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Abstract: Trochanteric fractures lead to severe functional deficits and gait disorders compared to
femoral neck fractures. This study aims to investigate gait parameters related to gliding between
tissues (gliding) after trochanteric fracture (TF) surgery. This study implemented a cross-sectional
design and was conducted amongst patients who underwent TF surgery (n = 94) approximately
three weeks post-trochanteric fracture surgery. The following parameters were evaluated: (1) gliding
between tissues; (2) lateral femoral pain during loading; (3) maximum gait speed; (4) stride time
variability and step time asymmetry as measures of gait cycle variability; (5) double stance ratio and
single stance ratio for assessment of stance phase, (6) jerk; and (7) Locomotor rehabilitation index as a
measure of force changes during gait. The gliding coefficient was significantly correlated with lateral
femoral pain (r = 0.517), jerk root mean square (r = −0.433), and initial contact-loading response jerk
(r = −0.459). The jerk of the force change value during gait was also effective in understanding the
characteristics of the gait in the initial contact-loading response in patients with trochanteric fractures.
Additionally, gliding is related not only to impairments such as pain but also to disabilities such as
those affecting gait.

Keywords: gliding; jerk; trochanteric fracture

1. Introduction

The global incidence of hip fractures is estimated to increase by 6.3 million every
year until 2050 [1]. Postoperative orthopedic complications include dysfunctions such as
abnormal gait [2]. In particular, trochanteric fractures lead to severe functional deficits
and gait disorders compared to femoral neck fractures [3–6]. Severe functional deficits
and gait disorders after trochanteric fractures indicate the influence of different fracture
patterns and surgical approaches [5]. Therefore, trochanteric fractures are often difficult to
treat in rehabilitation medicine. In recent years, it has been reported that gliding between
the subcutaneous tissue and vastus lateralis (VL) in the lateral thigh is important for
lateral femoral pain during loading after trochanteric fracture surgery [7]. Gliding between
tissues is also thought to be related to gait disorders following trochanteric fracture surgery.
However, the relationship between gait and gliding between tissues is still unclear.

Gait velocity is a simple, highly valid, and reproducible variable and is assessed for
some gait disorders in clinical settings [8,9]. However, gait disorders after trochanteric
fracture may be related to various factors such as age, sex, fracture type, balance ability, and
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cognitive function. Therefore, it is unclear whether gait velocity is sufficiently indicative of
gait disorders. Patients with trochanteric fracture surgery have lateral femoral pain, and
a decrease in gliding between tissues typically shows a gait disorder during the loading
response (LR) phase of the gait [7]. However, gait observation and measurement velocity
cannot represent gait disorders during the LR phase.

The use of inertial sensors with high portability, validity, and reliability has made
it possible to measure gait easily [10]. Inertial sensors not only assess spatiotemporal
parameters, but also kinematic and kinetic analyses [11–13] during gait in clinical settings.

We hypothesized that gliding between the VL and subcutaneous tissue is associated
with gait disorders during the LR phase of gait motion. The purpose of this study was to
investigate the relationship between gliding in the VL and subcutaneous tissue and the
parameters as measured by inertial sensors.

2. Materials and Methods
2.1. Participants

Ninety-four patients with TF participated in this study from two hospitals (male:
n = 19, female: n = 75, mean age: 82.9 ± 6.7 years). The patients underwent open reduction
and internal fixation (gamma nails). A survey was conducted at approximately three
postoperative weeks. The study duration was from June 2019 to December 2020, and
the inclusion criterion was pain in the mid portion of the lateral thigh. The exclusion
criteria were: (1) patients who had difficulty walking more than 10 m without assistance;
(2) patients who could not report their pain accurately due to severe dementia; (3) patients
with hemiplegia due to stroke; (4) patients whose gait speed was more than 1 m/s; and
(5) patients who could not provide consent to participate in the study.

2.2. Ethical Statements

The study was conducted in accordance with the Declaration of Helsinki, and the protocol
was approved by the ethics committee of the Morinomiya University of Medical Sciences
(approval number: 2019-087), and all the patients provided written informed consent.

