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Abstract: Guided waves are a potent tool in structural health monitoring, with promising machine
learning algorithm applications due to the complexity of their signals. However, these algorithms
usually require copious amounts of data to be trained. Collecting the correct amount and distribution
of data is costly and time-consuming, and sometimes even borderline impossible due to the necessity
of introducing damage to vital machinery to collect signals for various damaged scenarios. This
data scarcity problem is not unique to guided waves or structural health monitoring, and has been
partly addressed in the field of computer vision using generative adversarial neural networks. These
networks generate synthetic data samples based on the distribution of the data they were trained on.
Though there are multiple researched methods for simulating guided wave signals, the problem is
not yet solved. This work presents a generative adversarial network architecture for guided waves
generation and showcases its capabilities when working with a series of pitch-catch experiments
from the OpenGuidedWaves database. The network correctly generates random signals and can
accurately reconstruct signals it has not seen during training. The potential of synthetic data to be
used for training other algorithms was confirmed in a simple damage detection scenario, with the
classifiers trained exclusively on synthetic data and evaluated on real signals. As a side effect of the
signal reconstruction process, the network can also compress the signals by 98.44% while retaining
the damage index information they carry.

Keywords: guided waves; structural health monitoring; neural networks

1. Introduction
1.1. Guided Waves in Structural Health Monitoring

Structural health monitoring (SHM) is widely researched [1–3], as the viability of
continuously monitoring an object offers many potential benefits, such as cutting down
maintenance costs by ensuring the maintenance schedule is based on the actual condition of
the elements and early detection of material deterioration and damage in various structures.
One such widely-researched method is based on guided wave (GW) signal analysis [4–8],
in which the propagation of transducer-induced vibration along natural boundaries of
a structure is investigated for signs of fatigue or damage. This method has numerous
strong points, such as being able to monitor large structures with relatively few transducers
and its sensitivity to small changes [4]. Unfortunately, analyzing these output signals is
a non-trivial task due to the complexity of the output. This naturally motivates research
in applying the latest advances in machine learning for processing and interpreting these
signals [9–14]. However, machine learning generally requires vast amounts of data to be
appropriately trained.
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1.2. Data Scarcity

High-volume data acquisition of GW is often unfeasible, especially when recording
various damage states for the damage detection to be trained on. Doing this will generally
require introducing various damage states to the measured structures, which are potentially
costly, irreplaceable, or otherwise important. This data scarcity problem is not unique to
GW and is present across various SHM problems [2]. In a broad sense, this issue is not
even unique to SHM; due to the importance of the quality of data supplied to machine
learning algorithms, many fields of study struggle with data collection appropriate for
the extensive utilization of these algorithms [15]. This common problem has sparked
research into circumventing insufficient data by adding synthetic examples, such as data
augmentation, which multiplies the available data via a series of transformations that result
in different, but still valid examples. For instance, in the case of image recognition tasks,
one might randomly blur, rotate, and add noise to the images, as none of these operations
change the fundamental contents of the image, but they do result in distinct examples for
the training algorithms. Shorten and Khoshgoftaar [15] have written a comprehensive
review on this topic, investigating both simple and complex augmentation methods.

Amongst these more complex methods of creating synthetic data samples, generative
adversarial networks (GANs) [16] are a promising tool. In their basic form, they are a
pair of networks that learn to re-create the distribution of data they were supplied with
during training. Since their inception, there has been significant research into their potential
uses [17]. Though the original implementations were focused on working with images,
the underlying principles have since been applied to various other types of data, such as
audio waves [18]. Moreover, their utility as a data-augmentation tool with a positive effect
on machine learning models has been proven in many research fields [15], helping with
problems such as kidney CT scan segmentation [19], machine fault detection [20], or card
fraud detection [21].

