relationship to big data and data-driven decision making. Big Data 2013, 1, 51–59.

[CrossRef] [PubMed]
2. Rubin, D.B. Inference and missing data. Biometrika 1976, 63, 581–592. [CrossRef]

http://doi.org/10.1089/big.2013.1508
http://www.ncbi.nlm.nih.gov/pubmed/27447038
http://doi.org/10.1093/biomet/63.3.581

Sensors 2022, 22, 3856 18 of 19

3. DeSimone, J.A.; Harms, P.D. Dirty data: The effects of screening respondents who provide low-quality data in survey research.
J. Bus. Psychol. 2018, 33, 559–577. [CrossRef]

4. Yetman, M.H.; Yetman, R.J. Do donors discount low-quality accounting information? Account. Rev. 2013, 88, 1041–1067. [CrossRef]
5. Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [CrossRef]
6. Prokoshyna, N.; Szlichta, J.; Chiang, F.; Miller, R.J.; Srivastava, D. Combining quantitative and logical data cleaning. In Proceedings

of the 41st International Conference on VLDB Endowment, Waikoloa Village, HI, USA, 31 August–4 September 2015.
7. Reddy, A.; Ordway-West, M.; Lee, M.; Dugan, M.; Whitney, J.; Kahana, R.; Ford, B.; Muedsam, J.; Henslee, A.; Rao, M. Using

gaussian mixture models to detect outliers in seasonal univariate network traffic. In Proceedings of the 2017 IEEE Security and
Privacy Workshops (SPW), San Jose, CA, USA, 25 May 2017; pp. 229–234.

8. Mariet, Z.; Harding, R.; Madden, S. Outlier Detection in Heterogeneous Datasets Using Automatic Tuple Expansion; MIT Computer
Science & Artificial Intelligence Laboratory: Cambridge, MA, USA, 2016.

9. Liu, Y.; Li, Z.; Zhou, C.; Jiang, Y.; Sun, J.; Wang, M.; He, X. Generative adversarial active learning for unsupervised outlier
detection. IEEE Trans. Knowl. Data Eng. 2019, 32, 1517–1528. [CrossRef]

10. Schelter, S.; Lange, D.; Schmidt, P.; Schelter, S.; Lange, D.; Schmidt, P.; Celikel, M.; Biessmann, F. Automating large-scale data
quality verification. In Proceedings of the 44th International Conference on VLDB, Rio de Janeiro, Brazil, 27–31 August 2018;
pp. 1781–1794.

11. Dallachiesa, M.; Ebaid, A.; Eldawy, A.; Elmagarmidet, A.; Ilyas, I.F.; Ouzzani, M.; Tang, N. NADEEF: A commodity data cleaning
system. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, New York, NY, USA,
22–27 June 2013; pp. 541–552.

12. Rammelaere, J.; Geerts, F. Cleaning data with forbidden itemsets. IEEE Trans. Knowl. Data Eng. 2019, 32, 1489–1501. [CrossRef]
13. Koumarelas, I.; Papenbrock, T.; Naumann, F. MDedup: Duplicate detection with matching dependencies. In Proceedings of the

46th International Conference on VLDB, Tokyo, Japan, 31 August–4 September 2020; pp. 712–725.
14. Chu, X.; Ilyas, I.F.; Koutris, P. Distributed data deduplication. In Proceedings of the 42nd International Conference on VLDB,

New Delhi, India, 5–9 September 2016; pp. 864–875.
15. Pena, E.H.M.; de Almeida, E.C.; Naumann, F. Discovery of approximate (and exact) denial constraints. In Proceedings of the 45th

International Conference on VLDB, Los Angeles, CA, USA, 26–30 August 2019; pp. 266–278.
16. Yao, H.; Hamilton, H.J. Mining functional dependencies from data. Data Min. Knowl. Discov. 2008, 16, 197–219. [CrossRef]
17. Li, J.; Liu, J.; Toivonen, H.; Yong, J. Effective pruning for the discovery of conditional functional dependencies. Comput. J. 2013, 56,

378–392. [CrossRef]
18. Chu, X.; Ilyas, I.F.; Papotti, P. Discovering denial constraints. In Proceedings of the 7th International Conference on VLDB, Riva

del Garda, Italy, 30 August 2013; pp. 1498–1509.
19. Rekatsinas, T.; Chu, X.; Ilyas, I.F.; Ré, C. Holoclean: Holistic data repairs with probabilistic inference. arXiv 2017, arXiv:1702.00820.

