
����������
�������

Citation: Marelli, D.; Bianco, S.;

Ciocca, G. Designing an AI-Based

Virtual Try-On Web Application.

Sensors 2022, 22, 3832. https://

doi.org/10.3390/s22103832

Academic Editors: Abdeldjalil

Ouahabi, Amir Benzaoui and

Sébastien Jacques

Received: 14 April 2022

Accepted: 17 May 2022

Published: 18 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Designing an AI-Based Virtual Try-On Web Application
Davide Marelli * , Simone Bianco and Gianluigi Ciocca

Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale Sarca 336,
20126 Milano, Italy; simone.bianco@unimib.it (S.B.); gianluigi.ciocca@unimib.it (G.C.)
* Correspondence: davide.marelli@unimib.it

Abstract: In the last few years, Augmented Reality, Virtual Reality, and Artificial Intelligence (AI)
have been increasingly employed in different application domains. Among them, the retail market
presents the opportunity to allow people to check the appearance of accessories, makeup, hairstyle,
hair color, and clothes on themselves, exploiting virtual try-on applications. In this paper, we propose
an eyewear virtual try-on experience based on a framework that leverages advanced deep learning-
based computer vision techniques. The virtual try-on is performed on a 3D face reconstructed from
a single input image. In designing our system, we started by studying the underlying architecture,
components, and their interactions. Then, we assessed and compared existing face reconstruction
approaches. To this end, we performed an extensive analysis and experiments for evaluating
their design, complexity, geometry reconstruction errors, and reconstructed texture quality. The
experiments allowed us to select the most suitable approach for our proposed try-on framework. Our
system considers actual glasses and face sizes to provide a realistic fit estimation using a markerless
approach. The user interacts with the system by using a web application optimized for desktop and
mobile devices. Finally, we performed a usability study that showed an above-average score of our
eyewear virtual try-on application.

Keywords: virtual try-on; 3D face reconstruction; artificial intelligence; deep learning

1. Introduction

With the development of advanced technologies in the last few years, Augmented
Reality (AR) and Virtual Reality (VR) have emerged as key technologies in different inter-
active application domains. For example, they are utilized in the gaming industry [1], for
human–computer interaction [2,3], and in the manufacturing industry [4,5].

Recently, they have been increasingly employed in applications designed for physical
and online retail stores [6,7]. In the retail scenario, AR and VR are technologies that a
consumer interacts with and directly experiences while in the physical store, or while
navigating the virtual online store. These technologies enhance the user experience during
the purchase by allowing them to interactively browse, study, or try the products before
buying them [8]. This is especially true for online shopping, where the users cannot directly
interact with the products they are interested in. According to Statista, “online shopping
is one of the most popular online activities worldwide, and e-commerce sales in 2019
amounted to USD 3.53 trillion and are projected to grow to USD 6.54 trillion in 2022” [9].
Similar trends can be found in other countries as well. According to research by Gartner,
“46 percent of retailers plan to deploy either AR or VR solutions to meet customer service
experience requirements” [10].

Appealing to the users with novel and engaging advanced AR and VR applications
is thus a key factor in a market that is growing to such an extent. Examples of such
applications are smart mirrors and virtual try-on systems [11–14]. Smart mirrors are
devices designed to interact with users in a different way. They are often based on the
Internet of Things (IoT) concept and allow users to interact with applications using touch
or voice controls and to display feedback and various information [15].

Sensors 2022, 22, 3832. https://doi.org/10.3390/s22103832 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22103832
https://doi.org/10.3390/s22103832
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2389-0301
https://orcid.org/0000-0002-7070-1545
https://orcid.org/0000-0003-2878-2131
https://doi.org/10.3390/s22103832
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22103832?type=check_update&version=2

Sensors 2022, 22, 3832 2 of 26

Although smart mirrors are general-purpose devices with a wide range of applications,
here, we are more interested in virtual try-on systems that are instead specifically designed
to effectively improve product visualization and pre-purchase information for the retailers,
and to enhance the entertainment value of the shopping experience for the end-users.

The design of a virtual try-on system has several challenges—for example, how to
present to the user the result of the try-on. Once the user selects the item to wear, it can be
shown in real time or in a deferred mode. In the first case, a live-feed video is usually the
preferred solution. The user can move and see how the item fits his needs, and interact with
the system. In the second case, a processed video is shown to the user, who can browse it.
The video can be generated offline, and the user has limited interactivity with the system.

Regardless of the modality chosen, advanced processing software modules to support
the user experience are required. For example, it is necessary to recognize the presence of
the user (e.g., using face detection or people detection algorithms), the pose has to be taken
into account to virtually dress the user (i.e., pose recognition), and occlusions may occur
and should be dealt with (i.e., occlusion detection). Finally, the rendering of the virtual
item in the real-world scene should be as seamless and plausible as possible.

There are many methods to computationally address the above-mentioned challenges.
In recent years, computer vision has taken great leaps thanks to advances in artificial intel-
ligence and machine learning. In particular, deep learning and artificial neural networks
have served to boost the development of robust and fast computer vision-based algorithms,
which are effectively and efficiently exploited in many application domains [16,17].

In this paper, we describe a framework for the design of an eyeglasses and sunglasses
virtual try-on web application that leverages advanced deep learning-based computer
vision techniques. Specifically, to allow the users to easily see how the eyeglasses look
interactively, the application exploits a 3D face reconstruction algorithm from a single input
image. In this way, we can show a 3D virtual face of the user with the selected eyeglasses,
and the user can pose it and view the rendered eyeglasses from different viewpoints. This
is particularly useful when the user suffers from view problems and thus has difficulties
checking the appearance of glasses when not wearing lenses. Actual face and eyeglasses
sizes are taken into account to provide a realistic fit feel. To maximize the user experience,
the try-on process is fully automated and only requires a face picture and the selection
of the glasses model to test. The work presented here is the completion of our previous
investigations in the design of virtual try-on systems [18,19]. The framework described
here is a generic solution that can be used as a blueprint to build other, extended and
specialized, try-on applications.

The paper is organized as follows. In Section 2, we briefly review existing virtual try-
on applications and the most recent techniques for 3D face reconstruction, which is at the
basis of the try-on application. In Section 3, we describe the workflow of a generic virtual
try-on system, highlighting the relevant modules, interactions, and dependencies. We use
the generic workflow as a blueprint to design our virtual try-on application for eyeglasses
and eyewear. The design process starts by assessing the existing 3D face reconstruction
approaches in the literature. In Section 4, we analyze and compare their design, complexity,
geometry reconstruction errors, and reconstructed texture quality. Our proposed system is
then described in Section 5. In Section 6, we describe how to evaluate the try-on application
from the user experience perspective. Finally, Section 7 concludes the paper.

2. Related Works

The focus of this paper is the virtual try-on of eyeglasses and sunglasses. Therefore, in
the first part of this section, we review the existing virtual try-on solutions for face acces-
sories and makeup, discussing their strengths and weaknesses. Then, since an essential step
in our try-on is the 3D face reconstruction, we briefly overview the existing reconstruction
methods, particularly those working with a single face image as input.

Sensors 2022, 22, 3832 3 of 26

2.1. Virtual Try-On Applications

In the last few years, there has been a large increase in demand for the development of
virtual try-on applications by commercial companies. The development of such applications
has been made possible by the advances in AR and VR technologies. The first time that
AR technology reached the broader public was in 2016, when Niantic launched Pokémon
GO, an AR-enhanced game available both to iOS and Android users. Later, the use of AR
was democratized even more, after popular smartphone apps such as Snapchat, Instagram,
and Facebook developed their new AR filters and, more recently, after Google launched
AR objects on Google search and introduced a set of functions for face detection, 3D
reconstruction, and augmented reality in the ARCore SDK [20].

The need for virtual try-on applications has further increased in the last couple of
years due to the pandemic, which made it impossible for customers to participate in a
physical try-on in stores.

These virtual try-on solutions are usually available as mobile or web applications, and
have the objective to allow a potential customer to virtually try on himself some products
sold by a store or manufacturer, giving him an experience similar to the one he would have
in a physical store. In the following, we briefly review the arguably most popular virtual
try-on solutions for face accessories and makeup:

• Ditto’s virtual try-on [21]—this is a 3D eyeglasses and sunglasses try-on application
that pays particular attention to the actual sizes. It uses a library of glasses and fits
them to the estimated user’s face size. The application can also recommend the best-
looking glasses for the user. For the try-on process, the user is asked to follow specific
instructions. He has to record a short video while rotating the face horizontally. A
credit card-sized object placed on his forehead is exploited to estimate the face size.
The try-on result is shown by rendering the glasses on multiple video frames with a
different face orientation.

• XL Tech Apps’s Glassify [22]—this is a virtual try-on application that works with a
single frontal face image. The application requires the user’s intervention in several
steps: first, the user chooses the shape that best fits his face; then, the software fits
the eyeglasses on his face; finally, the user manually adjusts the position and scale of
the glasses over the picture. This application works correctly only with frontal face
images, and only the forepart of different glasses models can be rendered over the
input image.

• Perfect Corp’s YouCam Makeup [23]—Perfect Corp’s YouCam Makeup is a virtual
try-on application mainly conceived for makeup but can also be used to virtually
change hair color, hairstyle, and accessories (e.g., jewelry and glasses). The framework
also includes a virtual beauty advisor, as well as tools for face detection, face tracking,
and augmented reality. Some of the try-on features work in real time on the live
camera video stream. The application presents some limitations in the glasses try-on:
it renders only the front frame without the temples and frequently fails to properly fit
the glasses when the face is not in a perfect frontal position.

• MemoMi’s Memory Mirror [24]—this is an application that works differently from
the previous ones. It is mainly conceived to be used in physical stores, and it requires
the user to wear real eyeglasses in front of a magic mirror used to record a video of
the user while trying different accessories or makeup. Each tested element can be
reviewed by replaying the video, and comparison with other products is possible by
displaying two videos side by side. The main limitation of this solution is that the
need for specific hardware and real glasses makes it not suitable for try-on outside
of stores.

• Jeeliz [25]—this is an application for real-time web-based glasses virtual try-on. The
application is available as a JavaScript widget, thus permitting integration with glasses
virtual try-on in a website or a mobile web application. The application renders the
3D model of the glasses in real time on the live camera video stream. The user sees his
face as in a mirror, but with glasses. There are some limitations: the tracking of the

Sensors 2022, 22, 3832 4 of 26

face is slow, and the glasses positioning has some delays; it uses only the front frame
and the very first part of the temples, which very often penetrate the user’s face.