1.3. Contribution

This work tackles the application of GANs to generate synthetic signals of a quality
sufficient for usage in designing and training damage detection algorithms, extending
the previous work on GW-GAN [22] (guided wave—generative adversarial network) a
generative adversarial neural network model for GW based on the state-of-the-art archi-
tecture for image synthesis StyleGAN2 [23,24]. The motivation behind this work is the
difficulty of obtaining guided waves data of sufficient quality, quantity, and distribution [2]
to adequately explore applications of some of the newer machine learning (ML) advances
in GW analysis. This aim was further bolstered by the successful applications of GANs in
various other fields for data synthesis and augmentation, most notably audio signals, which
are close to guided waves in that both are mechanical waves. This research is intended
to provide background for future StyleGAN applications to synthesize particular types
of data for GW-based damage detection, including previously unseen sensor locations or
generation of artificial damage in various structures. To the best of the authors’ knowl-
edge, style-based GANs have not yet been used for time-series signal synthesis, and while
this architecture was designed with guided waves in mind, it should work with other
time-domain signals, possibly requiring minor alterations depending on the nature of
these signals. For the guided waves proof of concept, the model was trained using the
OpenGuidedWaves dataset [5].

2. Materials and Methods
2.1. Guided Waves

Guided waves are elastic waves that propagate through a structure, “guided” by its
physical boundaries, e.g., along a rail or pipe. Their propagation is highly dependent on
the medium they are in and on the environmental conditions, including, most notably,
temperature. They are highly dispersive waves and can generate nearly infinite modes by
longitudinal and transverse waves superposition [25]. They also retain most of their energy
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when traveling long distances, making them suitable for monitoring large structures. GWs
are usually used at ultrasonic frequencies and, due to that, are often referred to as ultrasonic
guided waves.

2.1.1. Damage Detection via GW

GW-based structure monitoring requires introducing the wave into the structure and
then measuring it at a different position to investigate its propagation [26]. The sensors are
most commonly used in two configurations: “pitch-catch” or “pulse-echo”.

In the former configuration, the monitored area is set between the actuator and sensor.
If anything happens to that area, the propagation of this wave will be altered, resulting in
various changes to characteristics such as signal energy, impedance, or amplitude. Such
a configuration allows one to set up a network of transducers on a monitored surface.
All of the transducers sequentially act as the “pitcher”, while the remaining ones “catch”,
resulting in a dense network of monitored paths.

In the latter method, the signal is generated and then sensed by the same sensor or
by a group of sensors located in a close neighborhood. The principle involves sending a
signal to the structure and then listening for reflections that the presence of damage might
have caused.

2.1.2. Simulating GW Signals

Modeling of Lamb wave propagation is a vast subject on its own. Elastic waves trav-
eling in thin-walled structures are dispersive in nature; furthermore, for every frequency,
at least two fundamental modes of Lamb waves with different propagation speeds can
be excited, which makes signals acquired by PZT sensor networks particularly challeng-
ing [27,28]. Therefore, from the beginning of PZT sensors’ application for structural health
monitoring, the development of numerical and analytical tools for a better understanding
of elastic wave propagation in thin-walled structures was of the utmost importance [29].
Over the years, numerous approaches to this topic have been proposed and many excellent
papers [29] and books [30] providing detailed reviews of the state-of-the-art in numerical
wave propagation analysis have been published. While a detailed and comprehensive
discussion of different approaches to this problem is beyond the scope of this paper, a short
subjective summary of developments in the field is provided in this section.

The common reasoning behind the justification of different methods is related to
the particular trade-off between the computational efficiency of a given approach and
its accuracy, especially in numerical model development for more realistic structures.
Remarkably, significant insight into such a complex phenomenon was achieved with the ap-
plication of analytical methods to elastodynamic equations for thin-walled waveguides [27].
In particular, the problems of fine-tuning of frequencies optimal for selective excitation
of fundamental symmetric S0 or antisymmetric A0 Lamb wave modes with PZT ceramic
sensors [31,32] and the determination of guided waves’ reflection and transmission coeffi-
cients from cracks [33] and delaminations [34] were solved by utilization of exact methods.
The exact approach is still of interest in the community, as it provides the most in-depth
understanding of various phenomena and also does not require a large amount of com-
putational power. Therefore, it is possible to develop dedicated software for the design
and optimization of SHM systems based on PZT sensor networks that can run on a regular
desktop PC [35]. Some of the latest developments of the approach allow for simulation
of guided waves’ interaction with various types of damage, e.g., notches, cracks, or dis-
bonds [36]. Since analytic methods have proven to be very accurate for the simulation of
guided wave propagation for pristine structures and simple damage models, combined
semi-analytic approaches were also proposed [29], e.g., the combined analytical finite
element model approach (CAFA) [35]. In such approaches, exact solutions are usually used
to simulate guided waves’ propagation in the part of the structure without damage or other
discontinuities. Interaction of elastic waves with damage is then simulated using a detailed
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numerical approach, e.g., the finite element (FE) method based on the analytically-derived
wave field distribution on the boundary of the damaged area.