[CrossRef]
20. Chiang, F.; Gairola, D. Infoclean: Protecting sensitive information in data cleaning. J. Data Inf. Qual. (JDIQ) 2018, 9, 1–26.

[CrossRef]
21. Papenbrock, T.; Ehrlich, J.; Marten, J.; Neubert, T.; Rudolph, J.-P.; Schönberg, M.; Zwiener, J.; Naumann, F. Functional dependency

discovery: An experimental evaluation of seven algorithms. Proc. VLDB Endow. 2015, 8, 1082–1093. [CrossRef]
22. Gu, C.; Cao, J. Functional Dependency Discovery on Distributed Database: Sampling Verification Framework. In Proceedings of

the International Conference on Data Service, Istanbul, Turkey, 11–12 October 2019; Springer: Singapore, 2019; pp. 463–476.
23. Tu, S.; Huang, M. Scalable functional dependencies discovery from big data. In Proceedings of the 2016 IEEE Second International

Conference on Multimedia Big Data (BigMM), Taipei, Taiwan, 20–22 April 2016; pp. 426–431.
24. Li, W.; Li, Z.; Chen, Q.; Jiang, T.; Liu, H. Discovering functional dependencies in vertically distributed big data. In Proceedings of

the International Conference on Web Information Systems Engineering, Miami, FL, USA, 1–3 November 2015; Springer: Cham,
Germany, 2015; pp. 199–207.

25. Huhtala, Y.; Kärkkäinen, J.; Porkka, P.; Toivonen, H. TANE: An efficient algorithm for discovering functional and approximate
dependencies. Comput. J. 1999, 42, 100–111. [CrossRef]

26. Novelli, N.; Cicchetti, R. Fun: An efficient algorithm for mining functional and embedded dependencies. In Proceedings of
the International Conference on Database Theory, London, UK, 4–6 January 2001; Springer: Berlin/Heidelberg, Germany, 2001;
pp. 189–203.

27. Yao, H.; Hamilton, H.J.; Butz, C.J. FD_Mine: Discovering Functional Dependencies in a Database Using Equivalences. In
Proceedings of the ICDM, Maebashi City, Japan, 9–12 December 2002; pp. 729–732.

28. Lopes, S.; Petit, J.M.; Lakhal, L. Efficient discovery of functional dependencies and armstrong relations. In Proceedings of the
International Conference on Extending Database Technology, Konstanz, Germany, 27–31 March 2000; Springer: Berlin/Heidelberg,
Germany, 2000; pp. 350–364.

29. Wyss, C.; Giannella, C.; Robertson, E. Fastfds: A heuristic-driven, depth-first algorithm for mining functional dependencies
from relation instances extended abstract. In Proceedings of the International Conference on Data Warehousing and Knowledge
Discovery, Munich, Germany, 5–7 September 2001.

30. Papenbrock, T.; Naumann, F. A hybrid approach to functional dependency discovery. In Proceedings of the 2016 International
Conference on Management of Data, San Francisco, CA, USA, 26 June–1 July 2016; pp. 821–833.

http://doi.org/10.1007/s10869-017-9514-9
http://doi.org/10.2308/accr-50367
http://doi.org/10.1126/science.aaa8415
http://doi.org/10.1109/TKDE.2019.2905606
http://doi.org/10.1109/TKDE.2019.2905548
http://doi.org/10.1007/s10618-007-0083-9
http://doi.org/10.1093/comjnl/bxs082
http://doi.org/10.14778/3137628.3137631
http://doi.org/10.1145/3190577
http://doi.org/10.14778/2794367.2794377
http://doi.org/10.1093/comjnl/42.2.100

Sensors 2022, 22, 3856 19 of 19

31. Kivinen, J.; Mannila, H. Approximate dependency inference from relations. In Proceedings of the International Conference on
Database Theory, Berlin, Germany, 14–16 October 1992.