• Luxottica’s Virtual Mirror [26]—this solution provides eyewear try-on in real time
on a camera video feed. The user has to stand still, in a frontal position, looking
downwards, for face detection and the 3D glasses model positioning on the face.
The rendering follows the movements of the head and gives a digital reflection on
the lens and frame for increased realism. The main limitation is that the fit of the
glasses to the user’s face is not automatic and can only be manually adjusted using a
dedicated button.

• Safilo VirtualEyes [27]—this is an application that can photo-realistically render, in
Augmented Reality, a vast selection of glasses on any surface. The application exploits
Safilo’s 3D eyeglasses models, which have been optimized through the analysis of the
ambient light in order to achieve a realistic effect. The main limitation of this solution
is that the glasses can be only rendered on a surface and not on the user’s face.

The vast majority of the above solutions are available as standalone applications and
frameworks integrable with existing services and platforms. Most of these applications
offer integration with social services to allow the user to share their virtual try-on sessions
and with store platforms to allow the user to buy the products. The key features of the
virtual try-on systems reviewed above are summarized in Table 1 for ease of comparison.

Table 1. Comparison of the main features of eyeglasses virtual try-on applications.

Applications Input Output 3D Glasses Size Fitting Markerless

Ditto [21] video images X X —
Glassify [22] image image — — X
YouCam [23] image image — — X
Jeeliz [25] video/image video/image X — X
Memory Mirror [24] video video — — —
Virtual Mirror [26] video video X — X
VirtualEyes [27] image image X — —
Ours image 3D X X X

2.2. 3D Face Reconstruction

Three-dimensional face reconstruction, as well as 3D reconstruction in general, is a
long-standing problem, usually requiring specific hardware [28] or multiple images [29–31].
Since we want to provide the user with an easy-to-use application for virtual try-on, we aim
to simplify the face acquisition and 3D face reconstruction processes as much as possible.
Therefore, we focus on 3D face reconstruction methods that only need a single image as
input, with particular emphasis on AI-based approaches, which are able to learn from
data both the best reconstruction parameters and more robust prior information. The
most common existing methods for 3D face reconstruction from a single image can be
grouped into two main categories: 3D Morphable Model (3DMM) fitting-based and shape
regression-based.

The use of 3D Morphable Models (3DMM), introduced by Blanz et al. [32], represents
a common solution to the 3D face reconstruction problem from a single view. Within this
category, Huber et al. [33] searched for the correspondence of local features on the images
and landmarks on the 3DMM. These correspondences are then used to regress the 3DMM
deformation coefficients that generate a 3D face mesh similar to the one in the image. More
recent methods belonging to this category, such as that of Tuan et al. [34], use Convolutional
Neural Networks (CNNs) to learn to regress the 3DMM coefficients.

The main advantage of the solutions exploiting 3DMM is the availability of the com-
plete face 3D model under any circumstance, since even the parts that are occluded in the
input image are reconstructed using the 3DMM’s geometry. On the other hand, the main
limitation of these 3DMM-based solutions is that the reconstruction is often too similar to

Sensors 2022, 22, 3832 5 of 26

the original 3DMM model. This means that the characteristic facial traits normally defined
by small details of the facial geometry are not usually well reconstructed.

A recent approach based on 3DMM models, proposed by Ranjan et al. [35], claims to
be able to obtain better results than previous works, especially for the reconstruction of
facial expressions. To this end, they exploit the FLAME [36] 3D face base model representa-
tion. To cope with the lack of details in the reconstructed face, Extreme3D [37] introduced a
bump map to model wrinkles on the Basel Face Model (BFM) [38]. The bump map applies
geometric deformations on the reconstructed 3D face, and a symmetry constraint is used
to cope with occlusions. The Ganfit method proposed by Gecer et al. [39], and its fast
extension [40], use a different approach and generate a realistic face shape and texture by
means of Generative Adversarial Networks (GANs). The method can reconstruct very
accurate models but is not available for general use. In order to better fit the generic 3DMM
model to the actual face, researchers have tried to integrate different properties and con-
straints into their training pipelines. For example, using deep networks, Deep3DFace [41]
regresses several coefficients that are used to model and fit the face: the identity of the user,
expression, texture, pose, and lighting. Coupled with photometric and perceptual losses,
they are able to better fit the actual user’s face. RingNet [42] is also a deep network that
regresses model parameters. Specifically, it regresses the shape, pose, and expression of the
FLAME model. Differently from the previous methods, RingNet exploits multiple images
of the same person and an image of a different person during training to enforce shape
consistency. Zhu et al. [43] proposed a Fine-Grained Reconstruction Network (FGNet) that
can concentrate on shape modification by warping the network input and output to the UV
space, achieving a final reconstruction that includes fine-grained geometry. Lin et al. [44]
proposed to refine the initial texture generated by a 3DMM-based method with facial details
from the input image. To this end, they use graph convolutional networks to reconstruct the
detailed colors for the mesh vertices. The space of the parameters that need to be regressed
for a 3DMM model is high-dimensional, i.e., 230 values. Guo et al. [45] propose instead
to use a small subset to speed up the fitting process. Moreover, a meta-joint optimization
is introduced during the training phase to improve the overall fitting accuracy. The final
method is able to perform face reconstruction faster than in real time using a MobileNet as
a light backbone. The reconstructed 3D face can be used in VR applications—for example,
to animate virtual avatars. However, most of the approaches are not able to reconstruct
faces that can be animated in an accurate way. DECA [46] has been specifically designed
to regress accurate 3D face shape and animatable details that are specific to an individual
and that can change according to the subject’s expressions. The method is based on the
FLAME face model. Another approach that has been designed with animation in mind is
INORig [47]. The approach is built on an end-to-end trainable network that first parame-
terizes the face rig as a compact latent code with a neural decoder, and then estimates the
latent code as well as per-image parameters via a learnable optimization.

The methods in the second category, i.e., shape regression-based methods, were de-
veloped to obtain a more accurate reconstruction than the 3DMM-based ones. Among
the methods in this category, Jackson et al. [48] propose to straightforwardly map the
input image pixels to a full 3D face structure in a voxel space via volumetric CNN regres-
sion. The main advantage of this approach is that the output face shape is not restricted
to a face model space, therefore permitting applicability to the reconstruction of other
objects, e.g., [49]. A similar idea is exploited by Feng et al. [50], who directly regress the
face mesh from the input image without making use of a voxel space: the advantage of this
method, called PRNet, is that it is lightweight and fast to execute, and also it usually leads
to a precise and detailed reconstruction. Guo et al. [51] proposed the use of different CNNs
to reconstruct the coarse-scale geometry and the fine detail. Recently, Wang et al. [52] pro-
posed a framework that solves the problem of face reconstruction in three steps: face region
segmentation, coarse-scale reconstruction, and detail recovery. Finally, Wang et al. [53]
propose a novel unsupervised 3D face reconstruction architecture by leveraging the multi-

Sensors 2022, 22, 3832 6 of 26

view geometry constraints to train accurate face pose and depth maps. Once trained, the
approach is able to perform reconstruction from a single image as well.

3. Workflow of a Generic Virtual Try-On System

Figure 1 illustrates the workflow of a generic virtual try-on system. It shows the
essential components and modules of the system and their interactions. The described
components and modules are intended to be generic. Different applications can require
specific modules or sub-modules to operate.

Model Info

3D Model Generation

Model DB

O
ff-lin

e

Localization

User

Camera Capture

Tracking Scene Mixer

Try-on PresentationModel Selection

B
ack-e

n
d

Fro
n

t-en
d

Admin

R
u

n
-tim

e

Figure 1. Workflow of a generic virtual try-on system.

A generic virtual try-on system can be composed of a set of front-end modules respon-
sible for the management of the user interaction with the system, and a set of back-end
modules that implement the system logic and operational activities. Moreover, the mod-
ules and activities can be further categorized with respect to their usage. We have offline
activities usually performed either at the system’s initialization or periodically to update
the system. We also have real-time activities performed while the system is running and
the user interacts with it. We will now briefly describe the role of the components and
modules depicted in Figure 1.

In the back-end, offline group of modules, we can find all the administrative activities
usually involved in the creation of all the data required for the virtualization of the items
to be displayed to the user. These activities comprise the collection of the metadata of the
items (i.e., attributes, prices, descriptions, etc.) and the generation of the corresponding
virtual models. These models can be of different types, but a 3D model is usually required
if the items are shown in different poses. The 3D models can be directly generated from
CAD files if they are available, can be created from scratch by a graphical designer, or
can be acquired using 3D reconstruction techniques such as structure from motion-like
approaches [31]. These activities are periodically performed to add and/or remove items
from the collection. All the generated data and information are stored in the system (e.g.,
in a database) and made available to the other modules that operate at run-time.

Concerning the front-end modules that operate at run-time, we have a camera capture
module that usually continuously acquires pictures from the environment and streams
them to the back-end modules to be processed. Depending on the back-end processing,
the camera can capture RGB images (i.e., visible light) or RGBD images (visible light +
depth information). The latter requires additional specialized hardware to extract depth
information from the scene. Usually, RGB images are sufficient for the majority of the

Sensors 2022, 22, 3832 7 of 26

applications as modern computer vision techniques coupled with advanced machine
learning methods can extrapolate additional information from them.

The front-end modules are also responsible for the management of the user experience
with the system. To this end, the system has modules that encapsulate the user interface
logic. For example, the user can interact with the system with a touch or touch-less device
to choose the items he is interested in, browse the catalog, and display the information
associated with the shown items. Once the user has made his choice, the system can display
it worn by the user in the virtual scene. The user can interact with it differently depending
on the technology used for rendering. For example, the rendered scene can be static (e.g., a
single photo), dynamic (e.g., a video stream), or interactive (e.g., a 3D scene). Each of these
presentation modalities requires specific modules to operate.

