
Citation: Choi, S.-H.; Bahk, T.-u.;

Ahn, S.; Choi, Y.-H. Clustering

Approach for Detecting Multiple

Types of Adversarial Examples.

Sensors 2022, 22, 3826. https://

doi.org/10.3390/s22103826

Academic Editor: Naveen

Chilamkurti

Received: 21 March 2022

Accepted: 16 May 2022

Published: 18 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Clustering Approach for Detecting Multiple Types
of Adversarial Examples
Seok-Hwan Choi 1 , Tae-u Bahk 2, Sungyong Ahn 1 and Yoon-Ho Choi 1,*

1 School of Computer Science and Engineering, Pusan National University, Busan 46241, Korea;
daniailsh@pusan.ac.kr (S.-H.C.); sungyong.ahn@pusan.ac.kr (S.A.)

2 Korea Apparel Testing & Research Institute, Seoul 02579, Korea; tu.bahk@pusan.ac.kr
* Correspondence: yhchoi@pusan.ac.kr

Abstract: With intentional feature perturbations to a deep learning model, the adversary generates an
adversarial example to deceive the deep learning model. As an adversarial example has recently been
considered in the most severe problem of deep learning technology, its defense methods have been
actively studied. Such effective defense methods against adversarial examples are categorized into
one of the three architectures: (1) model retraining architecture; (2) input transformation architecture;
and (3) adversarial example detection architecture. Especially, defense methods using adversarial
example detection architecture have been actively studied. This is because defense methods using
adversarial example detection architecture do not make wrong decisions for the legitimate input
data while others do. In this paper, we note that current defense methods using adversarial example
detection architecture can classify the input data into only either a legitimate one or an adversarial
one. That is, the current defense methods using adversarial example detection architecture can only
detect the adversarial examples and cannot classify the input data into multiple classes of data,
i.e., legitimate input data and various types of adversarial examples. To classify the input data
into multiple classes of data while increasing the accuracy of the clustering model, we propose an
advanced defense method using adversarial example detection architecture, which extracts the key
features from the input data and feeds the extracted features into a clustering model. From the
experimental results under various application datasets, we show that the proposed method can
detect the adversarial examples while classifying the types of adversarial examples. We also show
that the accuracy of the proposed method outperforms the accuracy of recent defense methods using
adversarial example detection architecture.

Keywords: adversarial examples; adversarial perturbation; deep neural networks (DNNs); security;
clustering

1. Introduction

As a core part of current real-world applications, deep learning technology has been
widely applied not only in various fields but also even in security sensitive fields such as self-
driving cars [1], malware classification [2], and face recognition system [3]. However, many
studies showed that deep learning technology is very vulnerable to adversarial examples,
which deceive the deep learning model by adding human-imperceptible perturbations to
input data. As a representative example, Hussain, S. et al. recently showed that even deep
learning-based defense method, such as DeepFake detector, can be bypassed by adversarial
examples at WACV conference in 2021 [4].

To defend against adversarial examples, many defense methods have been proposed.
Based on the types of defense architectures, such defense methods are commonly classified
into three categories, i.e., model retraining architecture, input transformation architecture
and adversarial example detection architecture. The model retraining architecture makes
deep learning model more robust before adversaries generate adversarial examples by

Sensors 2022, 22, 3826. https://doi.org/10.3390/s22103826 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22103826
https://doi.org/10.3390/s22103826
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3590-6024
https://orcid.org/0000-0002-8289-9595
https://orcid.org/0000-0002-3556-5082
https://doi.org/10.3390/s22103826
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22103826?type=check_update&version=1


Sensors 2022, 22, 3826 2 of 18

retraining deep learning models or training with new models [5–7]. The model retraining
architecture is known to be effective for adversarial examples with large perturbation
such as Fast Gradient Sign Method (FGSM) [8] and Basic Iterative Method (BIM) [9]. On
the other hand, the input transformation architecture reduces the perturbation of adver-
sarial examples by transforming the input data before feeding into the deep learning
model [10–12]. The input transformation architecture can provide robustness with low
memory usage and computation costs against adversarial examples with small pertur-
bation such as DeepFool [13] and C&W [14]. Even though previous defense methods
belonging to two architectures provided good robustness against adversarial examples,
the classification accuracy decreases when predicting the legitimate input data because
such two architectures affect the legitimate input data or deep learning model. Specifically,
for the defense methods using model retraining architecture, the classification accuracy of
deep learning model decreases because they train or re-train the model with noise contained
dataset. For the defense methods using input transformation architecture, the classification
accuracy of deep learning model decreases because they transform not only adversarial
examples but also legitimate input data.

To address this problem, defense methods using adversarial example detection archi-
tecture have been actively studied [15–18]. As shown in Figure 1a, the defense methods
using adversarial example detection architecture classify the input data into either legit-
imate one or adversarial one. To achieve this, the defense methods using adversarial
example detection architecture compute the probability that the input data is an adversarial
example or compare the distribution between adversarial examples and legitimate input
data. However, the defense methods using adversarial example detection architecture
do not classify the input data into multiple classes of data, i.e., legitimate input data and
various types of adversarial examples. Classifying the input data into multiple classes of
data is important for many researchers and security experts to analyze the characteristics of
each adversarial example. Based on these characteristics, they can establish an appropriate
defense method or design a new defense method for unknown adversarial examples.

(a)

(b)
Figure 1. Difference between the previous defense methods using adversarial example detection
architecture and the proposed method. (a) Previous defense methods using adversarial example
detection architecture. (b) Proposed method.

In this paper, to overcome the limitation of the defense methods using adversarial
example detection architecture, we propose an advanced defense method using adversar-
ial example detection architecture. Different from the previous defense methods using
adversarial example detection architecture, the proposed method can detect adversarial
examples while classifying the types of adversarial examples as shown in Figure 1b. De-
tecting adversarial examples means that the proposed method can be used as a stand-alone



Sensors 2022, 22, 3826 3 of 18

defense method against adversarial examples. Additionally, classifying various types of
adversarial examples means that the proposed method can be utilized as an analysis tool
to analyze the characteristics of adversarial examples.

A high-level operations of the proposed method is as follow: first, given an input
data (a legitimate input data or an adversarial example), the proposed method extracts
adversarial perturbations using denoising techniques, such as a binary filter and median
smoothing filter. Second, the proposed method reduces the dimensionality of the extracted
adversarial perturbations. Finally, the proposed method uses a clustering model as a
detector. Specifically, the clustering model classifies the reduced features of input data into
multiple classes, i.e., legitimate input data and various types of adversarial examples.

