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Abstract: The stomatognathic system represents an important element of human physiology, consti-
tuting a part of the digestive, respiratory, and sensory systems. One of the signs of temporomandibular
joint disorders (TMD) can be the formation of vibroacoustic and electromyographic (sEMG) phenom-
ena. The aim of the study was to evaluate the effectiveness of temporomandibular joint rehabilitation
in patients suffering from locking of the temporomandibular joint (TMJ) articular disc by analysis
of vibrations, sEMG registration of masseter muscles, and hypertension of masticatory muscles. In
this paper, a new system for the diagnosis of TMD during rehabilitation is proposed, based on the
use of vibration and sEMG signals. The operation of the system was illustrated in a case study, a
27-year-old woman with articular dysfunction of the TMJ. The first results of TMD diagnostics using
the k-nearest neighbors method are also presented on a group of fifteen people (ten women and
five men). Vibroacoustic registration of temporomandibular joints, sEMG registration of masseter
muscles, and functional manual analysis of the TMJ were simultaneously assessed before employing
splint therapy with stomatognathic physiotherapy. Analysis of vibrations with the monitoring of
sEMG in dysfunctions of the TMJ can lead to improve differential diagnosis and can be an objective
way of monitoring the rehabilitation process of TMD.

Keywords: sEMG; vibration; health monitoring; biomedical sensors; rehabilitation technology;
telemedicine; stomatognathic physiotherapy

1. Introduction

The temporomandibular joints (TMJ) are the 2 joints that connect the lower jaw to the
skull (Figure 1). Patients with temporomandibular disorders (TMD) are characterized by
the experience of pain, limited or excessive mobility of the temporomandibular joints (TMJ),
mandible deviation, or acoustic sensations. One of the symptoms of TMD is the formation
of vibroacoustic phenomena [1]. As many as 10–40% of people aged over 18 experience
pain due to TMD. The number of patients with morbidity related to the TMJ and the
facial, head, and neck area is increasing in modern society [2]. Disturbances in this region,
including acoustic sensations of the body, may have a psychosocial dimension and affect the
self-esteem of patients [3]. Most often these are sounds of transitional transformations or
results of parafunctions resulting from clicking, popping, friction, or crepitation. Acoustic
sensations are quite common, but do not always require treatment [4,5]. The causes of
vibroacoustic signs within the temporomandibular joints are complex, but they always
involve the loss of coordination between the disc and the condyle during their movements
and the change in tension on ligaments and muscles. The most common cause of this
dysfunction and these symptoms is bruxism [6–10].
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Figure 1. Anatomy of the area of temporomandibular joint (TMJ).

The central position of the TMJ articular surfaces is maintained by the activity of
muscle tone, proper tension of the ligaments, and the joint capsule [11,12].

When the articular disc is locking, the characteristic symptoms and signs include pain,
restriction of mobility, disturbance of joint function, and acoustic sensations [13]. When
the articular disc is unlocked, characteristic cracking sounds may be heard during patient
examination. Often, a double crack occurs: the first one during mandibular abduction and
another reciprocal click occurs when the mouth is closed just before teeth occlusion [2,14].
Sounds noted around the TMJ are named as acoustic phenomena (AP). AP occur during
the displacement of the disc but also in developed changes in the TMJ and have different
characteristics than crepitations. Most often, anterior dislocations occur; however, rarely
may medial and posterior dislocations occur. The following progression is observed in TMJ
pathologies: sporadic clicks in the irregular displacement of the articular disc, cracks in
the dislocation of the disc without blocking, abnormal path of movement of the mandible,
blocking of the disc, degenerative changes of the joint, and frequent crepitations caused by
friction. TMD can occur unilaterally or bilaterally. TMDs are connected to both joints if one
has changes to its compression mechanism [15].