Between the offline, back-end modules and the run-time, front-end modules, we have
the operational core of the system composed of the run-time back-end modules. These
modules are usually organized in a pipeline. We have indicated three main modules,
but in actual applications, some modules can be merged or separated into further sub-
modules. Regardless of this, a generic virtual try-on application needs to identify the
presence of the user to start the process of creating the virtual scene (i.e., user localization).
This can be accomplished using advanced computer vision techniques. For example, if
we are interested in the face of the user (e.g., for virtual makeup or eyeglasses try-on),
robust face detection and recognition approaches are present in the literature [54–58], and
some of them are readily available in open-source software libraries, either exploiting
standard feature-based methods or deep Learning-based ones. Examples of these libraries
are OpenCV [59] and DLib [60]. If, instead, we are interested in the full body (e.g., for
clothing try-on), human body detection can be accomplished using techniques borrowed
from the human action and pose recognition research fields, as described in [61–63]. In
both cases, the user’s privacy should be assured and long-term storage of data must be
avoided. This is especially relevant for applications that are installed in real stores. Once
the user is detected, the tracking module is activated. The role of the tracking module is to
follow the user’s movements (i.e., the pose) in time. This is necessary to ensure temporal
coherence in the display of the virtual scene. In fact, while the user moves in the real world,
the virtual item should be positioned and superimposed onto the user coherently in the
virtual scene. The tracking module can provide information about the user’s pose in the
form of facial key-points [64] in the case of the face, or skeleton points [65] in the case of
the body. This information is then passed to the scene mixer module for the generation of
the virtual scene.

The scene mixer module collects information from several other modules and uses it
to create the final virtual scene rendered and displayed to the user. In order to generate
the virtual scene, it is necessary to blend the real one acquired by the camera, the informa-
tion about the user’s pose, and the item chosen by the user, which must be transformed
according to the user pose. The transformed item’s 3D model is superimposed onto the
real scene with the user to create the virtual scene. The composite output of the scene
mixer module can either be a static image, a recorded video sequence, or a dynamic virtual
scene. In the latter case, the system can provide a live video stream augmented with
the virtual item superimposed onto the user in real time. To this end, all the back-end
processing needs to be executed as quickly as possible to cope with the user’s movements.
Alternatively, the system can generate a completely virtual scene with an avatar of the user
wearing the chosen item, allowing the user to inspect the scene freely and see himself from
different points of view without restrictions. This approach lessens the requirement for the
fast-paced and real-time processing of the back-end modules.

Other challenges in the design of a robust scene mixer module are related to the
realness of the virtual scene; for example, the virtual item should be rendered at the correct
size depending on the user’s pose. Occlusions may occur and must be dealt with. Moreover,
the real and virtual parts of the scene must blend seamlessly as much as possible. Finally,
the user must not be constrained in the interaction with the system.

Sensors 2022, 22, 3832 8 of 26

4. Comparing the 3D Face Reconstruction Approaches

The core of a virtual try-on application for glasses is undoubtedly the 3D face re-
construction module. In the literature, several approaches differ in their underlying ar-
chitecture, complexity, and performance. In this section, we compare different 3D face
reconstruction approaches that can be potentially used in our virtual try-on application.
This comparison can be used by developers and practitioners to select the most suitable ap-
proach for their specific task, depending on the operational and environmental constraints
of the final application.

Among the possible approaches, we considered those that have made their code pub-
licly available: DECA [46], 3DDFAV2 [45], 3DSFMFace [53], Extreme3D [37], RingNet [42],
Deep3DFace [41], INORig [47], and PRNet [50].

We compare the 3D face reconstruction approaches with respect to different criteria:
(1) underlying architecture and characteristics; (2) computational costs (both in time and
memory consumption); (3) quantitative evaluation of the reconstruction error against a
ground truth; (4) qualitative evaluation of the goodness of the reconstructed face texture.
These criteria capture different aspects of the reconstruction phase. To the best of our
knowledge, no standard quantitative evaluation exists to assess the texture, so we opted
for a subjective assessment with a panel of users. Both the geometry and the texture
are important for an assessment of the fidelity of the reconstruction and thus the user’s
acceptance of the try-on application.

4.1. Comparison of the Architectures

Table 2 summarizes the characteristics of the 3D face reconstruction methods. All the
methods rely upon Neural Networks to perform feature extraction or parameter regression.
The most common backbone used is the Residual Network, which has been successfully
exploited in different application domains and is one of the most efficient and robust
networks. All the methods need a face detector to locate the facial region and extract facial
landmarks to be used for pose estimation and normalization. Any face detector could be
used, but most methods include one. Three of them do not include a face detector but
assume that the input images have either a set of facial landmarks associated (Deep3DFace),
or that the face has been already located and cropped (RingNet) or segmented (3DSFMFace).
For these methods, we provide images in the intended format. All the methods, except
Extreme3D, provide both geometry and texture as output. INORig is the only one that
requires multiple images of the subject as input. All the methods are implemented in
Python and are based either on TensorFlow or PyTorch frameworks.

Table 2. Main characteristics of 3D face reconstruction methods in the state-of-the-art. SR: Shape
Regression, MM: Morphable Model, S: single image, M: multiple images, G: geometry, T: texture, BM:
BumpMap, BFM: Basel Face Model, DRN: Dilated Residual Network. TF: TensorFlow, PT: PyTorch.

Method Year Category Input Face Network Output F.workDetection Backbone

PRNet [50] 2018 SR S DLib U-Net G + T TF
Extreme3D [37] 2018 MM/BFM S DLib ResNet G + BM PT
Deep3DFace [41] 2019 MM/BFM S/M External * ResNet G + T TF
RingNet [42] 2019 MM/FLAME S External † ResNet G + T TF
DECA [46] 2021 MM/FLAME S FaceNet o ResNet G + T PT
3DDFAV2 [45] 2021 MM/BFM S FaceBoxes x MobileNetv3 G + T PT
3DSFMFace [53] 2021 SR S/M External ‡ ResNet G + T § PT
INORig [47] 2021 MM/BFM M S3FD + DRN G + T PT

* The method requires 5 facial landmarks along with the source image; † The method uses loosely cropped face
image as input; o The method uses a fast version of MTCNN [66] for face detection; x The method uses FaceBoxes
face detector [67]; ‡ The method requires that the face is segmented from the background; § The method outputs a
colored point cloud; + The method uses the Single Shot Scale-Invariant Face Detector [68].

Sensors 2022, 22, 3832 9 of 26

4.2. Computational Costs

For each method, we computed the time and memory required to perform the face
reconstruction, as well as the geometry error. Table 3 summarizes the results. The execution
times reported in the papers describing and comparing the different methods are usually
relative only to the 3D face reconstruction step and do not include the preprocessing and
postprocessing steps. When building an application such as the virtual try-on, it is more
important to consider all the steps involved in the reconstruction process to evaluate the
overall run-time. We modified the source codes of the 3D face reconstruction methods to
perform a consistent evaluation across them. Each pipeline was initialized once and then
used to process iteratively 101 loosely cropped face images from the FFHQ dataset [69]. The
execution time for each sample includes all the steps from image loading to the creation of
the 3D model representation (i.e., obj or ply files). Since the frameworks use some caching
and loading of data on the first run, we decided to discard the execution time of the first
image to simulate a hot start of the system. The times of Table 3 are therefore relative to the
execution of 100 face reconstructions on a machine with an Intel Core i7 7700 CPU and an
NVIDIA Quadro RTX 6000 GPU. Some changes to the source codes were needed due to
the differences in the input data and setup required by the methods. For the Extreme3D,
we disabled the cuDNN back-end due to incompatibilities with the GPU. Deep3DFace
needs five face landmarks as input in addition to the image; we added a preprocessing
step to automatically compute such points using the DLib library as suggested by the
authors. Moreover, 3DDFAV2 reconstructs all the faces detected in the input picture by
design; we forced it to work only on the first detection. The authors of 3DDFAV2 stated
that, using the ONNX Runtime [70] library, it is possible to obtain a noticeable increase
in the inference speed. Since this optimization library is potentially usable by the other
implementations, we decided to use the plain (non-onnxRuntime) version of their method
for a fair comparison. INORig requires at least two images of the same person; we modified
the code to use the input image and its horizontal flip, as done by the authors.

Table 3. Evaluation results of 3D face reconstruction methods in the state-of-the-art. All the timings
are computed on 101 images, discarding the execution times of the first one in order to simulate a hot
start condition for the system. Hardware used: Intel Core i7 7700 CPU and NVIDIA Quadro RTX
6000 GPU.

Method Time Min Time Max Time
Median Time Mean Time Std Memory GPU

Memory
(Seconds) (Seconds) (Seconds) (Seconds) (Seconds) (MB) (MB)

PRNet [50] 0.736 0.808 0.751 0.749 0.010 2361 1161
Extreme3D * [37] 15.564 15.840 15.604 15.598 0.031 1968 1925
Deep3DFace † [41] 0.582 0.627 0.592 0.591 0.009 2867 1235
RingNet [42] 0.741 0.826 0.789 0.789 0.016 3108 23,035 o

DECA [46] 0.850 1.361 0.893 0.883 0.055 3022 18,227 +

3DDFAV2 x [45] 0.740 0.798 0.770 0.769 0.009 3290 4683
3DSFMFace ‡ [53] 0.349 0.636 0.438 0.435 0.053 3260 1379
INORig § [47] 2.901 3.228 3.049 3.037 0.081 4253 21,691 +

* CuDNN disabled due to incompatibilities with the GPU; † Added face detector and 5-point descriptor from
DLIB as a preprocessing step; o The method seems to allocate all the available memory on the GPU even if the
behavior is explicitly disabled; x The method has been modified to reconstruct only one face even if more are
detected in the input image, “–onnx” flag not used; ‡ Face segmentation done manually and not included in the
run-times; § For each image, the reconstruction is performed on the pair input image and its horizontal flip; + The
peak memory usage is a short spike.

The majority of the methods can provide face reconstruction in less than one second
on average. The only exceptions are INORig and Extreme3D; the former works on two
images, while the latter performs part of the computation on the CPU, slowing down the
process. The fastest method is 3DSFMFace, although its output is a point cloud and not a

Sensors 2022, 22, 3832 10 of 26

3D mesh, as with the other methods. It also requires a segmented face over the input image,
and the reported time does not include the time necessary to perform such segmentation
since we achieve this task manually.

We also evaluated system RAM usage and GPU dedicated RAM usage. Table 3
reports the peak memory allocated for both CPU and GPU by each method during the
reconstruction of a single 3D face. System memory allocation varies between 2 GB and 4 GB,
depending on the pipeline. On the GPU memory side, the amount of memory used varies
between 1.1 GB for PRNet and 4.6 GB for 3DDFAV2. While most of the implementations
have a constant GPU memory usage, DECA and INORig present some short spikes of
allocation that bring the peak memory usage to 18 GB and 21 GB, respectively. The
implementation of RingNet seems to allocate all the available GPU memory, even if this
behavior is explicitly disabled in the TensorFlow library.