From the experimental results under various datasets collected from diverse appli-
cations, we show that only the proposed method can classify the types of the adversarial
examples. We also show that the accuracy of the proposed method outperforms the ac-
curacy of recent defense methods using adversarial example detection architecture, e.g.,
Carrara et al.’s method [15] and Feature Squeezing [16]. Such results can be actively used
to design new defense architecture, analyze the characteristics of adversarial examples,
and improve the existing defense methods. For example, we can analyze the characteris-
tics of adversarial examples from the clustering results and selectively apply the defense
methods suitable for each characteristic.

The contributions are summarized as follows:

• We propose a novel defense method using adversarial example detection architecture.
Different from the current defense methods using adversarial example detection
architecture, which can classify the input data into only either legitimate one or
adversarial one, the proposed method classifies the input data into multiple classes
of data;

• To the best of our knowledge, the existing defense methods including model retraining
architecture, input transformation architecture and adversarial example detection
architecture use the adversarial example itself for analysis or detection. Thus, this is
the first work which approximates the adversarial perturbation of each adversarial
example and uses it to detect adversarial examples;

• From analysis results under various adversarial examples and application datasets, we
show that the proposed method provides better accuracy than recent defense methods
using adversarial example detection architecture, e.g., Carrara et al.’s method [15] and
Feature Squeezing [16].

The rest of the paper is organized as follows. In Section 2, we overview the well-known
adversarial examples and the recent defense methods using adversarial example detection
architecture. In Section 3, we describe the overall operation and the details of the proposed
method. In Section 4, we verify the effectiveness of the proposed method from various
experimental results under different adversarial examples, different datasets and so on.
Finally, we conclude this paper in Section 6.

2. Preliminaries and Related Works
2.1. Adversarial Examples

In this section, we summarize the characteristics of five well-known adversarial
examples, which are used for experimental evaluation in this paper [5,8,9,13,19].

Goodfellow et al. proposed a non-iterative-based fast method to generate adversarial
examples, called Fast Gradient Sign Method (FGSM) [8]. To generate adversarial examples,
FGSM increases the loss of the deep learning model using the sign of the gradient. As a
iterative-based fast method to generate adversarial examples, Basic Iterative Method (BIM)
was introduced by Kurakin et al. [9]. Different from FGSM which performs only one
gradient update, BIM performs iterative gradient updates for fine optimization. Projected
Gradient Descent (PGD) is another iterative-based method introduced by Madry et al. [5].
To perform fine optimization efficiently, PGD performs iterative gradient updates from
randomly selected an initial point.



Sensors 2022, 22, 3826 4 of 18

To generate adversarial examples with minimal perturbations, Moosavi-Dezfooli et al.
introduced a DeepFool which performs an iterative linearization of the deep learning
model [13]. In each iteration, DeepFool finds the nearest decision boundary from an input
X, and updates the adversarial perturbation to reach that decision boundary. To increase
attack success rate while generating adversarial examples with minimum perturbations,
Carlini and Wagner introduced three adversarial examples based on various distance
metrics such as L0, L1 and L2 norm [19]. In this paper, we consider the L2 type of C&W as a
representative method because it is most frequently mentioned in other works [14].

2.2. Defense Methods Using Adversarial Example Detection Architecture

In this section, we summarize some recent defense methods using adversarial example
detection architecture.

Dathathri et al. [20] proposed a signature-based detection method against adversarial
examples. To detect adversarial examples, they generate a NeuralFingerprinting (NFP)
from the input data and checked a behavioral consistency of the target model for the NFP.
Fidel et al. [21] also used the signature, called the XAI signature, to detect adversarial
examples. To generate a XAI signature for the input data, they used Shapley Additive
Explanations (SHAP) values computed for the internal layers of a target model.

To provide the robustness to deep learning models against adversarial examples,
Metzen et al. [22] proposed a subnetwork-based detector which classifies the input data
into either legitimate input or adversarial examples. They added the binary detector
subnetwork to one of the middle layers of the target deep learning model and trained it to
learn the probability that the input data is an adversarial example. Jiajun Lu et al. [23] also
proposed a subnetwork-based detector, called SafetyNet. Different from the Metzen et al.’s
method which the binary detector subnetwork is located in one of the middle layers of
the target deep learning model, the detector in SafetyNet is located in the last layer of the
target deep learning model.

Santhanam et al. [24] proposed a GAN-based defense method, called cowboy, for the
detection and purification of adversarial examples. They argued that adversarial examples
lie outside of the data distribution. The discriminator network in cowboy detects the adver-
sarial examples and the generator network purifies the detected adversarial examples by
projecting back to the data distribution. Yu et al. [25] also proposed a GAN-based detection
method using Conditional Generative Adversarial Networks (CGANs). The discriminator
network of Yu et al.’s method is not used detect adversarial examples directly, but to
improve the performance of generator network.

Xu et al. [16] proposed a simple detection method against adversarial examples, called
Feature Squeezing. Feature Squeezing consists of a squeezer and a detector. The squeezer
transforms the input data into squeezed input to reduce the magnitude of adversarial
perturbations. The detector compares the prediction on the input with the prediction
on squeezed inputs to detect adversarial examples. Zheng et al. [26] proposed a part-
based feature squeezing, which is specialized in person re-identification (ReID) field,
by extending Feature Squeezing. Different from the Feature Squeezing, which uses a
squeezer to the entire image, Zheng et al.’s method divides the image into several parts
and uses a squeezer to each part. Abusnaina et al. [17] proposed a graph-based detection
method against adversarial examples. To detect adversarial examples, Abusnaina et al.’s
method constructs a Latent Neighborhood Graph (LNG) around an input data and uses
Graph Neural Networks (GNNs) as a detector.

Carrara et al. [15] proposed a detection method against adversarial examples using
Long Short-Term Memory (LSTM) models. They argued that intermediate features ex-
tracted from all layers of the target deep learning model must be used to determine the
tendency or direction of adversarial examples. Since the number of intermediate features
extracted from all layers is very large, they reduced the dimensionality of intermediate
features by using global average pooling. After reducing the dimensionality, they gener-
ated the sequential vector using distance metric-based embedding technique and trained



Sensors 2022, 22, 3826 5 of 18

the LSTM-based detector. Wang et al. [18] proposed a model-agnostic approach to detect
adversarial examples. They argued that there is an intrinsic difference of the logit semantic
distribution between legitimate input data and adversarial examples. To capture differences
in the distribution of logits sequences, they used the LSTM network as a detector. We
summarize the characteristics of representative defense methods using adversarial example
detection architecture in Table 1 for comparison.

Table 1. Summary of the recent defense methods using adversarial example detection architecture.
Most of the methods cannot classify the input data into multiple classes of data.