In parallel, numerical, computationally-demanding approaches were developed,
which can simulate complex interactions of guided waves with structure discontinuities in
great detail. For complex scenarios, standard implementations of numerical algorithms
for solving differential equations became insufficient for guided wave simulation [29].
Different frameworks of numerical solutions to elastodynamic equations were followed;
e.g., the finite difference (FD) scheme augmented with physically-motivated heuristic rules
of wave interaction at interfaces resulted in a successful implementation called the local in-
teraction simulation approach (LISA) [37,38]. However, the most often used are simulation
schemes based on the finite element method and its modifications, tailored to specific issues
of guided wave propagation simulation [29,39], e.g., the spectral element method [30,40],
boundary element methods [41], wave finite elements (WFE) [42], and the elastodynamic
finite integration technique (EFIT) [43,44].

Profound advancements in understanding the mechanisms of guided waves’ propa-
gation and their interaction with damage were achieved due to the application of various
simulation approaches, which makes them indispensable in the design and optimization
of SHM systems based on PZT networks. Nevertheless, the second ultimate goal of their
application, which is the augmentation of databases of signals acquired in real experiments,
is still not fully reached, especially in the case of SHM application to realistic structures and
damage models. There are examples of purely numerical approaches to study and design
methods of signal analysis or classification, and their validation is based on experimental
data [45,46]. However, full reconstruction of real signals acquired by PZT sensors to replace
true signals for the purpose of data classification model training is a very demanding
task, especially in the case of real structures or complex damage scenarios. At the cost of
significant computational power requirements, numerical methods allow for complex real
case scenario simulation. Recent advances covers in particular:

• Guided waves scattering on impact damage of composite structures [43,47] or delami-
nations [48];

• Transmission of guided waves across partially-closed cracks [49];
• Wave damage interaction coefficients for lightweight structures [10];
• Damage of reinforced concrete beams [50];
• Looseness of joint structures in cylindrical waveguides [51];
• Matrix cracking in laminated composites [52].

In real case scenarios, the main challenge from a model definition perspective is
the proper characterization of the materials as well as the definition of all of the contact
conditions, e.g., for structure discontinuities caused by damage or which are naturally
present, adhesive bonds of sensors with the substrate material, or when some structure
reinforcements are present. Furthermore, additional factors can contribute to signals ac-
quired by PZT sensors, e.g., properties of particular PZT ceramics, the true distribution
of the electric field used for sensors excitation, external measurement conditions, or the
characteristics of electronic devices used for signal acquisition. This makes the problem
of signal reconstruction even more challenging due to the lack of input data to a given
particular model; therefore, normalization of numerically-obtained signals is usually re-
quired for true data comparison. In spite of the numerous issues mentioned above, proper
application of numerical models can provide accurate results, even for very challenging
tasks. In [43], the authors presented a very detailed approach to simulation of guided wave
scattering on barely visible impact damage (BVID) of composite structures, utilizing CT
scans for very accurate 3D damage assessment. BVID forms subsurface transverse cracks
of matrix layers and multiple delaminations in the composite (see Figure 1), which makes
them particularly demanding for simulation due to the presence of discontinuities where
guided wave scattering and different modes excitation may occur. Although the obtained
results are qualitatively remarkably accurate, some important components of the simulated
wavefield are missing as compared to the real case.
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Numerical methods have proven to be a reliable vast source of data for the purpose of
development of data-driven approaches to structural health monitoring based on guided
wave propagation [11,53]. Recent developments of artificial intelligence algorithms and
their successful application in different tasks have opened yet another perspective to ad-
dress this issue. In this paper, the application of deep generative adversarial networks
(GANs) for the reconstruction of full, non-normalized signals is demonstrated. The ap-
plication of GANs to this problem provides little or no insight into the fundamentals of
guided wave propagation; however, GANs can be very efficient in mimicking the full
details of signals acquired by PZT transducers, taking into account all of the factors of
the experimental setup, which allows their application for classification model training
and validation, fulfilling precisely the gap towards the definition of a full model-assisted
framework for SHM systems based on PZT sensor network design.