4.3. Reconstruction Errors

We evaluated the reconstructed 3D geometries on the UMB-DB dataset [71] to assess
the geometrical error of different face reconstruction methods on the same input data. This
dataset contains RGB images and the corresponding 3D ground truth geometry acquired
using a Minolta Vivid VI-900 laser depth scanner. Reconstructions of 15 subjects were
performed for each method starting from a single neutral expression input image without
occlusions. Since the methods use different coordinate reference systems, we performed
a first coarse alignment to match the reconstruction to the ground truth geometry using
the seven face landmarks annotated in the UMD-DB. This rigid alignment only allows
the rotation, translation, and scale of the reconstructed geometry. Considering that the
completeness of the reconstructed geometry varies between the methods, we decided
to crop all the reconstructions to the same area of the face. Given that INORig is the
method whose reconstruction includes the smallest portion of the face, we decided to crop
out the parts that are not reconstructed by INORig—for instance, the ears (reconstructed
by Extreme3D, PRNet, DECA, and RingNet) and the cranium (provided by DECA and
RingNet). Another rigid alignment step was performed through the Iterative Closest Point
(ICP) algorithm to register the cropped 3D reconstruction to the ground truth. Finally,
the geometry was evaluated using the absolute distance between each vertex of the 3D
reconstruction and its closest point on the ground truth mesh.

Table 4 reports the results of the evaluation. Since DECA does not provide a texture for
the detailed 3D model, we decided to evaluate the coarse one, which includes the texture
image. We did not evaluate 3DSFMFace due to the limited usefulness of the point cloud
recovered for a virtual try-on application. As can be seen, all the values are similar and
well within a reasonable tolerance for a try-on application. For completeness, we also
report in the same table the reconstruction performance of the methods on the NoW dataset
as per the NoW challenge benchmark site [72]. See [42] for further details. Extreme3D
and 3DSFMFace have not been evaluated on the benchmark. Some examples of 3D face
reconstructions are visible in Figure 2.

Table 4. Geometry evaluation results of 3D face reconstruction methods in the state-of-the-art.

Method
Median Mean Std NoW

Median †
NoW

Mean †
NoW
Std †

(mm) (mm) (mm) (mm) (mm) (mm)

PRNet [50] 1.50 1.58 0.45 1.50 1.98 1.88
Extreme3D [37] 1.83 1.93 0.24 - - -
Deep3DFace [41] 1.35 1.50 0.45 1.11 1.41 1.21
RingNet [42] 1.46 1.43 0.16 1.21 1.53 1.31
DECA * [46] 1.30 1.46 0.34 1.09 1.38 1.18
3DDFAV2 [45] 1.66 1.65 0.41 1.23 1.57 1.39
INORig [47] 1.51 1.51 0.24 - 1.33 o 0.28 o

† Values from NoW Challenge [72]; * Evaluation of the coarse 3D model; o Values from the INORig paper [47], not
reported on the challenge website.

Sensors 2022, 22, 3832 11 of 26

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 2. Examples of 3D face reconstruction results on images from the UMB-DB dataset [71]. For
DECA, the figure shows the coarse mesh that, opposed to the detailed one, provides a texture. (a) In-
put image; (b) ground truth; (c) 3DDFAv2 [45]; (d) DECA [46]; (e) Deep3DFace [41]; (f) Extreme3D
[37]; (g) INORig [47]; (h) PRNet [50]; (i) RingNet [42].

4.4. Texture Quality

As stated before, we need both the geometry and the appearance (i.e., the face texture)
to be reasonably accurate for our application. To this end, we selected from the FFHQ
dataset [69] a subset of 10 face images as a test set. The images were processed with each
method using the code, model, and parameters provided by their respective authors. The
output of each method was then evaluated in a comparative way. Given an input 2D image,
the different 3D outputs were assessed by a panel of subjects that compared the results
against the original image and selected the best 3D output with respect to the fidelity of the
reconstructed texture and potential appeal within a try-on application.

From Table 2, we see that Extreme3D does not output a texture, so it was excluded
in the subjective evaluation. Moreover, we excluded 3DSFMFace because it outputs a 3D
point cloud and not a mesh. In the end, we compared six methods. For the assessment,
we developed a simple web application to show the 3D models reconstructed by the
six methods with their texture applied. The users were chosen among researchers and
postgraduate students of the University of Milano-Bicocca. All the users had normal or
corrected-to-normal vision and were knowledgeable on virtual try-on applications and 3D
modeling. The users were asked to rank the results from one (the best) to six (the worst).

Sensors 2022, 22, 3832 12 of 26

Ties were allowed. We then collected all the responses and averaged the rankings for each
method. In total, 11 users participated in the experiment. Figure 3 shows some of the
texture results judged in the subjective experiment. In the web application, the users were
able to scale and rotate the models to inspect them more thoroughly.

The average rank of each method is as follows: PRNet: 1.93, 3DDFAv2: 2.95, RingNet:
3.07, DECA: 3.59, Deep3DFace: 4.63, and INORig: 4.85. Figure 4 shows how many times a
method was ranked at a given position. Overall, PRNet was judged to provide the best
texture on the samples. RingNet and 3DDFAv2 have similar ranks. Next, we have DECA,
which has been voted mostly in the fourth position. Finally, Deep3DFace and INORig
gave similarly poor results. It was surprising that PRNet was judged the best against more
recent methods such as DECA or INORig. This can be explained in that the reconstruction
methods are mostly designed with geometry reconstruction as the main goal. The visual
texture is usually not considered as the main focus and is used only for visualization.
From the experiment, it emerged that one of the problems of existing methods based on
3DMMs is that they tend to create gaps in the mouth when the person is smiling. Since
there is no texture for the inner mouth, this creates an uncomfortable hole in the texture.
Postprocessing is required to cope with this issue. PRNet, being based on a shape regression
technique, has no such problem: the mesh is closed, and the texture is complete. This can
be seen in the third row of Figure 3.

(a) (b) (c) (d) (e) (f) (g)

Figure 3. Some samples used in the texture quality experiment. (a) Input image; (b) 3DDFAv2 [45];
(c) DECA [46]; (d) Deep3DFace [41]; (e) INORig [47]; (f) PRNet [50]; (g) RingNet [42].

Sensors 2022, 22, 3832 13 of 26

Figure 4. User ranking of the 3D face reconstruction methods in the texture quality experiment.

5. Workflow of Our Virtual Try-On Application

The currently available virtual try-on applications for face accessories present some
limitations. For example, many applications show the results of the virtual scene in a static
2D image; this greatly limits the interactivity. Other applications require some kind of
physical marker to be acquired along with the user’s face for size estimation. This can be
cumbersome in the case of mobile applications. Moreover, using a video stream as output
limits the degrees of freedom with which the user can see himself with the accessories.

In this section, we will describe our virtual try-on solution designed for eyewear.
To overcome limitations in existing try-on applications, our solution leverages artificial
intelligence methods, specifically CNNs, for the robust detection and tracking of the face
of the user. The solution is designed to be more user-friendly, interactive, and easy-to-use
than existing applications. To achieve this, the application creates a complete 3D virtual
scene, with the 3D-reconstructed head and face of the user wearing the selected eyeglasses.
The reconstruction is performed using a single 2D image of the user’s face. After the
3D reconstruction, the face size and the fitting parameters for the eyeglasses model are
automatically computed, leveraging information from the user’s face and without any
external physical marker. The result is displayed using a 3D rendering framework that also
allows the user to rotate the reconstruction and test on it different glasses models. By using
the full 3D results, the user has a realistic idea of how the eyeglasses will look on himself
and can freely pose the virtual head, viewing the glasses model from any point of view.
Figure 5 shows an overview of the workflow of our try-on solution. The back-end of the
system is implemented in the cloud, while its front-end is implemented as a web-based
application. In our workflow, the localization module is split into the face detection and
3D reconstruction sub-modules. There is no tracking module since we reconstruct a 3D
representation of the user’s face. The face size estimation, face key-point detection, and
fitting parameter estimation are supporting modules used to blend the chosen eyeglasses
and the user’s reconstructed face with the correct sizes and proportions for a realistic and
faithful rendering.

The following subsections provide further details on each component.

Sensors 2022, 22, 3832 14 of 26

Eyeglasses Info

3D Model Generation

Eyeglasses
3D Model DB

O
ff-lin

e

Face Detection

User

Camera Capture

3D Reconstruction

Try-on PresentationModel Selection

B
ack-e

n
d

Fro
n

t-en
d

Adm

Face Size
Estimation

Face Keypoints
Detection

Fitting Parameters
Estimation

Scene Mixer

R
u

n
-tim

e

Figure 5. Workflow of our 3D eyeglasses virtual try-on system.

5.1. Face Detection and 3D Reconstruction from a Single Image

In Section 2.2, we have surveyed several approaches in the state-of-the-art for 3D face
reconstruction from a single image. In theory, any of the mentioned approaches can be
exploited to build a virtual try-on application. However, we must take into account that
in a real application scenario, the approach used must be computationally efficient, and
it should reconstruct not only a reasonable 3D geometry of the face, but also an accurate
replica of the facial details via a texture to be applied on the 3D model. Without all these
constraints, the try-on application would not be appealing to the final users, both in terms
of usability and fidelity.

Implementation of the 3D Face Reconstruction

The creation of the virtual scene starts with the user’s face detection in a captured
photo. To reduce the computational burden, the detection must be executed with a fast and
lightweight algorithm. Among the possible algorithms in the state-of-the-art, we selected
the CNN-based face detector in the DLib software library [60]. The detector is very robust
and accurate; it takes as input an RGB image and produces as output a bounding box of
the area of the face. In the case of multiple detections, only the largest located face is used
to run the reconstruction and the subsequent try-on process, thus avoiding unintentional
runs of the try-on over faces that may be present in the background of the input picture.

Although face detection and reconstruction can work with images at a small resolution,
in order to have sufficient information in the area of the eyes, the face is acquired at least
with a resolution of 1000× 1000 pixels.

For the 3D face reconstruction phase, based on the results in Section 4, we decided to
use the PRNet [50] method. This method allows us to not enforce any particular restriction
on the face pose or occlusions because the reconstruction process can work on almost every
image depicting a human face. The input of the 3D face reconstruction module is the area of
the face detected by the face detection module. The area is first resized to a 256× 256 pixel
RGB image and used as the input of the CNN. The output of the network is a vertex map, a
256× 256 matrix where each element is a vertex of the reconstructed face. The face mesh is
generated from the 65 K vertices in the regressed vertex map. Its texture image is generated
by remapping the input image to the reconstructed mesh using the regressed vertices map.
The resolution of the texture map is 512× 512 pixels. This resolution is deemed of sufficient
quality for our application.