Method References Binary Classification Multi-Label Classification

Signature-based Detector S. Dathathri et al.’s method [20] 3 7

G. Fidel et al.’s method [21] 3 7

Subnetwork-based Detector Metzen et al.’s method [22] 3 7

Jiajun Lu et al.’s method [23] 3 7

GAN-based Detector Cowboy [24] 3 7

Fangchao Yu et al.’s method [25] 3 7

Squeezer-based Detector Feature Squeezing [16] 3 7

Yu Zheng et al.’s method [26] 3 7

LSTM-based Detector Carrara et al.’s method [15] 3 7

Wang et al.’s method [18] 3 7

GNN-based Detector Abusnaina et al.’s method [17] 3 7

Clustering model-based Detector Proposed method 3 3

3. Proposed Method

In this section, we overview the operation of the proposed method in details. We also
describe each operation of the proposed method and support it with specific examples.

3.1. Overall Operation

To detect adversarial examples while classifying the types of adversarial examples,
the proposed method follows three steps: (1) Adversarial Perturbation Extraction;
(2) Dimensionality Reduction; and (3) Clustering.

In Figure 2, a high-level illustration of the proposed method is described. In Adversar-
ial Perturbation Extraction step, the proposed method extracts the perturbations, which are
added by the adversary from the input data. Since it is not known whether an adversarial
example has happened or which adversarial example has performed, the proposed method
first applies the denoising techniques to the input data to obtain the denoised input. Then,
the proposed method calculates the perturbations between the input data and the denoised
input. In Dimensionality Reduction step, the proposed method extracts the key features
from the perturbations, which are extracted in Adversarial Perturbation Extraction step,
by reducing the feature dimensionality. In the Clustering step, the proposed method feeds
the extracted features into the clustering model to detect adversarial examples while classi-
fying the types of adversarial examples. Further details on each step are provided in the
subsequent sections.



Sensors 2022, 22, 3826 6 of 18

Figure 2. Overall operation of the proposed method.

3.2. Adversarial Perturbation Extraction

Different from the previous defense methods using adversarial example detection
architecture which use the adversarial examples itself for detecting, the proposed method
uses the adversarial perturbation which was added to input data by the adversary. How-
ever, it is impossible to get the adversarial perturbation directly from the adversarial
example because it is not known whether an adversarial example has happened to input
data or which adversarial example has performed on input data. Thus, the adversarial
perturbation is approximated by using two denoising techniques, binary filter and median
smoothing filter, which have shown good performance in other works [14,16].

For a gray-scale image dataset such as the MNIST dataset [27], the proposed method
approximates the adversarial perturbation by using the binary filter which can reduce
the redundancy while keeping the key features of gray-scale images. Here, since the
binary filter perceives adversarial perturbation as redundancy, it can remove adversarial
perturbation well. Specifically, given an input data X, the binary filter reduces the bit-depth
of input data X to i-bit depth (1 ≤ i ≤ 7) as follow:

x = round(x× 2i−1)/ 2i−1, ∀x ∈ X, (1)

where round(·) is a round function, which rounds to the nearest integer. We set i of the
binary filter into 1, which showed the best performance for the MNIST dataset [16,28].
Some examples of a binary filter for the MNIST dataset under various adversarial examples
are shown in Figure 3.

For color image dataset such as CIFAR-10 dataset [29], the proposed method approxi-
mates the adversarial perturbation by the median smoothing filter because it can remove
adversarial perturbation well while preserving the sharpness of edges for color images.
To remove the adversarial perturbation, the median smoothing filter reduces variation
among pixels. Specifically, given an input data X, the filtered input X f can be obtained
as follows:

X f [u, v] = median{X[u + i, v + j] | − 1 ≤ (i, j) ≤ 1}, (2)



Sensors 2022, 22, 3826 7 of 18

where [u, v] is the position of input data X and median{·} is a median function, which
returns a median value among values in a range. Some examples of median smoothing
filter for CIFAR-10 dataset under various adversarial examples are shown in Figure 4. From
“Filtered input” in Figures 3 and 4, it is observed that such denoising techniques effectively
work regardless of the types of adversarial examples.

Figure 3. Five extracted adversarial perturbation from adversarial examples in MNIST test dataset,
where each perturbation is denoised using a binary filter.

Figure 4. Five extracted adversarial perturbations from adversarial examples in CIFAR-10 test dataset,
where each perturbation is denoised using a median filter.

After getting the filtered input from two denoising techniques, the adversarial pertur-
bation is approximated by calculating arithmetic subtraction operations between the input
data and the filtered input. By using the extracted adversarial perturbations rather than
the adversarial examples, the proposed method can consider only the key features of the
adversarial examples, without considering any key features of legitimate input data.

3.3. Dimensionality Reduction

Using the extracted perturbation directly to classify the types of adversarial examples is
not efficient because the perturbation contains unnecessary values. For example, as shown
in Figure 4, most pixels of the extracted adversarial perturbation are black in color and
it means that such pixels do not affect classification of the types of adversarial examples.
Thus, the proposed method performs the dimensionality reduction to extract the key
features from the adversarial perturbation. Specifically, the proposed method uses two
dimensionality reduction methods, i.e., Principal Component Analysis (PCA) and Linear
Discriminant Analysis (LDA).

PCA is an unsupervised dimensionality reduction method which maximizes the vari-
ance between data without considering the class separation. By finding a few orthogonal
linear combinations, which are called Principal Components of multivariate data with
the largest variance, and PCA can reduce the dimension of the data. As one of the most



Sensors 2022, 22, 3826 8 of 18

commonly used dimensionality reduction methods in various fields, PCA has shown good
feature extraction performance even for image data.

On the other hand, LDA is a supervised dimensionality reduction method which
maximizes the variance between samples in different classes while minimizing the variance
between samples in the same class. Different from PCA, which deals with the data in
its entirety and searches for vectors that best describe the data, LDA deals directly with
discrimination between classes and searches for vectors that best describe the class. LDA
can reduce the dimensionality without loss of information. The detailed impact of each
dimensionality reduction method on clustering performance is described in Section 4.2.2.

3.4. Clustering

The goal of the proposed method is not only to detect adversarial examples but also
to classify the types of adversarial examples. To achieve this, the proposed method uses a
clustering model as a detector. When the extracted features F and the ground truth label l
are given, the objective function of the detector can be expressed into:

max
C(·)

Pr(l′ = l)

s.t. l′ = arg max C(F),
(3)

where C(·) is a clustering model. In this paper, the proposed method uses two clustering
models, i.e., the k-means algorithm and the Density-based spatial clustering of applications
with noise(DBSCAN) algorithm.