Figure 1. Cross section visualization of impact damage of a composite structure obtained with use of
computer tomography [54].

2.2. Generative Adversarial Networks for Data Synthesis

Generative adversarial neural networks derive their name from their use as generative
models and their adversarial training procedure. Two separate models called the gener-
ator and the discriminator are interchangeably trained in an opposed contest during the
training procedure.

In the general case, the generator is a decoder neural network, which means that it
is tailored to take in a limited amount of information or features and produce a much
more complex output based on that input. In the case of basic GANs, it is fed random
input and expected to produce output mimicking the given data. Traditionally, these
data were images. However, since the inception of GANSs, their uses have expanded
beyond that. In this specific application, they will be expected to produce time-domain
guided-wave-based signals.

The discriminator is a simple encoder-like classifier neural network, meaning that it
takes complete signals, deconstructs them into learned features, and makes its classification
decision based on these features. Its purpose is to distinguish real data samples from
those created by the generator. The training goal for the generator is set as minimizing the
accuracy of the discriminator. This way, interchangeably updating the weights of these
two models will result in the discriminator constantly improving its capabilities to tell the
real and fake data apart and give the generator progressively more information on how to
better fool the discriminator. To illustrate this process, let us consider an abstraction of the
training process of a GAN to create images of cats:

1. The discriminator looks for a way to tell synthetic and real images apart and ends up
focusing on looking for a silhouette of the cat, as initially the generator output will
mostly be random noise;

2. Knowing that the discriminator looks for silhouettes of cats, the generator adjusts to
create synthetic data containing such silhouettes;

3. The discriminator now needs to find a different set of features to distinguish the
samples, e.g., presence and shape of eyes;

4. The generator adjusts to suit the newly-found criteria for distinction;
5. Steps 3 and 4 keep repeating the cycle of the discriminator finding flaws in the

synthetic data and the generator adjusting to fill them.
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Style-Based GANs

One of the notable shortcomings of the original GANs is the relatively low amount
of control that the user has over their output, as they are trained to generate data based
on random input. StyleGAN [23,24] addresses that limitation with the introduction of
“style vector”. The neural network is instead initialized with a constant vector, and the
random input is fed into a trainable mapping network (MN), a multilayer perceptron that
is trained to output the style vector. It is then fed into the generator at multiple points
corresponding to various detail levels of the synthesized data. Since both the generator
and MN are trained together, this results in the MN learning to create a mapping process
between random noise and an arbitrary set of features that the generator can use as a basis
for the synthetic data. These styles are applied to the model at multiple scales to influence
both large-scale elements and fine-grained details, which, in the case of images, could
refer to the background, color palette, or various objects, and in the case of time-domain
signals, various frequency bands. Once training is done, the mapping network is no longer
necessary and the values of the style vector can be manipulated directly, giving the user
control over the contents of the data produced by the generator.

The descriptions of the exact neural network architectures utilized by StyleGAN,
as well as the improvements made over the original version, are presented in-depth by
Karras et al. [23,24].

2.3. GW-GAN
2.3.1. Generator

The GW-GAN generator (presented in Figure 2) is composed of six similarly-structured
convolutional blocks, containing:

1. Upsampling operation—bilinear interpolation;
2. Two one-dimensional convolutions with weight demodulation [23];
3. Two leaky rectified linear unit (ReLU) activations, one after each convolution.

Figure 2. Proposed GW-GAN generator architecture.

The input to each of these blocks is the output of the previous one, besides the first
block, which is fed a constant vector passed through a dense layer, which is a single neural
layer with an arbitrary number of neurons. Additionally, each block receives supplementary
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inputs in the form of random noise applied to each channel, as well as a style vector
corresponding to the scale of the block, as per the original styleGAN2 architecture [24].

Besides being input to the next block, the output of each block is also extracted and
converted to a one-dimensional signal via a weight demodulated convolution with a
single filter, followed by a tanh activation, as the desired signals can have both positive
and negative values. Lastly, all these partial outputs representing multiple scales are
appropriately upscaled with bilinear interpolation to match the size of the last block’s
output, and summed together.