If occlusions are present in the input image, the corresponding portions will be missing
in the generated texture image. This is a limitation of the single image 3D face reconstruction

Sensors 2022, 22, 3832 15 of 26

approach. The face mesh is always complete, regardless of the initial face pose, but the face
parts not visible to the camera are not textured correctly. This problem could be partially
solved by using multiple face acquisitions from different points of view, and then using
Structure From Motion approaches [31] so that the 3D face can then be reconstructed.
However, this solution could annoy the user since it requires many images in order to have
a faithful reconstruction. For this reason, we preferred to have a very fast and realistic 3D
face reconstruction using a single image with acceptable coverage of the face texture. To
ensure this, if the detected face has a very skewed pose, the user is asked to take another
shot in a more frontal position.

To keep dimensions consistent between reconstructions, the vertex map is rotated
according to the detected face pose to obtain the front view and is scaled in a cube of size
1× 1× 1 units in 3D world space, centered in the origin of a canonical right-handed global
coordinate reference system. The 3D face model will be scaled to its final true size according
to the parameters estimated by the fitting parameter estimation module, as described in
Section 5.2.

In addition to the reconstructed 3D face, the 3D reconstruction module outputs other
information needed to estimate the true size of the face: the 68 landmarks defined by the
Multi-PIE landmark scheme [73] used for locating the eye regions, and the face key-points
recovered from the vertex map, used for determining the fitting parameters for the eyeglass
frame. This information is sent to the face size estimation module.

The average time required by the 3D reconstruction module is in the order of 0.62 s, of
which 0.06 s is for face detection, 0.01 s is for mesh reconstruction, and the remaining time
is for texture generation.

5.2. Face Size Estimation

Building a virtual try-on application requires that the wearable item(s) must be of the
correct size when placed on the virtual model. With respect to the eyeglass application, this
means that the glasses’ frame size must match the face size. Existing try-on applications
often lack a proper face size estimation, and this cannot provide the user with a realistic
try-on experience in terms of size fitting. To cope with this problem, some commercial
applications estimate the face size using markers whose sizes are known, such as a credit
card, placed on the forehead [21]. The use of markers is a common approach but it requires
the user to inconveniently perform additional acquisitions and to have the proper marker
at hand. Another problem with this approach is that the marker must be clearly visible,
forcing the user to perform actions to deal with acquisition errors. This can negatively
influence the overall experience, annoying the user.

To deal with the above-mentioned issues, we propose a markerless approach for
estimating the face size. Our approach exploits facial features without requiring additional
items to be acquired. Specifically, we use the diameter of the iris as a reference to determine
the actual face size. By measuring the iris diameter in pixels, and knowing its average
diameter in millimeters, we can estimate the actual face size. The iris diameter is related to
the cornea diameter and, according to [74], the average white-to-white horizontal diameter
is 11.71± 0.42 mm.

The complete flow of our face size estimation process is summarized in Figure 6, and
Algorithm 1 shows the algorithm. First, the eye location is identified using the landmarks
provided by the 3D face reconstruction module. Then, we crop the eye regions, extract
the red channel, and apply a gamma correction to enhance the visibility of the iris and
pupil. Inspired by Kerrigan et al. [75], we then fed the processed eye crop into a DRN-D-22
network [76] to generate a segmentation map of the iris. Ideally, near-infrared images
should be used, but this requires the adoption of additional hardware. Through our
experimentation, we found that we can successfully use gray-level images as well. Finally,
we apply the Hough Circle Transform to the segmentation map to fit a circle on the iris
and find its radius in pixels. The size in millimeters of each pixel is finally computed as
11.71/2r, where r is the estimated iris radius in pixels.

Sensors 2022, 22, 3832 16 of 26

Figure 6. Face size estimation workflow.

This procedure is applied to both eyes, and the final iris size estimation is the average
of the two values. If the calculation fails for one eye, the single value obtained is used. In
the unfortunate event that the estimation fails for both eyes, the subsequent step of glasses
fitting estimates the parameters to best fit the glasses on the user’s face without using the
size information; in this case, the user is notified of such failure.

We can then align the 3D reconstruction on the input image and compute the face
size using the distance between the ear key-points as the number of pixels between them
multiplied by the size of each pixel in millimeters determined from the iris size. The whole
face size estimation procedure requires 0.13 s on average.

Algorithm 1 Face size estimation algorithm.
Input: the face image, the key-points detected on the face, and the estimated distance for
the ears in pixels.
Output: the estimated face size as the ear-to-ear distance in millimeters.

1: function FACESIZEESTIMATION(input_img, kpts, ear2ear_pixels)
2: eye_kpts← fetch_eyes_kpts(kpts) . left, right eyes
3: padding← 10
4: px2mm← 0
5: detection_count← 0
6: for eye_kpts in eyes_kpts do
7: eye_img← crop_image(input_image, eye_kpts, padding)
8: eye_img← gamma_correction(eye_img)
9: eye_img← eye_img[:, :, 0] . use red channel only

10: mask← drn_d_22_process(eye_img) . predicts the iris segmentation mask
11: iris← detect_hough_circle(mask) . fits a circle over the segmentation mask
12: mm← 11.71/(2 ∗ iris.radius) . size of a pixel in millimeters
13: if mm is not ’nan’ then . estimation successful
14: px2mm← px2mm + mm
15: detection_count← detection_count + 1
16: if detection_count > 0 then
17: px2mm← px2mm/detection_count . average size of a pixel in millimeters
18: else
19: raise Exception(’Face size estimation failed!’)
20: return ear2ear_pixels ∗ px2mm . ear to ear distance in millimeters

5.3. Fitting Parameter Estimation

Once we have estimated the face size, we need to define the geometric transformation
required to correctly place the glasses on the face. This is done by a fitting procedure that
generates the transformation parameters required for rendering the face with the selected
glasses frame. Since the glasses frames have different geometries, we need to perform the
fitting for each selected one with respect to the current face geometry.

Sensors 2022, 22, 3832 17 of 26

The parameters are estimated by finding the transformation that aligns the glasses
frame on the reconstructed face when viewed from a frontal pose. The alignment is
performed by using some of the facial landmarks extracted from the reconstructed 3D face
(facial key-points) and key-points extracted from the glasses model (eyeglasses key-points).
For this reason, we assume that all the available glasses models in the database are already
annotated with these key-points, along with all the other relevant information. Specifically,
we assume that the brand name, model name, preview image, width, and key-points are
available. The required eyeglasses key-points are shown in Figure 7a. They correspond to
the bridge location (Gn) and both the temples’ far end-points, where the glasses lean on
the ears (Gl and Gr). The corresponding facial key-points are shown in Figure 7b. These
are extracted from the reconstructed 3D face. At the end of the fitting procedure, the two
sets of key-points geometrically overlap and the glasses are fitted to the face, as shown in
Figure 7c.

Figure 7. Example of key-points for glasses fitting. Nose key-points in blue, left ear key-points in
green, right ear key-points in red. (a) Eyeglasses key-points sample. (b) Example of facial key-points.
(c) Eyeglasses fitting result.

The fitting process requires several stages. First, it is necessary to determine the glasses’
position. This is done by using Equation (1), which computes the translation transformation
that aligns the glasses bridge key-point Gn with the face nose key-point Fn, which is used
as a reference point:

t = Fn − Gn (1)

Then, we need to correctly lay the glasses’ temples on the ears. This is done by
computing the projection of the key-points on the 2D plane defined by the Z and Y axes, as
shown in Figure 8 and Equation (2):

ˆgnl =
Gl − Gn

|Gl − Gn|
ˆfnl =

Fl − Fn

|Fl − Fn|
α = arctan2(| ˆgnl × ˆfnl |, ˆgnl · ˆfnl) = arctan2(sin α, cos α)

(2)

We compute the direction from the nose key-point (Fn) to the glasses left key-point
(Gl). We normalize it to a unit vector, obtaining the unit directional vector that we indicate
as ˆgnl . Similarly, we define the unit vector ˆfnl that represents the direction from the nose
key-point (Fn) to the left ear key-point (Fl). We then compute the angle α between the two
unit vectors using the 2-argument arctangent, where the first argument is the norm of the
cross product between ˆgnl and ˆfnl , and the second argument is the dot product between
them. With ˆgnl and ˆfnl being unitary vectors, the first argument corresponds to the sine
of the angle α between them, and the second one to the cosine of α. In a similar way, a
second angle β is computed using the direction from the nose key-point to the glasses right
key-point (ˆgnr), and the direction from the nose key-point to the right ear key-point (ˆfnr).
Finally, we build the rotation transformation around the X-axis needed to lean the glasses
on the ears using the mean rotation angle between α and β.

Sensors 2022, 22, 3832 18 of 26

To scale the glasses frame to match the face size, we take into account the face size
estimation described in Section 5.2, and the difference between the mesh and face coordinate
systems. In case of problems in the face size estimation, the scale is determined as the mean
X-axis scale factor that best fits the temples on the ears.

Figure 9 shows the difference between our fitting solution and a simple approach
based on key-point correspondence. The key-point correspondence approach does not
take into account face and eyeglasses dimensions. The glasses are simply scaled to make
the key-points match the face ones (Figure 9a). With our approach instead, the glasses are
slightly thicker on the face with respect to the key-point fitting approach (Figure 9b).

The overall fitting parameter estimation requires around 0.4 milliseconds for each
eyeglasses model in the library. The 3D face mesh, the eyeglass model, and the fitting
parameters are passed to the scene mixer module in order to render the final virtual 3D
scene. Some virtual try-on results with different face pictures and eyeglasses models are
visible in Figure 10, where the input images are taken from the FFHQ dataset [69], which
provides high-quality images of human faces.

Figure 8. Eyeglasses pitch angle between ear and temple key-points.

(a) (b)

Figure 9. Examples of eyeglasses fitting using key-points and face size. (a) The glasses are scaled to
match the key-points of the face. (b) The glasses are scaled according to the estimated face size and
the real glasses sizes.

Sensors 2022, 22, 3832 19 of 26

(a) (b) (c) (d) (e) (f)

Figure 10. Examples of virtual try-on results on images from the FFHQ dataset [69]. Glasses models
from [77]. (a) Input; (b) Front view; (c) Side view; (d) Input; (e) Front view; (f) Side view.