The k-means algorithm is one of the most well-known simplest clustering methods
that has been used in a variety of application domains. To find clusters, the k-means
algorithm groups and classifies data that are similar to each other in the entire dataset.
The pseudo code of the k-means algorithm is illustrated in Algorithm 1. The k-means
algorithm requires a parameter k, which represents the number of output clusters. k can be
set according to the number of adversarial examples, which the defender wants to classify.

Algorithm 1 Pseudo code of k-means algorithm
Input: set of input data DX , number of desired clusters k
Output: set of k clusters C

1 Randomly select k input data in DX as initial centroids
2 while convergence criteria has not been met do
3 Assigns each input data to the clusters which has the closest centroid
4 Calculates new mean for each cluster

The DBSCAN algorithm is a well-known density-based clustering method which is
very effective when finding arbitrarily shaped clusters. As shown in Algorithm 2, the DB-
SCAN algorithm finds clusters by calculating the density of each data with neighboring
data. The DBSCAN algorithm requires two parameters: (1) epsilon (Peps), which represents
how close points should be to each other to be contained in the same cluster; and (2) the
minimum number of points (PMinPts), which represents minimum number samples to be
contained in one cluster. Different from the k-means algorithm, the DBSCAN algorithm
does not need a parameter for the number of output clusters. In other words, the DBSCAN
algorithm can learn the number of clusters automatically.



Sensors 2022, 22, 3826 9 of 18

Algorithm 2 Pseudo code of the DBSCAN algorithm
Input: set of input data DX , Radius of data points Peps, Minimum number of data

points to from a cluster PMinPts
Output: set of clusters C

1 Randomly select a input data D in DX
2 while ∀ inputdata D ∈ DX do
3 Retrieve all points density-reachable from D with respect to Peps and PMinPts
4 if D is a core point then
5 forms a new cluster
6 adds a new cluster to set of clusters C

7 if D is a border point then
8 visits the next point of DX

3.5. Operational Example

In this section, we show an example of how the proposed method works for the
CIFAR-10 test dataset. Here, let us consider that a target model is the ResNet-34 model [30],
and the proposed method uses LDA and the DBSCAN algorithm as a dimensionality
reduction method and a clustering model, respectively. Let us consider PGD occurring
to the horse sample. As shown in Figure 5, when the attacked horse sample is given as
an input data, the proposed method extracts perturbation from the input data. Here, it
is observed that most of the pixels have a value of 0 (black color) and only a few pixels
have non zero values. Next, the proposed method extracts key features from the extracted
adversarial perturbation by reducing the feature space. Specifically, the proposed method
reduces the extracted adversarial perturbation of 32 × 32 × 3 dimensionality to a vector of
5 × 1 dimensionality. These extracted features of 5 × 1 dimensionality are used as an input
to a clustering model. As a result, it is observed that the attacked horse sample by PGD is
clustered in the same cluster with other PGD samples.

Figure 5. Operational example of the proposed method with LDA and the DBSCAN algorithm.

4. Evaluation Results

To show how efficient the proposed method is when classifying the types of adversarial
examples, we measured the performance of the proposed method under various conditions
including different adversarial examples.

4.1. Experimental Setup

In this section, we describe experimental environments including dataset, target model,
evaluation metric, and so on.

Dataset: The experiments are conducted using the MNIST dataset [27] and the
CIFAR-10 dataset [29]. The MNIST dataset is grayscale Hand-written digits dataset and
consists of 60,000 training images and 10,000 testing images corresponding to 10 classes.
CIFAR-10 is color image dataset and consists of 50,000 training images and 10,000 testing
images corresponding to 10 classes. Five types of adversarial examples (FGSM, BIM, PGD,
DeepFool, and C&W) are used to train the clustering model. Specifically, 9790 adversarial



Sensors 2022, 22, 3826 10 of 18

examples for each adversarial example type from the MNIST dataset are used to train the
clustering model. For the CIFAR-10 dataset, 7189 adversarial examples for each adversarial
example type are used to train the clustering model.

Target Model: Even though the proposed method is not directly affected by the target
model, an adversary needs to have complete access to the parameter values used for
training the target deep neural network model to generate adversarial examples. In this
paper, one deep learning model per each benchmark dataset is used as the target model.
For the MNIST dataset, a basic Convolutional Neural Network (CNN) model, which
is commonly used in image classification areas, is used to a target model. Such CNN
model consists of convolutional layer of 5 × 5, max pooling layer of 2 × 2, one fully
connected layer for flattening, and the softmax function applied to the output layer. Each
convolutional layer uses the ReLU function as an activation function. The output layer
consists of 10 neurons, each of which represents an image label. The Adam optimization
function is used to train the CNN model. The batch size, epoch, and learning rate are set
to 128, 10, and 0.001, respectively. For the CIFAR-10 dataset, the proposed method uses a
ResNet-34 model [30] as a target model. As with the CNN model, the Adam optimization
function is used to train the ResNet-34 model. The batch size, epoch, and learning rate are
set to 128, 20, and 0.001, respectively.

Attack Configuration: When generating adversarial examples for the MNIST dataset,
the parameter values are set as follows: (1) 0.3 for the magnitude of perturbation (ε) in
FGSM; (2) 20 and 0.3 for the number of iterations (N) and ε, respectively, in BIM; (3) 20
and 0.3 for the number of iterations (N) and ε, respectively, in PGD; (4) 50 and 0.02 for
the maximum number of iterations and overshoot to prevent updates from vanishing,
respectively, in DeepFool; and (5) 0 for the parameter to control the confidence value (κ)
in C&W. On the other hand, when generating adversarial examples for the CIFAR-10
dataset, the parameter values are set into: (1) 0.2 for the magnitude of perturbation (ε) in
FGSM; (2) 20 and 0.2 for the number of iterations (N) and ε, respectively, in BIM; (3) 20
and 0.2 for the number of iterations (N) and ε, respectively, in PGD; (4) 80 and 0.2 for
the maximum number of iterations and overshoot to prevent updates from vanishing,
respectively, in DeepFool; and (5) 0 for the parameter to control the confidence value (κ) in
C&W. These parameter values are set following the recommended configuration values
from the cleverhans library [31] and some representative works [14,16].

Evaluation Metric: To evaluate the performance of the proposed method under differ-
ent types of dimensionality reduction methods and clustering methods, we measure the
V-measure and its two components, i.e., Homogeneity and Completeness.