2.3. Outcome Measures

The following parameters were evaluated: (1) gliding between tissues; (2) lateral
femoral pain during loading; (3) maximum gait speed; (4) stride time variability (STV) [14]
and step time asymmetry (STA) [15] as measures of gait cycle variability; (5) double and
single stance ratios for the assessment of stance phase [16]; (6) jerk [12,17] as a measure of
force changes during gait; and (7) Locomotor rehabilitation index [18].

2.4. Procedure of Gait Assessments

An inertial sensor (MicroStone Corporation, Nagano, Japan, MVP-RF8-HC, sampling
frequency, 100 Hz) and the tablet (ASUSTeK Computer Inc., Taipei, Taiwan, Nexus 7;
sampling frequency, 30 Hz) were used for gait assessment. The inertial sensor was placed
on a flat surface and calibrated. For various gait analyses, such as asymmetry, an inertial
sensor was attached to the third lumbar vertebra [15]. The inertial sensor was securely
fixed on the lower back (third lumbar vertebra) using an elastic belt which was placed
over the clothes of the participant. Subsequently, the patients walked with maximum effort
on a 14-m gait path, including a 2-m reserve path in front and behind, and each patient’s
gait speed was measured. Additionally, the initial contact (IC) and toe-off of the left and
right sides of the gait cycle were identified from the measured acceleration waveform and
video image files captured by a tablet linked to the inertial sensor. The initial data of the
measured acceleration waveforms were collected on a tablet [19,20].

2.5. Data Analysis

Initial data was analyzed with stable accelerometer waveform data during steady
walking over five steps. Based on IC and toe-off of the left and right sides of the gait
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cycle, we calculated the percentage of single-leg and double-support phases on the affected
side in one gait cycle. The STV [13], STA [14], and jerk [11,16] in phases 6–10 of the gait
cycle were also calculated. The STV was calculated as the standard deviation of each
stride time divided by the mean stride time [14,18]. The STA was calculated using the
difference between the left and right stance times divided by the total number of times of
the left and right stances [15]. Raw linear acceleration data in three axes (anterior-posterior,
medio-lateral, and superior-inferior axes) were low-pass Butterworth filtered at 2 Hz. The
jerk was calculated from the first-time derivative of the linear acceleration. The root mean
square (RMS) of each axis was used to calculate the jerk composite vector along the three
axes (Equation (1)), respectively.

m =
√

x2 + y2 + z2 (1)

This equation determines the immediate magnitude of vectors by calculating the square
root of the sum of each axis when squared, which condensed the three-axis value. To quantify
the change in force during gait, the average RMS value of the jerk composite vector during
one gait cycle was calculated as jerk RMS [13] (Figure 1). Additionally, the peak values of the
IC-LR jerk composite vector were measured five times in every 6–10 phases of the gait cycle
to determine the change in force in the IC-LR [12] (Figure 1). The mean value was calculated
using the IC-LR jerk. The IC-LR was defined as 12% of one gait cycle [20].
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IC-LR, Initial Contact—Loading Response.

The locomotor rehabilitation index is a method that can determine the similarity
between self-selected walking speed and optimal walking speed [18]. First, the theoretical
optimal walking speed of the elderly was calculated using the mathematical model as in
Equation (2) [21].

Optimal Walking Speed o f the elderly =
√

0.25 × 9.81 × lower limb length (2)

Then, the locomotor rehabilitation index is calculated from the ratio of the self-selected
walking speed to the theoretical optimal walking speed multiplied by 100, according to
Equation (3) [21].

Locomotor Rehabilitation Index =
sel f − selected walking speed

Optimal Waking Speed o f the elderly
× 100 (3)

2.6. Pain Assessment

Lateral femoral pain during the stance phase of the gait was assessed using the
numerical rating scale (NRS).
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2.7. Evaluation of Gliding between the Subcutaneous Tissue and the Vastus Lateralis

Gliding between tissues was applied according to previous studies [7,22] as follows:
Ultrasonography (Canon Aplio 500; Canon Co., Ltd., Tokyo, Japan) and a 12 MHz linear
probe (PLT1204ST; Canon Co. Ltd., Tokyo, Japan) were used to capture the dynamics of the
lateral thigh during flexion-extension of the knee joint. Subsequently, the gliding coefficient
was calculated from the flow velocity in the subcutaneous tissue and superficial VL using
the flow vector analysis software (Flow PIV flow vector analysis software; Library Co., Ltd.,
Tokyo, Japan). A lower gliding coefficient was defined as better gliding between tissues.