5.4. User Interface

We designed the virtual try-on user interface as a web application. The web application
is responsible for image acquisition and user interaction. It also interacts with the back-end
modules, specifically the face reconstruction and fitting parameter estimation modules,
accessed as web services. The use of a web-based front-end allows us to deploy the try-
on application on different devices with minimum system requirements, provided that
modern web browsers are available.

The user uploads a picture or snapshot of his face using the web browser, along with
the information about the glasses frames desired. The image is received by the server,
and processed by the designed processing pipeline. The result is returned to the browser,
allowing the user to see the glasses from different points of view.

The web application has been implemented using a set of open-source tools and frame-
works. Specifically, we used Vue.js [78] as our core JavaScript framework, Dropzone.js [79]
as the image upload handler, and babylon.js [80] as an advanced 3D rendering framework
to manage Physically-Based Rendering (PBR) Materials and lens transparency.

The 3D models of the face, as well as those of the glasses, are exchanged using the
Wavefront OBJ file format accompanied by the material definition file MTL and the texture
images. While the 3D face model is automatically loaded shortly after the try-on back-end
completes the processing, the 3D glasses models are dynamically loaded based on the
user’s selection. Since the web application must still be usable on low-end devices and
slow internet connections, the 3D models of the glasses have been optimized to reduce the

Sensors 2022, 22, 3832 20 of 26

size of the files to be transferred, in order to keep loading times below one second in most
cases. For the glasses models, in addition to the geometry and the materials, the application
also loads a JSON file containing the translation, rotation, and scale parameters to render
them correctly on the 3D face.

Figure 11 shows the user interface, which is composed of two main pages; the first
is for face image upload or acquisition, and the second one is to display the 3D virtual
try-on. The displayed acquisition interface is for desktop/mobile devices. If the application
is installed in physical stores, a continuous video acquisition can be implemented, as
described in the previous sections.

(a) (b)

Figure 11. Screen captures of the virtual try-on web application user interface. (a) Image upload
interface; (b) virtual try-on interface.

The majority of the screen area is used to render the 3D face and glasses. The list of
glasses available for try-on is displayed on the bottom of the screen, and a few controls for
the rendering and some predefined camera positions are available in the right sidebar. If
the user’s device has a screen with limited size (e.g., a smartphone), the sidebar starts in a
collapsed state to leave sufficient space for the try-on rendering. The face can be rotated by
dragging, and the zoom level can be adjusted by using pinching or scrolling, depending on
whether the device supports touch controls or not.

6. Try-On User Experience

To evaluate the efficacy of the application, we performed a standard usability test [81]
with a panel of users. A total of 16 subjects of different age, expertise, and educational
background were selected.

The experiment was conducted using a 10-inch tablet where the user interacts with a
touch interface and a desktop PC where the user interacts with the mouse. The participants
were randomly split between these two interaction modalities. Before starting the usability
test, we briefly described the application scope to the users. They were then observed
using the application to perform a virtual try-on session by taking a picture of themselves.
No time limit was imposed. At the end of the test session, we asked each user to judge
his experience by filling in a questionnaire. The questionnaire was the standard System
Usability Scale (SUS) questionnaire developed by John Brooke [82]. In order to gain more
insights into the application, we also asked the user to rate (from 1 to 5): the precision
of glasses fitting, the realism of the 3D view, the usefulness of such a 3D view, and their
interest in using this application if made publicly available. Finally, we also collected some
free comments from the users.

Sensors 2022, 22, 3832 21 of 26

Results of the SUS questionnaire are summarized in Table 5. As can be seen, the
users rated the system very positively. The try-on was considered easy and very simple to
use. No previous knowledge or experience was necessary to approach it. By applying the
standard procedure [82], our application obtained an overall SUS score of approximately
90 out of 100, which is considered above average. The average score is set to 68 from a
study on 500 systems, as described in [83]. Table 6 shows the scores of the four additional
questions specific to our try-on application. The virtual try-on application with the 3D
visualization of the face and glasses received very high appreciation, with scores of 4.9 out
of 5. The users found this type of application enjoyable and useful, and were more than
happy to try more. The technology was found to be engaging, although the overall visual
quality of the rendering should be improved. This is demonstrated by the slightly lower
score for the fitting precision and the realism, with a score of 3.8 and 3.7, respectively.

Table 5. System Usability Scale (SUS) results.

Strongly Strongly Avg. SUS
Statement Disagree Agree Score

1 2 3 4 5

1 I think that I would like to use this ap-
plication frequently.

0 0 8 6 2 3.6 2.6

2 I found this application unnecessarily
complex.

11 5 0 0 0 1.3 3.7

3 I thought this application was easy
to use.

0 0 0 1 15 4.9 3.9

4 I think that I would need assistance to
be able to use this application.

15 1 0 0 0 1.1 3.9

5 I found the various functions in this
application were well integrated.

0 0 3 6 7 4.3 3.3

6 I thought there was too much inconsis-
tency in this application.

15 1 0 0 0 1.1 3.9

7 I would imagine that most people
would learn to use this application
very quickly.

0 0 1 2 13 4.8 3.8

8 I found this application very cumber-
some or awkward to use.

11 4 1 0 0 1.4 3.6

9 I felt very confident using this
application.

0 0 0 8 8 4.5 3.5

10 I needed to learn a lot of things before
I could get going with this application.

16 0 0 0 0 1.0 4.0

Table 6. Application-specific question results.

Feature Average Rating (Range 1–5)

Glasses fitting precision 3.8
Realism of the 3D view 3.7

Usefulness of the 3D view 4.9
Favorable to virtual try-on 4.8

In general, the opinions of the users were quite positive. The majority of them appreci-
ated the ease of use of the application. The users also commented on the usefulness of the
3D visualization and lamented the lack of this visualization in other online try-on systems.
Finally, the automatic fitting of the glasses frame was appreciated. However, some users
suggested that we allow a manual resize and position of the frame. This could be interesting
for a vendor that personalizes glasses frames or even produces custom eyeglasses to meet
the user’s preferences. Many users requested the possibility to integrate the application
with social media in order to share their selection.

Sensors 2022, 22, 3832 22 of 26

Users also pointed out some problems about the application. The main concern
was the lack of hair and neck in the face model. These are limitations of the actual 3D
reconstruction model used that are common to many other reconstruction approaches. One
way to cope with the hair problem is to use more recent 3D reconstruction approaches,
such as the one proposed by Xu et al. [84], which tries to also reconstruct the hair. However,
these approaches are quite limited, and the hair is not fully reconstructed. Missing chunks
of hair may annoy the user more than having no hair. Another way to cope with the hair
is to employ a dedicated CNN [85]. This could potentially solve the problem at the cost
of adding computational complexity and time. Another common opinion is that the 3D
face mesh needs improvements in both geometry and texture. As before, we can use more
recent 3D reconstruction approaches and super-resolution techniques to cope with these
issues. Finally, some users suggested that adding highlights and reflections on the lenses
would make the 3D model more realistic and appealing. This can be obtained by adjusting
the properties of the materials and incorporating shaders in the rendering engine used to
display the models.

7. Conclusions

In this paper, we presented a web application for an eyewear virtual try-on. After a
critical analysis of existing eyewear virtual try-on applications that aimed to identify their
limitations, we introduced the workflow of a generic virtual try-on system and described
the main modules used to provide the try-on experience.

Since 3D face reconstruction is a key component of our try-on application, we con-
ducted an extensive analysis of the state-of-the-art methods to evaluate their design,
complexity, geometry reconstruction errors, and reconstructed texture quality. After
such an evaluation, we selected PRNet as the method for 3D face reconstruction in our
virtual try-on.

Our application uses a customized version of this blueprint to overcome the identified
limitations of existing virtual try-on applications for face accessories: first, the eyeglasses
virtual try-on is performed in the 3D space using a 3D model of the user’s face, reconstructed
from a single input picture, allowing the user to interact with the application in a deferred
mode and giving the possibility of observing the results from different points of view.
Second, the glasses fitting takes into account the actual size of the glasses frames and the
actual size of the face of the user, providing a realistic size fitting. The user’s face size
is estimated with a markerless approach that exploits the iris diameter, thus removing
additional acquisition steps as required by other applications.

We also performed a usability study of our eyewear virtual try-on application. The
results show that the application is engaging and easy to use; the users appreciated the
full 3D try-on and expressed willingness to use the proposed application if made publicly
available. Future works can overcome some limitations observed in the usability study,
such as the global quality of the rendering, which should be improved by providing better
and complete 3D face reconstruction, and enhanced textures. Another possible extension
is that of designing a processing pipeline capable of handling the possible presence of
occlusions and self-occlusions in the input picture: while the face geometry reconstruction
is possible even in the case of occlusions or self-occlusions, the texture will present missing
parts. Restoration techniques such as [86,87] can be used to recover the missing portions,
or the application may ask the user to provide a non-occluded face picture. Finally, the
application can take advantage of better integration with online stores and social media
services. Providing the try-on experience through a mobile application will also improve
the integration with user devices: in this case, the new front-end mobile application can
use the existing back-end web service.

Sensors 2022, 22, 3832 23 of 26

Author Contributions: Conceptualization, D.M., S.B. and G.C.; methodology, D.M., S.B. and G.C.;
software, D.M.; validation, G.C.; investigation, D.M.; resources, S.B. and G.C.; data curation, S.B.
and G.C.; writing—original draft preparation, D.M.; writing—review and editing, S.B. and G.C.;
visualization, D.M. and G.C.; supervision, S.B. and G.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: This research was supported by grants from NVIDIA and utilized the NVIDIA
Quadro RTX 6000.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chatzopoulos, D.; Bermejo, C.; Huang, Z.; Hui, P. Mobile augmented reality survey: From where we are to where we go. IEEE

Access 2017, 5, 6917–6950. [CrossRef]
2. Andone, D.; Frydenberg, M. Experiences in Online Collaborative Learning with Augmented Reality. eLearning Softw. Educ. 2017,

2, 239–246.
3. Han, D.I.; Tom Dieck, M.C.; Jung, T. User experience model for augmented reality applications in urban heritage tourism. J. Herit.

Tour. 2018, 13, 46–61. [CrossRef]
4. Sanna, A.; Manuri, F.; Lamberti, F.; Paravati, G.; Pezzolla, P. Using handheld devices to sup port augmented reality-based

maintenance and assembly tasks. In Proceedings of the 2015 IEEE International Conference on Consumer Electronics (ICCE), Las
Vegas, NV, USA, 9–12 January 2015; pp. 178–179.