Here, Homogeneity is a measure of how well a clustering model matches each cluster
to each type of adversarial examples. When an array of input data X and the ground truth
label l are given, Homogeneity can be defined as:

h = 1− H(l|X)/H(l), (4)

where H(·) and H(·|·) are the entropy and conditional entropy functions, respectively.
As a measure of how well all data points of each type of adversarial examples are

contained in the same cluster, Completeness can be defined as:

c = 1− H(X|l)/H(X). (5)

V-measure is a measure defined as the harmonic mean of Homogeneity and Complete-
ness and can be defined as:

v = 2(h × c)/(h + c). (6)

Implementation Environment: The classification models are implemented using
TensorFlow-gpu version 1.14.1 and Python version 3.6.9. Adversarial examples are gener-
ated by using the cleverhans software library [31], which provides standardized reference
implementations of adversarial examples. For the efficient experiments, the performance



Sensors 2022, 22, 3826 11 of 18

is measured on the Ubuntu 18.04.3 LTS machine with kernel version 5.3.0-62-generic,
2.40 GHz CPU clock Intel Xeon CPU E5-2630 v3), GeForce GTX 2080 Ti, and 64 GB memory.

4.2. Experimental Analysis
4.2.1. Ablation Analysis

To verify the effectiveness of each step of the proposed method, we conducted ablation
analysis on each step of the proposed method. Specifically, we measured the clustering
performances of the proposed method according to the combination of each step using three
evaluation metrics, i.e., Homogeneity, Completeness, and V-measure. Here, we considered
LDA and the k-means algorithm as the dimensionality reduction method and the clustering
method, respectively. The experimental results are summarized in Table 2.

Table 2. Ablationanalysis results of the proposed method.

Dataset Method Homogeneity Completeness V-Measure Average

MNIST
(Step 3)

Adversarial example + k-means 0.247 0.252 0.249 0.249

(Step 1 + Step 3)
Adversarial perturbation + k-means 0.601 0.654 0.626 0.627

(Step 1 + Step2 + Step 3)
Adversarial perturbation + LDA + k-means 0.826 0.903 0.863 0.864

CIFAR-10
(Step 3)

Adversarial example + k-means 0.092 0.174 0.120 0.128

(Step 1 + Step 3)
Adversarial perturbation + k-means 0.343 0.416 0.375 0.378

(Step 1 + Step2 + Step 3)
Adversarial perturbation + LDA + k-means 0.676 0.728 0.701 0.701

In Table 2, it is observed that adversarial examples are not suitable for classifying
the types of adversarial examples. For example, while the proposed method using an
adversarial example showed 0.249 and 0.128 for clustering performance on average under
the MNIST dataset and the CIFAR-10 dataset, respectively, the proposed method using
adversarial perturbations showed 0.864 and 0.701 for clustering performance on average. It
is also observed that the proposed method showed a higher performance as it performs
each step. For the MNIST dataset, while the proposed method that performed steps 1
and 3 showed 0.627 for the clustering performance on average, the proposed method that
performed steps 1, 2 and 3 showed 0.864 for the clustering performance on average. For the
CIFAR-10 dataset, while the proposed method that performed steps 1 and 3 showed 0.378
for the clustering performance on average, the proposed method that performed steps 1, 2
and 3 showed 0.701 for the clustering performance on average.

In Figures 6 and 7, we also show the visualized clustering results of the proposed
method. As shown in Figures 6c and 7c, the proposed method can classify the types of
adversarial examples when it performed steps 1, 2 and 3.



Sensors 2022, 22, 3826 12 of 18

(a) (b) (c)
Figure 6. Visualized clustering results of the proposed method under the MNIST dataset. (a) Ad-
versarial example + k-means (Step3). (b) Adversarial perturbation + k-means (Step 1 + Step 3). (c)
Adversarial perturbation + LDA + k-means (Step 1 + Step 2 + Step 3).

(a) (b) (c)
Figure 7. Visualized clustering results of the proposed method under the CIFAR-10 dataset. (a)
Adversarial example + k-means (Step3). (b) Adversarial perturbation + k-means (Step 1 + Step 3). (c)
Adversarial perturbation + LDA + k-means (Step 1 + Step 2 + Step 3).

4.2.2. Influence of Dimensionality Reduction and Clustering Methods

To evaluate the proposed method under various combinations of dimensionality reduc-
tion methods and clustering methods, the clustering performances of the proposed method
are measured using three evaluation metrics, i.e., Homogeneity, Completeness, and V-
measure. To train the clustering model, five types of adversarial examples (FGSM, BIM,
PGD, DeepFool, C&W) are used. Each type of adversarial example is generated using
1000 randomly selected datapoints from the MNIST test dataset and the CIFAR-10 test
dataset, respectively. The k of k-means algorithm is set to 5, Peps of the DBSCAN algorithm
is set to 0.878 for the MNIST dataset and 0.446 for the CIFAR-10 dataset, respectively.

In Table 3, it is observed that the different combination of dimensionality reduction
methods and clustering methods showed the different influence on the clustering perfor-
mance. From the ‘Average’ column in Table 3, it is observed that the proposed method
showed the clustering performance from 0.764 to 0.865 under the MNIST dataset and from
0.513 to 0.716 under the CIFAR-10 dataset. Especially, the combination of PCA and the DB-
SCAN algorithm showed the lowest clustering performance on average under both MNIST
and CIFAR-10 dataset. On the other hand, the combination of LDA and the DBSCAN
algorithm showed the highest clustering performance on average.



Sensors 2022, 22, 3826 13 of 18

Table 3. Experimental results of the proposed method with the various combinations of dimensional-
ity reduction methods and clustering methods.

Dataset
Reduction Method

Dimensionality
Method

Clustering Homogeneity Completeness V-Measure Average

MNIST
PCA K-means 0.734 0.809 0.770 0.771

DBSCAN 0.783 0.745 0.764 0.764

LDA K-means 0.826 0.903 0.863 0.864

DBSCAN 0.814 0.919 0.863 0.865

CIFAR-10
PCA K-means 0.645 0.467 0.646 0.646

DBSCAN 0.296 0.811 0.434 0.513

LDA K-means 0.676 0.728 0.701 0.701

DBSCAN 0.594 0.854 0.701 0.716

It is also observed that LDA provides better feature extraction than PCA. For example,
for the CIFAR-10 dataset, while the combination of PCA and the k-means algorithm and
the combination of PCA and the DBSCAN algorithm showed 0.646 and 0.513 on average
for the clustering performance respectively, the combination of LDA and the k-means
algorithm and the combination of LDA and the DBSCAN algorithm showed 0.701 and
0.716 on average for the clustering performance respectively.