The first attempts to use vibroacoustic signals as a carrier of diagnostic information for
the dysfunction of the temporomandibular joints took place in the second half of the 20th
century. This research focused on characterizing the acoustic signals generated in healthy
joints and those with motor disorders [16,17]. The sound pressure levels accompanying
the dysfunction phenomena were determined, as well as the duration of characteristic
clicks [18,19]. Subsequent associations were drawn between the presence of significant
vibrational energy within the examined joint and the degree of changes. Vibrations of the
highest amplitude and frequency from 8.50 to 57.61 Hz were observed in the middle phase
of the mandibular abduction cycle in people with joint dysfunction [20]. Some researchers
revealed (in a group of 138 patients) imperfections in the use of electrovibrography (EVG)
due to the ambiguity in the interpretation of the signals generated by the joints. Vibrations
in the temporomandibular joint were usually associated with disturbances inside the
joint; however, there were cases of recording an acoustic wave also in a healthy joint [21].
These reports are opposed by studies that show that a significant proportion of properly
functioning joints did not cause vibrations of such high amplitude and frequency as in the
case of affected joints.

Several methods are used to diagnose TMD (acoustic signals [18,19], electrovibrog-
raphy [21], and magnetic resonance imaging [15]), but still clinicians and researchers do
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not agree whether the analysis of sounds of the TMJ is sufficient for a proper differential
diagnosis of TMD [14,15,22–24]. The current state of the art criteria for the diagnosis of
TMD is presented in the following part of this section.

The authors’ approach presented in this paper was to analyze the vibrations generated
in the temporomandibular joints during their movement, along with the simultaneous
measurement of sEMG signals and video activity. In particular, the parameterization of the
vibration signal to a feature vector in correlation with the analysis and parameterization
of the sEMG signal are proposed in this paper. A measurement system was created and
example results during rehabilitation with a patient (a 27-year-old woman) suffering from
articular dysfunction of the TMJ are presented. Results of the first attempts to use the
k-nearest neighbors (k-NN) method to test the effectiveness of assigning sick and healthy
patients are also presented. Such an approach to TMD has not yet been under consideration
and published.

Temporomandibular Disorder Diagnostics

There are a number of studies that showed the possibility of using vibration analysis
in diagnosing disorders of the temporomandibular joints [25–28]. Kłaczyński’s study [1]
showed a greater usefulness of recording the vibration signal (three directional compo-
nents for each joint) compared to the recording of the acoustic signal itself using various
recording techniques: external microphones, ear microphones, or stethoscope. To confirm
the usefulness of electrovibrography as a complementary tool to the pivotal patient exami-
nation, the results were compared with standard methods that gave measurable results.
The effectiveness of the EVG test in detecting the two most common abnormalities of the
temporomandibular joint has also been demonstrated in different cases: dislocation of the
articular disc with and without reduction. These are problems manifested by audible clicks
in the various phases of mandibular abduction and adduction. The form of the acoustic
signal corresponding to the movement of the joint with the displacement of the disc turned
out to be easily distinguishable from the vibration wave generated in a healthy joint [29].
Further development of the research extended the possibilities of vibration analysis to
identifying a specific disorder type based on the corresponding characteristic frequency of
vibrations [23]. The distinctive shape of the acoustic wave was also distinguished in some
patients with exudative arthritis. The fact that this type of disorder requires magnetic reso-
nance imaging (MRI) in order to make a certain diagnosis is of significant importance [30].
Not all attempts to demonstrate the effectiveness of EVG confirmed its usefulness in the
diagnosis of a given disease. In one of the studies, the results of vibration analysis were
compared with the results of the MRIs of patients with flattening of the articular tubercle or
deepening of the fovea as a result of the natural adaptation to the changes, and of patients
with a damaged surface of the condylar processes. EVG has shown that joints with adapted
surfaces do not generate high frequencies of vibration, which makes it extremely difficult to
make a correct diagnosis [31]. Vibration analysis makes it possible to identify the presence
of a disturbance in the internal structure of the joint on the basis of acoustic symptoms,
but it does not allow for the detection of its exact cause. Assessment of the structure and
diagnosis of morphological defects of the temporomandibular joint are only possible with
the use of MRI and a computed tomography (CT). However, it has been shown that supple-
menting the patient examination with EVG would allow for, in some cases, the omission of
these complex and expensive techniques, for faster diagnosis and a significant reduction in
the time needed to start treatment [32]. Other works have reaffirmed the methods of EVG
in diagnosing TMD [33–36].