5. Bottani, E.; Vignali, G. Augmented reality technology in the manufacturing industry: A review of the last decade. IISE Trans.
2019, 51, 284–310. [CrossRef]

6. Javornik, A. Augmented reality: Research agenda for studying the impact of its media characteristics on consumer behaviour. J.
Retail. Consum. Serv. 2016, 30, 252–261. [CrossRef]

7. Bonetti, F.; Warnaby, G.; Quinn, L. Augmented Reality and Virtual Reality in Physical and Online Retailing: A Review,
Synthesis and Research Agenda. In Augmented Reality and Virtual Reality: Empowering Human, Place and Business; Jung, T.,
Tom Dieck, M.C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 119–132.

8. Kang, H.J.; Shin, J.H.; Ponto, K. How 3D virtual reality stores can shape consumer purchase decisions: The roles of informativeness
and playfulness. J. Interact. Mark. 2020, 49, 70–85. [CrossRef]

9. Statista. Retail e-Commerce Sales Worldwide from 2014 to 2024. 2020. Available online: https://www.statista.com/statistics/37
9046/worldwide-retail-e-commerce-sales/ (accessed on 7 April 2022).

10. Gartner. Gartner Says 100 Million Consumers Will Shop in Augmented Reality Online and In-Store by 2020. 2019. Available
online: https://www.gartner.com/en/newsroom/press-releases/2019-04-01-gartner-says-100-million-consumers-will-shop-
in-augme (accessed on 7 April 2022).

11. Liu, Y.; Jia, J.; Fu, J.; Ma, Y.; Huang, J.; Tong, Z. Magic mirror: A virtual fashion consultant. In Proceedings of the 24th ACM
International Conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016; pp. 680–683.

12. Pantano, E.; Rese, A.; Baier, D. Enhancing the online decision-making process by using augmented reality: A two country
comparison of youth markets. J. Retail. Consum. Serv. 2017, 38, 81–95. [CrossRef]

13. Kim, J.; Forsythe, S. Adoption of virtual try-on technology for online apparel shopping. J. Interact. Mark. 2008, 22, 45–59.
[CrossRef]

14. Tsunashima, H.; Arase, K.; Lam, A.; Kataoka, H. UVIRT—Unsupervised Virtual Try-on Using Disentangled Clothing and Person
Features. Sensors 2020, 20, 5647. [CrossRef]

15. Bianco, S.; Celona, L.; Ciocca, G.; Marelli, D.; Napoletano, P.; Yu, S.; Schettini, R. A Smart Mirror for Emotion Monitoring in Home
Environments. Sensors 2021, 21, 7453. [CrossRef]

16. Pouyanfar, S.; Sadiq, S.; Yan, Y.; Tian, H.; Tao, Y.; Reyes, M.P.; Shyu, M.L.; Chen, S.C.; Iyengar, S. A survey on deep learning:
Algorithms, techniques, and applications. ACM Computing Surveys (CSUR) 2018, 51, 1–36. [CrossRef]

17. Rasouli, A. Deep learning for vision-based prediction: A survey. arXiv 2020, arXiv:2007.00095.
18. Marelli, D.; Bianco, S.; Ciocca, G. A Web Application for Glasses Virtual Try-on in 3D Space. In Proceedings of the 2019 IEEE 23rd

International Symposium on Consumer Technologies (ISCT), Ancona, Italy, 19–21 June 2019; pp. 299–303.
19. Marelli, D.; Bianco, S.; Ciocca, G. Faithful Fit, Markerless, 3D Eyeglasses Virtual Try-On. In Proceedings of the Pattern Recognition,

ICPR International Workshops and Challenges, Virtual Event, 10–15 January 2021; pp. 460–471.
20. Ablavatski, A.; Grishchenko, I. Real-Time AR Self-Expression with Machine Learning. 2019. Available online: https://ai.

googleblog.com/2019/03/real-time-ar-self-expression-with.html (accessed on 7 April 2022).

http://doi.org/10.1109/ACCESS.2017.2698164
http://dx.doi.org/10.1080/1743873X.2016.1251931
http://dx.doi.org/10.1080/24725854.2018.1493244
http://dx.doi.org/10.1016/j.jretconser.2016.02.004
http://dx.doi.org/10.1016/j.intmar.2019.07.002
https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/
https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/
https://www.gartner.com/en/newsroom/press-releases/2019-04-01-gartner-says-100-million-consumers-will-shop-in-augme
https://www.gartner.com/en/newsroom/press-releases/2019-04-01-gartner-says-100-million-consumers-will-shop-in-augme
http://dx.doi.org/10.1016/j.jretconser.2017.05.011
http://dx.doi.org/10.1002/dir.20113
http://dx.doi.org/10.3390/s20195647
http://dx.doi.org/10.3390/s21227453
http://dx.doi.org/10.1145/3234150
https://ai.googleblog.com/2019/03/real-time-ar-self-expression-with.html
https://ai.googleblog.com/2019/03/real-time-ar-self-expression-with.html

Sensors 2022, 22, 3832 24 of 26

21. DITTO Technologies. DITTO Virtual Try-On. 2021. Available online: https://ditto.com/virtual-try-on/ (accessed on 20
September 2021).

22. XL Tech Apps. Glassify Try On Virtual Glasses. Available online: https://play.google.com/store/apps/details?id=com.xl.apps.
virtual.glass.tryon (accessed on 7 April 2022).

23. Perfect Corp. YouCam Makeup. 2014. Available online: https://www.perfectcorp.com/app/ymk (accessed on 7 April 2022).
24. MemoMi. Memory Mirror. 2015. Available online: https://memorymirror.com/ (accessed on 7 April 2022).
25. Jeeliz. Jeeliz Virtual Try-On. 2018. Available online: https://github.com/jeeliz/jeelizGlassesVTOWidget (accessed on 7

April 2022).
26. Luxottica Group. Virtual Mirror. 2020. Available online: http://www.luxottica.com/en/virtual-mirror-technology-arrives-

valentinocom (accessed on 7 April 2022).
27. Safilo. VirtualEyes. 2020. Available online: https://www.uqido.com/progetti/safilo-virtualeyes/ (accessed on 7 April 2022).
28. 3dMD. 3dMDface System. 2020. Available online: https://3dmd.com/products/#!/face (accessed on 7 April 2022).
29. Roth, J.; Tong, Y.; Liu, X. Adaptive 3D face reconstruction from unconstrained photo collections. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 4197–4206.
30. Piotraschke, M.; Blanz, V. Automated 3d face reconstruction from multiple images using quality measures. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 3418–3427.
31. Bianco, S.; Ciocca, G.; Marelli, D. Evaluating the Performance of Structure from Motion Pipelines. J. Imaging 2018, 4, 98. [CrossRef]
32. Blanz, V.; Vetter, T. A morphable model for the synthesis of 3D faces. Siggraph 1999, 99, 187–194.
33. Huber, P.; Kopp, P.; Christmas, W.; Rätsch, M.; Kittler, J. Real-time 3D face fitting and texture fusion on in-the-wild videos. IEEE

Signal Process. Lett. 2017, 24, 437–441. [CrossRef]
34. Tuan Tran, A.; Hassner, T.; Masi, I.; Medioni, G. Regressing robust and discriminative 3D morphable models with a very deep

neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26
July 2017; pp. 5163–5172.

35. Ranjan, A.; Bolkart, T.; Sanyal, S.; Black, M.J. Generating 3D faces using Convolutional Mesh Autoencoders. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 704–720.

36. Li, T.; Bolkart, T.; Black, M.J.; Li, H.; Romero, J. Learning a model of facial shape and expression from 4D scans. ACM Trans.
Graph. (Proc. SIGGRAPH Asia) 2017, 36, 194:1–194:17. [CrossRef]

37. Tran, A.T.; Hassner, T.; Masi, I.; Paz, E.; Nirkin, Y.; Medioni, G. Extreme 3D Face Reconstruction: Seeing Through Occlusions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, Utah, USA, 18–22 June
2018; pp. 3935–3944.

38. Paysan, P.; Knothe, R.; Amberg, B.; Romdhani, S.; Vetter, T. A 3D Face Model for Pose and Illumination Invariant Face Recognition.
In Proceedings of the 6th IEEE International Conference on Advanced Video and Signal based Surveillance (AVSS) for Security,
Safety and Monitoring in Smart Environments, Genova, Italy, 2–4 September 2009; pp. 296–301.

39. Gecer, B.; Ploumpis, S.; Kotsia, I.; Zafeiriou, S. Ganfit: Generative adversarial network fitting for high fidelity 3d face reconstruction.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp.
1155–1164.

40. Gecer, B.; Ploumpis, S.; Kotsia, I.; Zafeiriou, S. Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face
Reconstruction. arXiv 2021, arXiv:2105.07474.

41. Deng, Y.; Yang, J.; Xu, S.; Chen, D.; Jia, Y.; Tong, X. Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From
Single Image to Image Set. In Proceedings of the IEEE Computer Vision and Pattern Recognition Workshops, Long Beach, CA,
USA, 16-17 June 2019; pp. 285–295.

42. Sanyal, S.; Bolkart, T.; Feng, H.; Black, M. Learning to Regress 3D Face Shape and Expression from an Image without 3D
Supervision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
16–17 June 2019; pp. 7763–7772.

43. Zhu, X.; Yang, F.; Huang, D.; Yu, C.; Wang, H.; Guo, J.; Lei, Z.; Li, S.Z. Beyond 3dmm space: Towards fine-grained 3d face
reconstruction. In Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August
2020; pp. 343–358.

44. Lin, J.; Yuan, Y.; Shao, T.; Zhou, K. Towards high-fidelity 3D face reconstruction from in-the-wild images using graph convolutional
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
13–19 June 2020; pp. 5891–5900.

45. Guo, J.; Zhu, X.; Yang, Y.; Yang, F.; Lei, Z.; Li, S.Z. Towards Fast, Accurate and Stable 3D Dense Face Alignment. In Proceedings of
the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; pp. 152–168.

46. Feng, Y.; Feng, H.; Black, M.J.; Bolkart, T. Learning an Animatable Detailed 3D Face Model from In-the-Wild Images. ACM Trans.
Graph. 2021, 40, 1–13.

47. Bai, Z.; Cui, Z.; Liu, X.; Tan, P. Riggable 3D Face Reconstruction via In-Network Optimization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, 19–25 June 2021; pp. 6216–6225.