4.2.3. Influence of the Number of Adversarial Examples Types

To evaluate the clustering performance of the proposed method under the various
number of adversarial examples, the experiments are conducted by gradually varying the
number of adversarial examples. Specifically, the experiments are performed by adding
1000 of each of FGSM, C&W, BIM, PGD, and DeepFool in sequence to 1000 legitimate input
data. The results for Homogeneity, Completeness and V-measure of the proposed method
are shown in Figures 8 and 9.

Figure 8. Clustering performance of the proposed method with the increase of the number of
adversarial examples using MNIST dataset.



Sensors 2022, 22, 3826 14 of 18

Figure 9. Clustering performance of proposed method with the increase of the number of adversarial
examples using CIFAR-10 dataset

For the MNIST dataset, as shown in Figure 8, the proposed method maintained the
clustering performance until the number of adversarial examples was four. Specifically,
the proposed method showed 0.999, 0.999, 0.998 and 0.998 for the Homogeneity when the
number of adversarial examples was 1, 2, 3 and 4, respectively. However, it is observed
that when the number of adversarial examples was five, the clustering performance of the
proposed method slightly decreased. For example, while the proposed method showed
0.991 for the V-measure when the number of adversarial examples was four, the proposed
method showed 0.923 for the V-measure when the number of adversarial examples was
five. It is also observed that the Completeness was maintained but the Homogeneity
slightly decreased when the number of adversarial examples was five. It means that
several instances of a particular adversarial example were included in a cluster of other
adversarial examples.

For the CIFAR-10 dataset, as shown in Figure 9, the clustering performance of the
proposed method began to decrease when the number of adversarial examples was higher
than or equal to three. For example, while the proposed method showed 0.994 and 0.975
for the Completeness when the number of adversarial examples was 1, 2, respectively,
the proposed method showed 0.862 for the Completeness when the number of adversarial
examples was three. Especially, the Homogeneity and the V-measure of the proposed
method significantly decreased when the number of adversarial examples was four. Specif-
ically, the Homogeneity of the proposed method decreased from 0.954 to 0.573, and the
V-measure of the proposed method decreased from 0.906 to 0.681. Even though the pro-
posed method showed low Homogeneity and V-measure when the number of adversarial
examples was higher than or equal to four, the proposed method showed high Complete-
ness even when the number of adversarial examples increased. It means that most instances
of each adversarial example are contained in the same cluster.

4.2.4. Comparison to Other Defense Methods Using Adversarial Example
Detection Architecture

To compare the proposed method with other recent defense methods using adversarial
example detection architecture, the accuracy, precision, recall and F1-score of the proposed
method are compared with those of Carrara et al.’s method [15] and Feature Squeezing [16].
Since the source codes of both methods are provided as open source, we selected them for
comparison with the proposed method. For Carrara et al.’s method, we used Euclidean
distance or cosine similarity as an embedding function and used Long Short-Term Memory
(LSTM) and multi-layer perceptron network (MLP) as a detector. For Feature Squeezing,
we used two squeezing methods, binary filter and median filter and used three distance
metrics, L1, L2 and K-L diversity.



Sensors 2022, 22, 3826 15 of 18

As observed from the “Accuracy” column to the “F1-score” column in Table 4, it is
observed that Carrara et al.’s method works well with the CIFAR-10 dataset and Feature
Squeezing works well with the MNIST dataset. For example, while Carrara et al.’s method
showed the accuracy, precision, recall and F1-score to be as much as 70.56%, 66.49%, 78.11%
and 72.40% on average for the MNIST dataset, Feature Squeezing showed the accuracy,
precision, recall and F1-score as much as 94.52%, 95.27%, 93.65% and 94.2% on average. It is
also observed that the proposed method showed a better binary classification performance
on accuracy and F1-score than Carrara et al.’s method and Feature Squeezing. For example,
while Carrara et al.’s method and Feature Squeezing showed an accuracy as much as
76.22% and 51.67% on average for the CIFAR-10 dataset, respectively, the proposed method
showed an accuracy of as much as 83.32%.

Table 4. Comparison results for binary classification with Carrara et al.’s method and Feature
Squeezing.

Dataset Method Binary Classification
Accuracy Precision Recall F1-Score

MNIST

Carrara et al.’s method (LSTM + Euclidean) 71.67% ± 0.24 68.48% ± 0.32 79.35% ± 0.28 73.52% ± 0.27
Carrara et al.’s method (LSTM + cosine) 70.50% ± 0.52 67.18% ± 0.43 78.34% ± 0.48 72.28% ± 0.46

Carrara et al.’s method (MLP + Euclidean) 70.18% ± 0.37 67.29% ± 0.34 77.53% ± 0.36 72.13% ± 0.32
Carrara et al.’s method (MLP + cosine) 69.89% ± 0.64 67.02% ± 0.52 77.24% ± 0.36 71.69% ± 0.36

Feature Squeezing (Binary filter + L1 distance) 94.22% ± 0.21 95.13% ± 0.21 93.20% ± 0.22 94.18% ± 0.21
Feature Squeezing (Binary filter + L2 distance) 94.21% ± 0.23 95.11% ± 0.19 93.30% ± 0.27 94.20% ± 0.20

Feature Squeezing (Binary filter + K-L diversity) 95.14% ± 0.20 95.57% ± 0.23 94.45% ± 0.24 94.22% ± 0.25
proposed method (LDA + DBSCAN) 99.99% ± 0.01 99.99% ± 0.01 99.97% ± 0.05 99.98% ± 0.02

CIFAR-10

Carrara et al.’s method (LSTM + Euclidean) 79.62% ± 0.73 73.58% ± 0.76 91.50% ± 0.67 81.64% ± 0.63
Carrara et al.’s method (LSTM + cosine) 68.65% ± 1.07 64.68% ± 1.13 78.97% ± 1.11 71.33% ± 1.21

Carrara et al.’s method (MLP + Euclidean) 77.53% ± 0.86 72.68% ± 0.94 86.70% ± 0.93 79.07% ± 0.87
Carrara et al.’s method (MLP + cosine) 79.09% ± 1.38 74.99% ± 1.36 85.97% ± 1.39 80.09% ± 1.39

Feature Squeezing (Binary filter + L1 distance) 50.76% ± 0.76 50.31% ± 0.77 49.45% ± 0.82 49.91% ± 0.77
Feature Squeezing (Binary filter + L2 distance) 53.41% ± 0.79 53.12% ± 0.82 51.49% ± 0.87 52.29% ± 0.85

Feature Squeezing (Binary filter + K-L diversity) 50.85% ± 0.80 50.48% ± 0.81 49.76% ± 0.84 49.93% ± 0.83
proposed method (LDA + DBSCAN) 81.32% ± 0.33 82.25% ± 0.32 83.08% ± 0.39 83.17% ± 0.38

In Table 5, it is observed that the proposed method can classify the types of adversarial
examples. Here, since the recent defense methods did not provide the classification perfor-
mance for multi-label, we only measured the classification performance of the proposed
method. For the MNIST dataset, the proposed method showed accuracy, precision, recall
and F1-score as much as 66.33%, 66.29%, 66.66% and 66.56%, respectively. For the CIFAR-10
dataset, the proposed method showed accuracy, precision, recall and F1-score as much as
47.18%, 46.30%, 46.23% and 46.39%, respectively.