The search for methods of objective evaluation of the function of the temporomandibu-
lar joints has shown the usefulness of a completely different technique, surface electromyo-
graphy (sEMG), i.e., the study of the electrical activity of the muscles responsible for the
work of these joints [37–40]. Santana-Mora et al. [37] assessed the differences in electromyo-
graphic activity recorded during locking in women with chronic unilateral TMD compared
to control patients. It has been proven that the asymmetry index (AI) can be a useful mea-
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sure of differentiating right-sided and left-sided TMD patients. A preliminary study [38]
showed that sEMG highlighted the differences in the activation time of muscles; thus,
people with TMD showed neuromuscular changes that can lead to functional changes.
Subsequent studies concerned the study of the difference in absolute EMG values for the
healthy group and the TMD group before and after wearing braces and the change in
the location of the temporomandibular joint using an X-ray imaging method and 3D face
photography [40].

2. Materials and Methods

The following described measurement system was tested during measurement ses-
sions in fifteen patients. All subjects underwent an identical measurement process.

The patient was examined in a physiologically correct sitting position, controlled by a
physiotherapist with over 20 years of experience. The order of exercises performed in the
full range of motion was decided. In the initial phase of the study, an attempt was made to
record the snap of the joints.

• Three-click taps used to synchronize signals;
• Slow opening (SO)—three times;
• Fast opening (FO)—three times in each direction;
• Fast adduction (FA)—three times;
• Opening with protruding (OP) the mandible and returning to the rest position;
• Slow protruding (SP)—three times;
• Translation to the right (TR)—slow movements from side to side;
• Translation to the left (TL)—slow movements from side to side;
• Clenching without pads (CWP)—5 s of contraction and 10 s of rest;
• Clenching with pads (CP)—5 s of contraction and 10 s of rest;
• Stopping in the rest position and choking (CH)—three times in each direction;
• Slow coordination tongue exercises (TE)—three times.

We decided to use the Pentax K5 camera to record the video of the patient’s face
(Figure 2). This camera was selected in a previous study [1]. The main reason for using
the camera was to record information about the start and end of the movement. We also
planned to use videos to calculate range of motion as well as collect information on whether
extra muscles were involved during exercise, such as the tongue or orbicularis oris. The
recording also informs whether the patient has physiological limitations (Figure 3); in this
type of disease, such limitations are not uncommon. To handle video files and their syn-
chronization with sEMG and the vibration signals, a REAPER—Digital Audio Workstation
was used. The video recordings were synchronized with the vibration course due to the
fact that each exercise repeated by the patient began with tapping the teeth against each
other three times. On the other hand, sEMG signals were recorded synchronously with the
vibrations course; —this was ensured by the measurement system (National Instruments
measurement cards and software developed in LabVIEW environment).

Figure 2. Examination of the patient with TMD—an overview.
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Figure 3. Examination of the patient with TMD. Indication of EMG electrode mounting location
(yellow arrow) and acceleration sensor mounting location (green arrow). (Anatomical image from
Wikipedia under public domain rights).

For the sEMG signal, we focused on measuring masseter muscle activity occurring on
both sides of the head (Figure 3). This muscle consists of two layers—the superficial layer
and the deep layer. The location of the electrodes was determined by palpating the muscle
belly (superficial layer), which is most easily activated by asking the patient to clench their
teeth. Once the belly site was determined, the patient’s skin was cleansed of keratinized
epidermis and then washed with disinfectant (all women were asked to remove makeup
prior to the study).