2.8. Statistical Analysis

Measured data were compared to normal values using the Kolmogorov-Smirnov
test. The Pearson product-moment correlation coefficient and Spearman’s rank correlation
coefficient were used to examine the correlation between the gliding coefficient, lateral
femoral pain, and gait parameters. All statistical analyses were performed using IBM SPSS
Statistics for Windows (IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY, USA).
Statistical significance was set at p < 0.05. The sample size was estimated for a power of 0.8
and an effect size of 0.6. The sample size was determined by GPower 3 Software (version
3.1.9.4) using the T test for correlation. Eighteen participants were deemed adequate (with
one extra to account for possible data attrition).

3. Results

Of the 94 participants, 18 participants met the inclusion criteria and were included in
the study (male: n = 1, female: n = 17, mean age: 84.9 ± 7.0 years, Height: 149.4 ± 7.0 cm,
lower limb length: 70.0 ± 5.2 cm, and postoperative: 34.1 ± 15.3 days) (Figure 2). Reasons
for the exclusion of participants are listed as follows. (1) Patients who did not provide
consent for participation (n = 7), (2) 15 patients with severe dementia, (3) 17 patients without
lateral femoral pain on loading, (4) 24 patients who had difficulty with gait for more than
10 m, (5) 11 patients having hemiplegia due to stroke, and (6) Patients having gait speed
more than 1 m/s (n = 2). No postoperative problems such as excessive sliding of the lag
screw or cut-out were observed in any of the patients.
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Figure 2. Patient flow scheme accounting for inclusion criteria.

The results of measurement data are shown in Table 1. The results of the Kolmogorov-
Smirnov test confirmed normality, except for the STV, STA, and double stance ratio. The
gliding coefficient was significantly correlated with lateral femoral pain (r = 0.517), jerk
RMS (r = −0.433), and IC-LR jerk (r = −0.459) (Table 2). The maximum gait velocity was
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significantly correlated positively with jerk RMS (r = 0.599), IC-LR jerk (r = 0.679), double
stance ratio (r = −0.608), single stance ratio (r = 0.531), and Locomotor rehabilitation index
(r = 0.998) (Table 3). Additionally, the jerk RMS showed a significant positive correlation
with the IC-LR jerk (r = 0.940) and Locomotor rehabilitation index (r = 0.742). Participants
with decreased gliding between tissues indicated lower jerk RMS and IC-LR jerk (Figure 3).

Table 1. Measurement results.

Parameters Value

Gliding (r) 0.52 ± 0.12
Lateral Femoral Pain 4.2 ± 2.1
Gait Velocity (m/s) 0.56 ± 0.19

Jerk RMS (m/s3) 1.4 ± 0.6
IC-LR jerk (m/s3) 25.0 ± 12.3

Stride time variability 4.6 ± 3.5
Step time asymmetry 4.5 ± 3.4

Double stance ratio (%) 29.5 ± 5.8
Single stance ratio (%) 38.8 ± 10.0

Locomotor rehabilitation index 40.0 ± 13.6
The following is a list of measurement data. Note: Data are presented as mean SD. Abbreviations: RMS, Root
Mean Square; IC-LR, Initial Contact—Loading Response.

Table 2. Correlation between gliding and each gait parameter.

Gliding

Parameters r p-Value

Lateral Femoral Pain 0.517 0.016 *
Gait Velocity (m/s) −0.316 0.163

Jerk RMS (m/s3) −0.433 0.049 *
IC-LR jerk (m/s3) −0.459 0.037 *

Stride time variability −0.228 0.320
Step time asymmetry 0.202 0.380

Double stance ratio (%) 0.002 0.463
Single stance ratio (%) 0.169 0.993

Locomotor rehabilitation index −0.341 0.166
Abbreviation: RMS, Root Mean Square; IC-LR, Initial Contact—Loading Response. * p < 0.05.

Table 3. Correlation between gait speed and each parameter.