Table 5. Experimental results for multi-label classification with Carrara et al.’s method and Fea-
ture Squeezing.

Dataset Multi-Label Classification
Accuracy Precision Recall F1-Score

MNIST 66.33% ± 2.07 66.29% ± 2.13 66.66% ± 2.20 66.56% ± 2.13

CIFAR-10 47.18% ± 4.31 46.30% ± 4.37 46.23% ± 4.49 46.39% ± 4.46

5. Discussion

In this section, the limitations and the directions of the future research are discussed.
From the experimental results, it is observed that the proposed method can detect

adversarial examples while classifying the types of adversarial examples. Although the
proposed method showed better binary classification performances than the state-of-the-art



Sensors 2022, 22, 3826 16 of 18

defense methods using adversarial example detection architecture, the multi-label clas-
sification performance of the proposed method is relatively low compared to the binary
classification performances. This is for the following reasons: (1) Inaccuracy in the extrac-
tion of adversarial perturbation; and (2) Homogeneity that decreases with the increasing
number of adversarial examples. In other words, the high accuracy of adversarial pertur-
bation extraction can help characterize the adversarial perturbation of each adversarial
example. The high homogeneity can help the clustering model to match each cluster to
each type of adversarial example. Therefore, there are several possible ways to improve the
multi-label classification performance of the proposed method: (1) Designing a denoising
method specialized for the extraction of adversarial perturbation, rather than the simple ap-
plication of general denoising techniques, i.e., binary filter and median filter; (2) Applying
techniques to improve the Homogeneity such as multi-stage clustering [32,33], growing
self-organizing maps [34], and the fractional derivatives [35]. We will leave those kinds of
improvements for future work.

In addition, the proposed method can be extended to large-scale application datasets
such as the ImageNet dataset and the malware dataset by reflecting some considerations,
such as the complexity of high-resolution data and the structured characteristics.

6. Conclusions

Adversarial example detection architecture has been actively studied because it can
defend adversarial examples without decreasing the accuracy for the legitimate input data.
While the previous methods belonging to adversarial example detection architecture can
only detect whether adversarial examples have occurred, they cannot know which adver-
sarial example has occurred. In this paper, we propose an advanced defense method using
adversarial example detection architecture, which not only detects adversarial examples but
also classifies the types of adversarial examples. Specifically, after extracting key features
from adversarial perturbation, the proposed method feeds the key features into a clustering
model. From evaluation results under various experimental conditions, we showed that the
proposed method provided good clustering performance for the MNIST dataset and the
CIFAR-10 dataset, respectively. We also observed that the proposed method showed better
classification accuracy than recent defense methods using adversarial example detection
architecture. From such results, we believe that the proposed method can be actively used
to design new defense architecture, analyze the characteristics of adversarial examples,
and improve the existing defense methods.

Author Contributions: Conceptualization, S.-H.C. and Y.-H.C.; methodology, S.-H.C.; software,
T.-u.B.; validation, S.-H.C. and Y.-H.C.; formal analysis, S.A.; investigation, S.-H.C. and T.-u.B.; re-
sources, Y.-H.C.; data curation, T.-u.B.; writing—original draft preparation, S.-H.C.; writing—review
and editing, S.-H.C., S.A. and Y.-H.C.; visualization, T.-u.B.; supervision, Y.-H.C.; project administra-
tion, Y.-H.C.; funding acquisition, Y.-H.C. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by Institute of Information & Communications Technology Plan-
ning & Evaluation(IITP) grant funded by the Korea government(MSIT)(No.2019-0-01343, Regional
strategic industry convergence security core talent training business) and the the Ministry of Science
and ICT (MSIT), South Korea, through the Information Technology Research Center (ITRC) Support
Program supervised by the Institute of Information & Communications Technology Planning &
Evaluation (IITP) under Grant IITP-2022-2020-0-01797.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in reference
numbers [27,29].

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2022, 22, 3826 17 of 18

References
1. Maqueda, A.I.; Loquercio, A.; Gallego, G.; García, N.; Scaramuzza, D. Event-Based Vision Meets Deep Learning on Steering

Prediction for Self-Driving Cars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Salt Lake City, UT, USA, 18–23 June 2018.

2. Kalash, M.; Rochan, M.; Mohammed, N.; Bruce, N.D.B.; Wang, Y.; Iqbal, F. Malware Classification with Deep Convolutional
Neural Networks. In Proceedings of the 2018 9th IFIP International Conference on New Technologies, Mobility and Security
(NTMS), Paris, France, 26–28 February 2018; pp. 1–5. [CrossRef]

3. Guo, G.; Zhang, N. A survey on deep learning based face recognition. Comput. Vis. Image Underst. 2019, 189, 102805. [CrossRef]
4. Hussain, S.; Neekhara, P.; Jere, M.; Koushanfar, F.; McAuley, J. Adversarial Deepfakes: Evaluating Vulnerability of Deepfake

Detectors to Adversarial Examples. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), Waikoloa, HI, USA, 3–8 January 2021; pp. 3348–3357.

5. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards Deep Learning Models Resistant to Adversarial Attacks. In
Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

6. Kurakin, A.; Goodfellow, I.J.; Bengio, S. Adversarial Machine Learning at Scale. arXiv 2016, arXiv:1611.01236.
7. Cui, J.; Liu, S.; Wang, L.; Jia, J. Learnable Boundary Guided Adversarial Training. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 15721–15730.
8. Goodfellow, I.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. In Proceedings of the International

Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.
9. Kurakin, A.; Goodfellow, I.J.; Bengio, S. Adversarial examples in the physical world. arXiv 2016, arXiv:1607.02533.
10. Song, Y.; Kim, T.; Nowozin, S.; Ermon, S.; Kushman, N. PixelDefend: Leveraging Generative Models to Understand and Defend

against Adversarial Examples. arXiv 2017, arXiv:1710.10766.
11. Guo, C.; Rana, M.; Cissé, M.; van der Maaten, L. Countering Adversarial Images using Input Transformations. arXiv 2017,

arXiv:1711.00117.
12. Wang, J.; Hu, Y.; Qi, Y.; Peng, Z.; Zhou, C. Mitigating Adversarial Attacks Based on Denoising amp; Reconstruction with Finance

Authentication System Case Study. IEEE Trans. Comput. 2021. [CrossRef]
13. Moosavi-Dezfooli, S.; Fawzi, A.; Frossard, P. DeepFool: A simple and accurate method to fool deep neural networks. arXiv 2015,

arXiv:1511.04599.
14. Choi, S.H.; Shin, J.; Liu, P.; Choi, Y.H. EEJE: Two-Step Input Transformation for Robust DNN Against Adversarial Examples.