The study was conducted with the patient in a sitting position to simulate proper
movement of the jaw while speaking, eating, expressing emotions, and for proper tension
of the tongue, suprahyoid, and infrahyoid muscles. The patient was instructed to sit
upright on a chair with the unsupported head looking forward in a horizontal position,
both feet on the floor, hands resting on the lap. A vibration accelerometer was mounted
on a specially prepared headband and placed 5 mm in front of the external ear canal. The
method of assembly and the choice of sound recording technique were a previous subject
of research [1].

The sEMG device was placed according to the technique described by Ferrario and
Sforza [41], by placing it over the belly of the muscle in the largest area with regard
to the amount of the neuromuscular junctions (Figure 3). Before placing, the skin was
cleaned with 95% alcohol. The electrodes were placed bilaterally on the subject’s skin,
perpendicular to the skin surface, parallel to muscular fibers, with the upper pole of the
electrode at the intersection between the tragus–labial commissure and the exocanthion–
gonion lines [41–45], but with modifications of the placement of the reference electrode,
which was attached to the styloid process of the ulna instead of the forehead to not disturb
the measurements of the vibration accelerometer. Dual pre-gel disposable electrodes
(Ag/AgCl) were used to measure the EMG signal with a center-to-center distance of 2 cm
and a pre-gel diameter of 14 mm. The electrodes were fixed on the forearm in the places
shown in Figure 3. The reference electrode was attached to the coronoid process of the ulna.

During the implementation of previous studies [1], very good results in the reproduc-
tion of the vibration signal during testing were obtained using a headband from standard
headphones providing a sensor contact force in the range of 2.5–2.8 N (since the headband
is an elastic element, from a mechanical point of view it represents a spring, which for
different head sizes will exert a different contact force).
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This level of force ensured patient comfort during the test and did not interfere with
joint function.

In Section 3 of this article, the results of the analysis of two different approaches to
the analysis of the recorded signals are presented. One is the analysis of the progress of
rehabilitation of one patient, while the second case is an attempt to recognize the state
of the subject (healthy or unhealthy) using the currently recorded database of signals
and the k-nearest neighbors (k-NN) method. For both cases, the data acquisition process
was identical (the same equipment, sitting position, number of exercises, procedure, and
measuring apparatuses).

2.1. Patient in the Rehabilitation Process

This article includes the presentation of a complete one-patient study of a Caucasian
27-year-old woman suffering from articular dysfunction based on the diagnostic criteria
or research diagnostic criteria (DC RDC) classification of TMD: a patient with disc dis-
placement with a reduction in the left TMJ and co-occurred myofascial pain of masseter
muscles [41]. Vibroacoustic registration of temporomandibular joints, sEMG registration of
masseter muscles, and functional manual analysis of the TMJ were assessed before splint
therapy with stomatognathic physiotherapy. Functional manual analysis assesses the range
of motion of the jaw, pattern of jaw movements, a group of crackles, myofascial pain (visual
analogue scale), trigger points, and posture assessment. Effects on the change in the range
of motion were assessed and the scale of dysfunction according to the DC of TMD and
pain according to the numeric pain rating scale (NPRS) were evaluated. Examination and
manual therapy were aimed at activating the articular capsule, reducing intra-articular
pressure, and improving the range of mandibular mobility. Physiotherapeutic procedures,
myofascial therapy, soft tissue therapy, and therapy of trigger points were performed.

After examination, the patient underwent splint therapy and physiotherapy according
to the recommended Integrated Approach to Craniomandibular Muscle Exercises [14].
Splint therapy involved a relaxing nightguard used by the patient for 21 h/24 h during
first 3 months, then 8 h/24 h during 6–12 months of observation. Muscle exercises were
performed to improve gloss–mandibular coordination. When the deviation of the jaw was
to the left, the position of the tongue was found to be on the right side to attain the proper
kinesiology of the jaw in the middle and to eliminate the crepitations or clicking in the TMJ.
The authors included an individual set of exercises, selected depending on the patient’s
malocclusion in overbite position of the tongue anteriorly or underbite position of the
tongue posteriorly. These exercises were recommended as at-home therapy consisting of
10–20 repetitions 3 times a day. The follow-up measurements were assessed 3 months and
1 year after therapy.