Due to the fact that output signals are oscillating and that there are various scales
reflecting different frequency bands in the output signal, the number of higher-frequency
components was increased by using a non-uniform upscaling approach. To this end,
the upscaling operation was not used in the first block; a factor of 4 upscale was used for
the next three blocks and, finally, the last two blocks upsample the signal by a factor of 2.
Table 1 provides an overview of the filter counts used and the number of output samples.
The regular convolution layers all have a kernel size of 3, while channel conversion layers
have a kernel size of 1. The network that is used for mapping is a standard 4-hidden-layer
perceptron with leaky ReLU activation functions and 128 neurons in each hidden layer.

Table 1. Filter count, output samples, and approximate frequency limit as a fraction of the sampling
frequency for convolutional blocks in the generator.

Block ID 1 2 3 4 5 6

Filter count 384 192 144 96 48 24
Output samples 32 128 512 2048 4096 8192
Max frequency 1.95 × 10−3 7.8 × 10−3 3.1 × 10−2 1.25 × 10−1 2.5 × 10−1 5 × 10−1

2.3.2. Discriminator

Just like the generator, the discriminator is built out of six similar blocks, with its struc-
ture being the “reverse” of the generator, starting with small filter counts and ending with
large ones. The other three key differences are not using weight demodulation, utilizing
average-pooling operation in place of bilinear interpolation for changing the size of the
signal as it passes through these individual blocks, and using skip-connections [55] instead
of passing the entire residual signal across the whole network. The regular convolution
layers have a kernel size of 3, while those on residual connections have a kernel size of 1.
The schematic of the discriminator can be seen in Figure 3.

Figure 3. Proposed GW-GAN discriminator architecture.

2.3.3. Style-Finding for A Given Signal

The style vector introduced in the StyleGAN architecture allows for the direct ma-
nipulation of the output of the generator. This facilitates various synthesis options, such
as adjusting individual values to change a specific characteristic, mixing and matching
the styles at different scales from various signals, or performing traversals from one set
of styles to another. It is also possible to find the style vector for a given image, whether
to pick a specific starting point for style manipulations or to build a signal-to-style map
of a labeled database, which could be then analyzed for connections between the image
contents and various style vector values.
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This process only utilizes the generator with its internal weights frozen throughout
the procedure. To start, the generator is supplied with an arbitrary style vector, ideally one
corresponding to an output similar to the desired one. Then, this vector is adjusted with
a gradient descent algorithm, with its optimization function being the distance between
the desired output and the actual output of the generator. Though this could be a simple
mean square error between the two, it often results in the optimization getting stuck in
unsatisfactory local minima. Instead, better results can be obtained by the use of perceptual
distance, which is the difference between the values produced by the last convolutional
layer of a robust image classifier for these two images [56].

In the case of GW-GAN, starting with random initialization turned out to be very
unreliable. To address that, firstly, a base of style–signal pairs was pre-generated by the
GAN by supplying it with random style vectors; then, several neural networks (with
identical architecture as the discriminator, with the difference of a final dense layer with
128 outputs, matching the length of style vector) were trained on them in an attempt to
create a signal–style mapping. This would allow for “guessing” the style vector for a given
signal with some accuracy, resulting in somewhat close starting points for the signal-finding
process. However, these attempts have not produced satisfying results. As a workaround,
the starting position was selected based on this base of pre-generated style–signal pairs,
by picking the style vector of the signal most closely matching the signal of interest and
using mean squared error for gauging similarity.

Even with a good starting point, the signal finding process still faced several issues.
First of all, as opposed to image-based object-recognition tasks, guided wave signals
lack large publicly available feature extractors that could be used for perceptual difference.
Secondly, the fact that the guided wave signals oscillate around y = 0 results in a problematic
local minimum at this value.

Despite sub-par performance at their intended task, the previously mentioned style-
guessing networks turned out to be serviceable feature extractors, and the outputs of
their last convolution layers were successfully used for perceptual difference calculations.
To avoid the optimization falling into the local minimum of y(x) = 0, the process is divided
into two stages:

1. Stage one—with two loss components, perceptual difference, and mean squared
error, strongly weighted towards the former. This way, during the first part of the
backpropagation process, the network is mostly guided to produce roughly the same
shape of the signal;

2. Stage two—the output is fine-tuned using only mean squared error loss to fix the
remaining discrepancies between the signals.