32. Ilyas, I.F.; Markl, V.; Haas, P.; Brown, P.; Aboulnaga, A. CORDS: Automatic discovery of correlations and soft functional
dependencies. In Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, Paris, France, 13–18
June 2004; pp. 647–658.

33. Sánchez, D.; Serrano, J.M.; Blanco, I.; Martin-Bautista, M.J. Using association rules to mine for strong approximate dependencies.
Data Min. Knowl. Discov. 2008, 16, 313–348. [CrossRef]

34. Mandros, P.; Boley, M.; Vreeken, J. Discovering reliable approximate functional dependencies. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017;
pp. 355–363.

35. Flach, P.A.; Savnik, I. Database dependency discovery: A machine learning approach. AI Commun. 1999, 12, 139–160.
36. Caruccio, L.; Deufemia, V.; Polese, G. Mining relaxed functional dependencies from data. Data Min. Knowl. Discov. 2020, 34,

443–477. [CrossRef]
37. Li, W.; Li, Z.; Chen, Q.; Jiang, T. Discovering Approximate Functional Dependencies from Distributed Big Data. In Proceedings of

the Asia-Pacific Web Conference, Suzhou, China, 23–25 September 2016.
38. Mostafa, S.A.; Ahmad, I.A. Recent developments in systematic sampling: A review. J. Stat. Theory Pract. 2018, 12, 290–310.

[CrossRef]
39. Cheng, F.; Yang, Z. New Pruning Methods for Mining Minimal Functional Dependencies from Large-Scale Distributed Data. In

Proceedings of the 2018 Sixth International Conference on Advanced Cloud and Big Data (CBD), Lanzhou, China, 12–15 August
2018; pp. 269–274.

40. Qu, J.F.; Hang, B.; Wu, Z.; Wu, Z.; Gu, Q.; Tang, B. Efficient mining of frequent itemsets using only one dynamic prefix tree. IEEE
Access 2020, 8, 183722–183735. [CrossRef]

41. Kendrick, P.; Baker, T.; Maamar, Z.; Hussain, A.; Buyya, R.; Al-Jumeily, D. An efficient multi-cloud service composition using a
distributed multiagent-based, memory-driven approach. IEEE Trans. Sustain. Comput. 2018, 6, 358–369. [CrossRef]

42. Ghomi, E.J.; Rahmani, A.M.; Qader, N.N. Load-balancing algorithms in cloud computing: A survey. J. Netw. Comput. Appl. 2017,
88, 50–71. [CrossRef]

43. Available online: https://www.transtats.bts.gov/ (accessed on 13 November 2021).
44. Available online: https://www.bts.gov/topics/airlines-and-airports-0 (accessed on 26 October 2021).
45. Babić, I.; Miljković, A.; Čabarkapa, M.; Nikolić, V.; Ðord̄ević, A.; Rand̄elović, M.; Rand̄elović, D. Triple Modular Redundancy

Optimization for Threshold Determination in Intrusion Detection Systems. Symmetry 2021, 13, 557. [CrossRef]

http://doi.org/10.1007/s10618-008-0092-3
http://doi.org/10.1007/s10618-019-00667-7
http://doi.org/10.1080/15598608.2017.1353456
http://doi.org/10.1109/ACCESS.2020.3029302
http://doi.org/10.1109/TSUSC.2018.2881416
http://doi.org/10.1016/j.jnca.2017.04.007
https://www.transtats.bts.gov/
https://www.bts.gov/topics/airlines-and-airports-0
http://doi.org/10.3390/sym13040557

	Introduction
	Preliminaries
	Definition
	Related Work

	The Distributed Algorithm for Mining Functional Dependency
	Algorithm Architecture Overview
	Data Preprocessing
	Sampling Validation Framework
	Search and Prune
	Global Validation
	Partition Caching
	Task Assignment and Validation

	Experiment
	Experimental Setup
	Scalability
	Evaluation of Accuracy
	Evaluation of Performance

	Conclusions and Future Work
	References