48. Jackson, A.S.; Bulat, A.; Argyriou, V.; Tzimiropoulos, G. Large pose 3D face reconstruction from a single image via direct
volumetric CNN regression. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 1031–1039.

https://ditto.com/virtual-try-on/
https://play.google.com/store/apps/details?id=com.xl.apps.virtual.glass.tryon
https://play.google.com/store/apps/details?id=com.xl.apps.virtual.glass.tryon
https://www.perfectcorp.com/app/ymk
https://memorymirror.com/
https://github.com/jeeliz/jeelizGlassesVTOWidget
http://www.luxottica.com/en/virtual-mirror-technology-arrives-valentinocom
http://www.luxottica.com/en/virtual-mirror-technology-arrives-valentinocom
https://www.uqido.com/progetti/safilo-virtualeyes/
https://3dmd.com/products/#!/face
http://dx.doi.org/10.3390/jimaging4080098
http://dx.doi.org/10.1109/LSP.2016.2643284
http://dx.doi.org/10.1145/3130800.3130813

Sensors 2022, 22, 3832 25 of 26

49. Wu, S.; Rupprecht, C.; Vedaldi, A. Unsupervised learning of probably symmetric deformable 3d objects from images in the wild.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 1–10.

50. Feng, Y.; Wu, F.; Shao, X.; Wang, Y.; Zhou, X. Joint 3d face reconstruction and dense alignment with position map regression
network. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 534–551.

51. Guo, Y.; Cai, J.; Jiang, B.; Zheng, J. Cnn-based real-time dense face reconstruction with inverse-rendered photo-realistic face
images. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 1294–1307. [CrossRef]

52. Wang, S.; Shen, X.; Yu, K. Real-Time 3d Face Reconstruction From Single Image Using End-To-End Cnn Regression. In Proceedings
of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 3293–3297.
[CrossRef]

53. Wang, Y.; Lu, Y.; Xie, Z.; Lu, G. Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.
In Proceedings of the 29th ACM International Conference on Multimedia, Virtual Event China, 20–24 October 2021; pp. 1350–1358.

54. Viola, P.; Jones, M.J. Robust real-time face detection. Int. J. Comput. Vis. 2004, 57, 137–154. [CrossRef]
55. Zafeiriou, S.; Zhang, C.; Zhang, Z. A survey on face detection in the wild: Past, present and future. Comput. Vis. Image Underst.

2015, 138, 1–24. [CrossRef]
56. Jiang, H.; Learned-Miller, E. Face detection with the faster R-CNN. In Proceedings of the 2017 12th IEEE International Conference

on Automatic Face & Gesture Recognition (FG 2017), Washington, DC, USA, 30 May–3 June 2017; pp. 650–657.
57. Adjabi, I.; Ouahabi, A.; Benzaoui, A.; Taleb-Ahmed, A. Past, Present, and Future of Face Recognition: A Review. Electronics 2020,

9, 1188. [CrossRef]
58. Khaldi, Y.; Benzaoui, A.; Ouahabi, A.; Jacques, S.; Taleb-Ahmed, A. Ear recognition based on deep unsupervised active learning.

IEEE Sens. J. 2021, 21, 20704–20713. [CrossRef]
59. OpenCV. Open Source Computer Vision Library. Available online: https://opencv.org/ (accessed on 7 April 2022).
60. King, D.E. Dlib-ml: A Machine Learning Toolkit. J. Mach. Learn. Res. 2009, 10, 1755–1758.
61. Nguyen, D.T.; Li, W.; Ogunbona, P.O. Human detection from images and videos: A survey. Pattern Recognit. 2016, 51, 148–175.

[CrossRef]
62. Liu, Z.; Zhu, J.; Bu, J.; Chen, C. A survey of human pose estimation: The body parts parsing based methods. J. Vis. Commun.

Image Represent. 2015, 32, 10–19. [CrossRef]
63. Beddiar, D.R.; Nini, B.; Sabokrou, M.; Hadid, A. Vision-based human activity recognition: A survey. Multimed. Tools Appl. 2020,

79, 30509–30555. [CrossRef]
64. Sun, Y.; Wang, X.; Tang, X. Deep convolutional network cascade for facial point detection. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 3476–3483.
65. Mehta, D.; Sridhar, S.; Sotnychenko, O.; Rhodin, H.; Shafiei, M.; Seidel, H.P.; Xu, W.; Casas, D.; Theobalt, C. Vnect: Real-time 3d

human pose estimation with a single rgb camera. ACM Trans. Graph. (TOG) 2017, 36, 1–14. [CrossRef]
66. Xiang, J.; Zhu, G. Joint face detection and facial expression recognition with MTCNN. In Proceedings of the 2017 4th International

Conference on Information Science and Control Engineering (ICISCE), Changsha, China, 21–23 July 2017; pp. 424–427.
67. Zhang, S.; Zhu, X.; Lei, Z.; Shi, H.; Wang, X.; Li, S.Z. Faceboxes: A CPU real-time face detector with high accuracy. In Proceedings

of the 2017 IEEE International Joint Conference on Biometrics (IJCB), Denver, CO, USA, 1–4 October 2017; pp. 1–9.
68. Zhang, S.; Zhu, X.; Lei, Z.; Shi, H.; Wang, X.; Li, S.Z. S3fd: Single shot scale-invariant face detector. In Proceedings of the IEEE

International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 192–201.
69. Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4401–4410.
70. ONNX Runtime Developers. ONNX Runtime. 2018. Available online: https://github.com/microsoft/onnxruntime (accessed on

7 April 2022).
71. Colombo, A.; Cusano, C.; Schettini, R. UMB-DB: A database of partially occluded 3D faces. In Proceedings of the 2011

IEEE international Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain, 6–13 November 2011;
pp. 2113–2119.

72. NoW Challenge. Available online: https://now.is.tue.mpg.de/ (accessed on 7 April 2022).
73. Gross, R.; Matthews, I.; Cohn, J.; Kanade, T.; Baker, S. Multi-PIE. Image Vis. Comput. 2010, 28, 807–813. [CrossRef]
74. Rüfer, F.; Schröder, A.; Erb, C. White-to-white corneal diameter: Normal values in healthy humans obtained with the Orbscan II

topography system. Cornea 2005, 24, 259–261. [CrossRef]
75. Kerrigan, D.; Trokielewicz, M.; Czajka, A.; Bowyer, K.W. Iris recognition with image segmentation employing retrained off-the-

shelf deep neural networks. In Proceedings of the 2019 International Conference on Biometrics (ICB), Crete, Greece, 4–7 June
2019; pp. 1–7.

76. Yu, F.; Koltun, V.; Funkhouser, T. Dilated residual networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 472–480.

77. CadNav. CadNav Website. 2013. Available online: https://www.cadnav.com (accessed on 7 April 2022).
78. You, E. Vue.js: An Open-Source Model–View–View Model Front end Javascript Framework. Available online: https://vuejs.org/

(accessed on 7 April 2022).

http://dx.doi.org/10.1109/TPAMI.2018.2837742
http://dx.doi.org/10.1109/ICIP42928.2021.9506103
http://dx.doi.org/10.1023/B:VISI.0000013087.49260.fb
http://dx.doi.org/10.1016/j.cviu.2015.03.015
http://dx.doi.org/10.3390/electronics9081188
http://dx.doi.org/10.1109/JSEN.2021.3100151
https://opencv.org/
http://dx.doi.org/10.1016/j.patcog.2015.08.027
http://dx.doi.org/10.1016/j.jvcir.2015.06.013
http://dx.doi.org/10.1007/s11042-020-09004-3
http://dx.doi.org/10.1145/3072959.3073596
https://github.com/microsoft/onnxruntime
https://now.is.tue.mpg.de/
http://dx.doi.org/10.1016/j.imavis.2009.08.002
http://dx.doi.org/10.1097/01.ico.0000148312.01805.53
https://www.cadnav.com
https://vuejs.org/

Sensors 2022, 22, 3832 26 of 26

79. Meno, M. Dropzon.js: A Drag and Drop Library for JavaScript. Available online: https://www.dropzonejs.com/ (accessed on 7
April 2022).

80. Catuhe, D. Babylon.js: A Real Time 3D Engine Using a JavaScript Library. Available online: https://www.babylonjs.com/
(accessed on 7 April 2022).

81. Nielsen, J.; Landauer, T.K. A mathematical model of the finding of usability problems. In Proceedings of the INTERACT’93 and
CHI’93 Conference on Human Factors in Computing Systems, Amsterdam The Netherlands, 24–29 April 1993; pp. 206–213.

82. Brooke, J. SUS-A quick and dirty usability scale. Usability Eval. Ind. 1996, 189, 4–7.
83. Sauro, J. Measuring Usability with the System Usability Scale (SUS). Available online: https://measuringu.com/sus/ (accessed

on 7 April 2022).
84. Xu, S.; Yang, J.; Chen, D.; Wen, F.; Deng, Y.; Jia, Y.; Tong, X. Deep 3d portrait from a single image. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 7710–7720.
85. Zhou, Y.; Hu, L.; Xing, J.; Chen, W.; Kung, H.W.; Tong, X.; Li, H. HairNet: Single-View Hair Reconstruction using Convolutional

Neural Networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September
2018; pp. 235–251.

86. Bianco, S.; Ciocca, G.; Guarnera, G.C.; Scaggiante, A.; Schettini, R. Scoring Recognizability of Faces for Security Applications. In
Image Processing: Machine Vision Applications VII; Electronic Imaging; SPIE: San Francisco, CA, USA, 2014; Volume 9024, p. 90240L.

87. Colombo, A.; Cusano, C.; Schettini, R. Three-dimensional Occlusion Detection and Restoration of Partially Occluded Faces. J.
Math. Imaging Vis. 2011, 40, 105–119. [CrossRef]

https://www.dropzonejs.com/
https://www.babylonjs.com/
https://measuringu.com/sus/
http://dx.doi.org/10.1007/s10851-010-0252-0

	Introduction
	Related Works
	Virtual Try-On Applications
	3D Face Reconstruction

	Workflow of a Generic Virtual Try-On System
	Comparing the 3D Face Reconstruction Approaches
	Comparison of the Architectures
	Computational Costs
	Reconstruction Errors
	Texture Quality

	Workflow of Our Virtual Try-On Application
	Face Detection and 3D Reconstruction from a Single Image
	Face Size Estimation
	Fitting Parameter Estimation
	User Interface

	Try-On User Experience
	Conclusions
	References