Gait Velocity

Parameters r p-Value

Gliding (r) −0.316 0.163
Lateral Femoral Pain 0.106 0.648

Jerk RMS (m/s3) 0.599 0.004 **
IC-LR jerk (m/s3) 0.679 <0.001 **

Stride time variability 0.177 0.444
Step time asymmetry −0.335 0.138

Double stance ratio (%) −0.608 0.013 *
Single stance ratio (%) 0.531 0.003 **

Locomotor rehabilitation index 0.998 <0.001 **
Abbreviations: RMS, Root Mean Square; IC-LR, Initial Contact—Loading Response. ** p < 0.01; * p < 0.05.
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4. Discussion

The purpose of this study was to clarify the relationship between the gliding of the
lateral thigh following trochanteric fractures and gait parameters. The results showed
that gliding had a moderate negative correlation with the jerk RMS and IC-LR jerk. The
jerk RMS is strongly correlated with IC-LR jerk. In other words, the change in the force
applied to the trunk in the LR phase is considered to be small in cases with low gliding.
Additionally, jerk is a parameter that is related to gait velocity but is not associated with
lateral femoral pain. Therefore, gliding is related to lateral femoral pain and jerk during
gait but not directly to lateral femoral pain and gait. Moreover, gliding was found to be an
important parameter that could affect lateral femoral pain and gait velocity. In other words,
the jerk of the trunk during gait was low when gliding decreased.

This study did not find any postoperative problems such as excessive sliding or cut-
out of the lag screw. Therefore, biomechanical parameters such as leg length difference
that affect gait were not affected. In our previous study, we reported that lateral femoral
pain after trochanteric fracture was associated with gliding [7] and that this gliding was
related to subcutaneous tissue thickness and dense connective tissue ratio [22]. However,
the relationship between gliding and gait is unclear. The conventional gait assessment for
trochanteric and femoral neck fractures uses the spatiotemporal parameters [16] and analy-
sis of dynamic weight loading during the stance phase [5] to characterize gait. However,
all previously reported studies are limited to the analysis of variability throughout the gait
cycle or analysis of the dynamic weight load during the stance phase. After the trochanteric
fractures, the lateral femoral pain is frequent [7], and the large ground reaction force in the
IC-LR phases [23] presents challenges. However, there is an assessment of kinetics in the
subdivision of the stance phase. Therefore, we analyzed the jerk based on the values of the
inertial sensors fixed on the trunk. Previous studies of gait analysis using jerk have been
used for knee osteoarthritis [12–17,24] and Parkinson’s disease [13]. The results of this study
showed that patients with trochanteric fractures had a significant decrease in gait speed
and a small change in force in the IC-LR. Additionally, there was no correlation between the
conventional gait parameters and the gliding coefficient. Therefore, we analyzed the jerk,
which indicates the change in force and added it to the gait parameters. We were then able
to clarify the relationship of gliding between tissues and gait after trochanteric fractures.

In previous studies, jerk was considered an index to quantitatively evaluate the quality
of motion, such as smoothness and bradykinesia. However, jerk can also be understood
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as an instantaneous change in force [17]. In particular, it has been reported that the initial
contact-LR phase causes a quick impact with the ground, and the ground reaction force is
affected by the difference in gait velocity [23]. Therefore, jerk is also lower in patients with
slow gait velocity and reduced ground reaction force during the LR phase. Therefore, cases
with reduced gliding cannot adapt to force changes in the LR phase. The result is a gait
with a reduced change in force in the LR phase.

The jerk of the force change value during gait is also effective in understanding
the characteristics of the gait in the IC-LR phases in patients with trochanteric fractures.
Additionally, it was found that decreased gliding after trochanteric fracture was not only
related to lateral femoral pain but also to loading during gait. Furthermore, our results
show that the difficulty in loading during the gait affected the gait speed.

Study Limitations

The participants of this study were patients with trochanteric fractures and a gait
speed of less than 1 m/s. Therefore, the results for participants with a gait speed of
more than 1 m/s are not clear. Due to the cross-sectional nature of the study, the causal
relationship between gliding and jerk or gait speed is not understood. In the future, it will
be necessary to clarify the relationship of gliding between tissues, jerk, and gait ability
through intervention studies.

5. Conclusions

The jerk of the force change value during gait is effective in understanding the char-
acteristics of gait in the IC-LR phases among patients with trochanteric fractures. The
importance of focusing on jerk RMS and IC-LR jerk were indicated for the improvement
of the locomotor rehabilitation index. Additionally, gliding is related not only to impair-
ments such as pain, but also to disabilities such as gait. Therefore, gliding has become an
important target for physical therapy interventions.
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