2.3.4. Training

OpenGuidedWaves dataset [5] was used in this work due to the sheer amount of data
it offers, especially when it comes to the amount of diverse damage position scenarios in a
controlled environment. The dataset comprises guided wave measurements performed
on a square carbon-reinforced polymer plate with dimensions of 500 mm × 500 mm and
2 mm thickness. It has 12 piezoelectric transducers embedded along two of its opposite
edges. Besides the wide spectrum of recorded excitation frequencies (60 kHz–240 kHz),
the dataset also contains a large number of damage scenarios, with a total of 28 distinct
damage states (see Figure 4), realized via attaching magnets to the monitored object. For the
exact details of the plate and signal acquisition, the reader is invited to read the detailed
dataset specification [5].

The original signals were generated using a Hann-filtered sine wave with five cycles
as an excitation signal and were measured with 10 MHz sampling frequency, capturing
a total of 13,108 samples for each signal. For the purpose of this work, only signals with
60 kHz excitation frequency were used, after several pre-processing steps necessitated by
the neural network structure and a significant amount of measurement noise. The latter is
problematic because the generator would also attempt to re-create the noise if presented
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with unfiltered data during training. Firstly, the signals were cropped to 8192 samples,
and secondly, a bandpass filtration with bands at 20 and 100 kHz was performed.

Figure 4. Geometry of the plate, damage, and transducer positions used in OpenGuidedWaves
dataset [5].

Since the damage introduced to the measured object on or near the measurement
path has the highest effect on the signal, the signals containing damage were handpicked.
The damages in the plate were placed in groups of four, resulting in a total of seven groups
for which the paths of interest had to be selected. The selection process was arbitrary, based
on a perceived distance of the damage from a measurement path. The selected sensor pairs
for each group were as follows:

1. T6:T10–12;
2. T3:T10–12, T4:T7–10;
3. T3:T12, T4:T10–12, T5:T7–T10, T6:T7–8;
4. T1:T10–11, T2:T9–10, T3:T7–9, T4:T7;
5. T2:T12, T3:T12, T4:T11–12, T5:T10–11, T6:T10–11;
6. T1:T7–8, T2:T7, T3:T7;
7. T1:T10, T2:T10, T3:T10, T4:T9–10, T5:T9, T6:T9.

In the above notation, T1:T10–T12 stands for sensor pairs T1:T10, T1:T11, T1:T12. Only
groups 1–6 were used for training, with Group 7 being left out to validate the results of
training. This resulted in a total of 160 signals used for training and 27 for validation. Each
of the final models (mapping network + discriminator + generator) had around 1.8 million
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parameters in total and followed the same training procedures as StyleGAN2 [24]. They
were trained for 350 epochs taking approximately 150 h each on an Nvidia GeForce 1050ti
graphical processing unit, fitting a batch size of 8.

2.3.5. Specialized Models

During development, multiple versions of the model were trained, iteratively adapting
the architecture and data preparation to improve the performance gradually until arriving
at the architecture and process presented in this section. For this work, three copies of the
final model were trained to investigate the repeatability of the procedure. The models were
trained solely on hand-picked data for damaged states. The initial plan was to have two
groups of models—one trained solely on data samples containing damage and the other
on baseline data. However, the models trained using only baseline data have consistently
displayed sub-par performance in comparison to those trained strictly on signals containing
damage, and have thus been discarded in favor of baseline signals generated using the
damage-based GAN only. The hypothesized cause behind the sub-par performance of the
baseline-trained GANs is the relatively low count and diversity of the baseline signals,
as only 66 unique baseline scenarios were available in contrast to 160 unique path and
damage combinations.

3. Results
3.1. Training Results
3.1.1. Generation from Random Noise

The simplest method of generating data with GANs is to utilize random noise as an
input, exactly as is done during the training. The examples of such generation indeed
resemble guided wave signals and can be seen in Figure 5. Though producing signals in
this way has limited utility, it is a good way to check whether the training was successful.
It is also apparent that the training avoided mode collapse—a phenomenon where the
generator “collapses” into producing a single signal regardless of the input, as it is the
easiest way to fool the discriminator.