IEEE Trans. Netw. Sci. Eng. 2020, 8, 908–920. [CrossRef]
15. Carrara, F.; Becarelli, R.; Caldelli, R.; Falchi, F.; Amato, G. Adversarial examples detection in features distance spaces. In

Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018.
16. Xu, W.; Evans, D.; Qi, Y. Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks. arXiv 2017,

arXiv:1704.01155.
17. Abusnaina, A.; Wu, Y.; Arora, S.; Wang, Y.; Wang, F.; Yang, H.; Mohaisen, D. Adversarial Example Detection Using Latent

Neighborhood Graph. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Online, 10–17
October 2021; pp. 7687–7696.

18. Wang, Y.; Xie, L.; Liu, X.; Yin, J.L.; Zheng, T. Model-Agnostic Adversarial Example Detection Through Logit Distribution Learning.
In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September
2021; pp. 3617–3621. [CrossRef]

19. Carlini, N.; Wagner, D.A. Towards Evaluating the Robustness of Neural Networks. arXiv 2016, arXiv:1608.04644.
20. Dathathri, S.; Zheng, S.; Yin, T.; Murray, R.M.; Yue, Y. Detecting Adversarial Examples via Neural Fingerprinting. arXiv 2019,

arXiv:1803.03870.
21. Fidel, G.; Bitton, R.; Shabtai, A. When Explainability Meets Adversarial Learning: Detecting Adversarial Examples using SHAP

Signatures. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July
2020; pp. 1–8. [CrossRef]

22. Metzen, J.H.; Genewein, T.; Fischer, V.; Bischoff, B. On detecting adversarial perturbations. arXiv 2017, arXiv:1702.04267.
23. Lu, J.; Issaranon, T.; Forsyth, D. Safetynet: Detecting and rejecting adversarial examples robustly. In Proceedings of the IEEE

International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 446–454.
24. Santhanam, G.K.; Grnarova, P. Defending Against Adversarial Attacks by Leveraging an Entire GAN. arXiv 2018,

arXiv:1805.10652.
25. Yu, F.; Wang, L.; Fang, X.; Zhang, Y. The defense of adversarial example with conditional generative adversarial networks. Secur.

Commun. Netw. 2020, 2020, 3932584. [CrossRef]
26. Zheng, Y.; Velipasalar, S. Part-Based Feature Squeezing To Detect Adversarial Examples in Person Re-Identification Networks. In

Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Online, 19–22 September 2021; pp. 844–848.
[CrossRef]

27. LeCun, Y.; Cortes, C. MNIST Handwritten Digit Database. 2010. Available online: http://yann.lecun.com/exdb/mnist/
(accessed on 20 March 2022).

http://doi.org/10.1109/NTMS.2018.8328749
http://dx.doi.org/10.1016/j.cviu.2019.102805
http://dx.doi.org/10.1109/TC.2021.3066614
http://dx.doi.org/10.1109/TNSE.2020.3008394
http://dx.doi.org/10.1109/ICIP42928.2021.9506292
http://dx.doi.org/10.1109/IJCNN48605.2020.9207637
http://dx.doi.org/10.1155/2020/3932584
http://dx.doi.org/10.1109/ICIP42928.2021.9506511
http://yann.lecun.com/exdb/mnist/


Sensors 2022, 22, 3826 18 of 18

28. Gu, S.; Yi, P.; Zhu, T.; Yao, Y.; Wang, W. Detecting adversarial examples in deep neural networks using normalizing filters. In
Proceedings of the 11th International Conference on Agents and Artificial Intelligence—Volume 1: ICAART, Prague, Czech
Republic, 19–21 February 2019.

29. Krizhevsky, A.; Nair, V.; Hinton, G. CIFAR-10 (Canadian Institute for Advanced Research). 2014. Available online: http:
//www.cs.toronto.edu/~kriz/cifar.html (accessed on 20 March 2022).

30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

31. Papernot, N.; Goodfellow, I.; Sheatsley, R.; Feinman, R.; McDaniel, P. cleverhans v1.0.0: An adversarial machine learning library.
arXiv 2016, arXiv:1610.00768.

32. Akritidis, L.; Alamaniotis, M.; Fevgas, A.; Bozanis, P. Confronting Sparseness and High Dimensionality in Short Text Clustering
via Feature Vector Projections. In Proceedings of the 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence
(ICTAI), Baltimore, MD, USA, 9–11 November 2020; pp. 813–820. [CrossRef]

33. Zhang, H.; Zou, Y.; Terry, W.; Karmaus, W.; Arshad, H. Joint clustering with correlated variables. Am. Stat. 2019, 73, 296–306.
[CrossRef] [PubMed]

34. Alahakoon, D.; Halgamuge, S.K.; Srinivasan, B. Dynamic self-organizing maps with controlled growth for knowledge discovery.
IEEE Trans. Neural Netw. 2000, 11, 601–614. [CrossRef] [PubMed]

35. Kaur, S.; Sahambi, J. A framework for improvement in homogeneity of fluorescence and bright field live cell images using
fractional derivatives. In Proceedings of the IEEE International Conference on Computing, Communication & Automation,
Greater Noida, India, 15–16 May 2015; pp. 1160–1165.

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://dx.doi.org/10.1109/ICTAI50040.2020.00129
http://dx.doi.org/10.1080/00031305.2018.1424033
http://www.ncbi.nlm.nih.gov/pubmed/32863387
http://dx.doi.org/10.1109/72.846732
http://www.ncbi.nlm.nih.gov/pubmed/18249788

	Introduction
	Preliminaries and Related Works
	Adversarial Examples
	Defense Methods Using Adversarial Example Detection Architecture

	Proposed Method
	Overall Operation
	Adversarial Perturbation Extraction
	Dimensionality Reduction
	Clustering
	Operational Example

	Evaluation Results
	Experimental Setup
	Experimental Analysis
	Ablation Analysis
	Influence of Dimensionality Reduction and Clustering Methods
	Influence of the Number of Adversarial Examples Types
	Comparison to Other Defense Methods Using Adversarial Example Detection Architecture


	Discussion
	Conclusions
	References