Figure 5. Examples of signals generated from random noise.
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3.1.2. Re-Creating Validation Signals

Following the process several signals from the training data were reconstructed to
verify whether the process is valid, as the generator should be able to reconstruct the signal
it has seen with good accuracy.

Next, the reconstruction capabilities were tested on validation signals—signals that
the network has not seen during the training. The purpose of this test was to verify whether
the network overfit the training dataset and would only be able to recreate the signals it
has seen, or if it modeled the underlying problem and is able to generate different signals
correctly. The signals were generated using the process outlined in Section 2.3.3, and an
example of such reconstruction together with the two-step breakdown is presented in
Figure 6.

Figure 6. Process of re-creating a given signal from validation subset: sensor pair T6:T9 for damage
position 27.

The reconstruction accuracy is gauged by mean squared error between the original
and synthetic signal, with the aggregate values presented in Table 2. Additionally, baseline
comparisons with the root mean squared error as damage index have been performed for
combinations of original signals and signals produced by various networks, as per Table 3.

Table 2. Reconstruction mean square error across damaged validation signals.

GAN # Mean Std Min Max

1 6.33 × 10−6 4.46 × 10−6 1.21 × 10−6 1.78 × 10−5

2 1.92 × 10−6 3.12 × 10−6 3.06 × 10−7 1.34 × 10−5

3 8.49 × 10−7 9.45 × 10−7 2.23 × 10−7 4.71 × 10−6
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Table 3. RMSE damage index values for original and synthetic signals for validation paths.

Signal 1 Signal 2 Mean RMSE

Original baseline series 1 Original baseline series 2 4.29 × 10−4

Original damaged Original baselines series 1 2.27 × 10−3

Synthetic damaged net 1 Original baselines series 1 3.18 × 10−3

Synthetic damaged net 2 Original baselines series 1 2.55 × 10−3

Synthetic damaged net 3 Original baselines series 1 2.21 × 10−3

3.2. Classification Based on Synthetic Data
3.2.1. Setup and Data Synthesis Strategy

As the main purpose of this signal synthesis research is to facilitate the creation of extra
data for classifier training, a simple testing scenario was set up to validate the usability
of such synthetic signals. The classifiers were trained solely on synthetic data and then
validated on real signals to check whether systems trained in this manner can still perform
adequately when faced with real data.

The training signals were generated by the network with the best reconstruction
performance, based on damage positions 5–8 (see Figure 4) for sensor pairs T3:T10–12 and
T4:T7–T10. The style vectors needed for the exact reconstruction of baseline signals and
signals containing damage on these paths have been mixed with random ratios to increase
the variation between the signals and create signals differing from the original ones on these
paths. In effect, this results in creating “almost undamaged paths” where the ratio favors
baseline signals and “lightly damaged paths” where the ratio favors signals containing
damage. These ratios were drawn from a uniform random distribution, ranging from
0.15:0.85 to 0.3:0.7 for both scenarios. When it comes to the features used for classification,
a set of the following four reference-based damage indices was chosen:

• DIXCO: Pearson cross-correlation estimate obtained between baseline and the signal
for the lag value equal to 0 [57];

• DIRMS: Root mean square value of the difference between the signal and the baseline;
• DIIP: Instantaneous-phase-based temperature compensation damage index [58].;
• DIENV : Normalized squared error between envelopes of the signal and the baseline.

Envelopes are calculated using Hilbert transform [57];
• DIMXC: Maximum value of Pearson cross-correlation estimate obtained for all possible

lags between signal and the baseline [57].

All the reference signals were generated as “almost undamaged paths”. If the main
signal was from that group as well, it was labeled as undamaged; if it was from the “lightly
damaged paths” group, it was labeled as damaged. Thus, for each of the 28 damage
position and sensor path combinations, a total of 20 signal pairs were produced: one half
representing a damaged state and the other half representing the intact state.

3.2.2. Results

The classification was initially performed by random forest classifier (100 estimators,
Gini criterion, no max depth), which was chosen due to its simplicity and good performance
in feature-based classification problems. To broaden the testing, the procedure was also
done for a simple multi-layer perceptron classifier (two hidden layers with 100 neurons
each, ReLU activation, ADAM optimizer with 1 × 10−3 initial learning rate). The configu-
rations for these two classifiers were picked arbitrarily without going into fine-tuning and
classification method optimization, as the goal of this experiment was to check whether a
classifier trained on synthetic data can later perform well on real data, not exactly how well
a classifier can perform on this specific batch of synthetic and real data.

To consider the repeatability of the results, each of the classifiers was trained 100 times.
Without exceptions, all classifiers achieved 100% accuracy on the validation set due to
the large margin of separation between the classes in feature space, making it a trivial
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classification problem. It is, however, worth noting that using this synthetic data, it is
certainly possible to train a classifier that will not have good accuracy if the decision
boundaries found in the training process are placed too close to one of the classes in the
feature space, making the problem prone to overfitting.

4. Discussion

The guided wave signal synthesis appears to perform well at every step, producing
believable signals via random generation (Figure 5) and accurately reconstructing given
signals that it had seen during training (Figure 6) as well as ones that it had not yet
encountered (Figure 7), carrying relevant information about present damage or lack thereof.
The fact that it was able to accurately reconstruct the damage scenarios that it had not
previously seen suggests that any given damage scenario may exist in the space modeled by
the GAN. Currently generating signals for arbitrarily picked damage positions has not been
tested; however, formulating a robust control method would allow for a synthesis of other
damage scenarios or even sensor paths placed in any position on the monitored object.

Figure 7. Residuals for synthetic and original signal pairs from validation subset: sensor pair T1:T10
for damage position 25.

As seen in Section 3.2, these synthetic signals can be used to train classifiers that will
later work on real data; however, it is important to keep in mind that the classification
test presented in this paper is a limited proof-of-concept. The feasibility of this approach
should be evaluated and analyzed more thoroughly with large-scale tests before any
industrial applications. Additionally, only feature-based classification was tested in this
work. Though it is the usual approach for SHM using guided waves, it will be interesting
to see the effects that this synthetic data might have on methods that work with raw signals
instead, e.g., deep neural networks.

Though all three trained networks work to some extent—showing that it is a repeatable
and reliable process—there is significant variability in how well exactly they perform. These
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differences can be noted from Table 2. The cause behind this is the inherently random
nature of the training process. Though ideally, these performance gaps would be lower,
they are not necessarily a significant issue. The training procedure for this network (briefly
outlined in Section 2.2 is open-ended. There is no easily-defined point where the training
ends because the model will not become any better, and the training length, in this case,
was picked arbitrarily, mostly due to time constraints. Due to this, the models with worse
performance can generally be improved by simply prolonging their training from the
current point.

Due to the non-recursive nature of the generator (all the individual samples are
generated independently of each other), the signal synthesis step is extremely fast; obtaining
signals represented by given 100 style vectors is a matter of 177 milliseconds on a nVidia
GeForce 1050Ti. Unfortunately, in the current implementation, the other steps are not quite
as fast, especially finding the exact style vector that is needed to reconstruct a given signal,
which takes around 18 minutes per signal on the same GPU. Finding ways to speed up this
process will be an essential part of future research concerning this topic, as the usefulness
of this method hinges not only on the quality of the results it produces, but also on the time
required to obtain these results.

Besides generating new signals, the GW-GAN was shown to be able to reconstruct
the samples from its training dataset with high accuracy. The implication of that is that
if this accuracy is satisfying, the network could be used as a compression tool. In these
specific scenarios, signals with 8192 samples are represented by style vectors with just
128 values, resulting in 98.44% compression. That being said, as previously mentioned,
the style-finding process is currently slow and would likely need to be considerably sped
up to be considered a valid compression method.

5. Conclusions

Three separate instances of GW-GAN were successfully trained. They were able to
reconstruct both signals drawn from their training dataset and previously unseen signals,
showing that with properly formulated control, these networks will be able to generate sig-
nals with arbitrary sensor and damage placement. The generated signals are of diagnostic
quality, as they correctly carry damage index information. Proof-of-concept classification
using models trained solely on synthetic data resulted in correct classification of real signals
on different measurement paths. Having to describe the signals with the style vector also
makes the model a potent compression tool, with a roughly 98.44% compression rate.
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