2.2. Acquisition System

In our system, two different types of commonly known diagnostic signals were used:
vibrations and sEMG. All signals were recorded in the same way for the left and right
side of the patient’s face by a designed system—hardware and software. For vibration
measurement, a triaxial accelerometer PCB model 356B18 (precision, high sensitivity:
1000 mV/g, frequency range: 0.5 to 3 k Hz) connected to analog-digital (A/D) converter
NI USB 9233 (4 channel, ±5 V, 24-bit A/C) was used. For sEMG signal measurement, a
conditioner of our own production with A/D converter NI USB-6212 BNC (16 channel,
±10 V, 16-bit A/C) was used. The sEMG conditioner had been designed in accordance
with the SENIAM guidelines (Surface Electromyography for the Non-Invasive Assessment
of Muscles) [42]. Based on the guidelines, the INA 128P precision amplifier was used
(CMRR > 100 dB), with gain 1200 and analog filter (Sallen-Key topology) with a range of
6 Hz ÷ 1000 Hz [43]. All vibration and sEMG signals were sampled with a frequency of
10 kHz. A block diagram of the measuring system is shown in Figure 4.
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Figure 4. Block diagram of the measuring system.

A dedicated software written in LabVIEW 2019 was used to collect and process all
measured data. The program was dedicated to measurements by means of a button system
that triggers the measurement ensured the repeatability of the procedure, which included
13 test procedures (in this article, only 4 selected ones are presented). Analyses were also
carried out with the use of dedicated software designed in cooperation with medical staff.
It enables cataloging the list of patients (left) and easy access to signals recorded during
individual tests (left middle) (Figure 5). On the right, time graphs have been included.

Figure 5. The analyzing system—front panel.

In the upper graph, the medical staff marks the area (movable vertical black markers)
that is being analyzed. The middle graph shows the signal fragment selected for analysis.
Moreover, the red and blue vertical lines mark the areas for which the rms value was the
highest; therefore, the appropriate analyses were performed (the details of the analyses are
described later in the paper).

2.3. Parameterization

All analyses (vibration and sEMG) were performed identically for the left- and right-
side signals. For the analysis of vibration signals, the signal was first subjected to high-
pass filtration with a cut-off frequency of 50 Hz (Butterworth 3rd order). The vector
signal was calculated from the triaxial acceleration signal. It was used to calculate the
rms value from the 0.5 s time window shifted continuously (every one sample). Then
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the algorithm determined the window for which the maximum rms value was chosen.
More specifically, energetic factors (rms, mean, and crest factor) were calculated from the
acceleration modulus for all three directions (X, Y, and Z). The spectral parameters (M0, M1,
M2, skewness, and kurtosis) were calculated from the modulus of the frequency spectral
(Fourier transform) for all three directions (X, Y, and Z).

All vibration signals from the triaxial accelerometer (left- and right-side signals) were
used to calculate the resultant signal accordingly (1):

v[n] =
√
(x[n])2 + (y[n])2 + (z[n])2, (1)

This procedure was aimed at eliminating errors related to the full repeatability of
mounting the sensors (with a headband) on the subject’s head. Further analyses concerned
the investigation of the v[n] signal.

It was decided to examine the following local parameters of the vibration signals v[n]
in the selected frame.

Peak value:
PEAK = v[n], (2)

Root mean square:

RMS =

√
1
N ∑N

n=1 v2[n], (3)

Crest factor:
CREST =

PEAK
RMS

, (4)

Spectral moments of the 1st and 2nd order (M1, M2) for the whole frequency band
(0.5 Hz to 3 kHz) were normalized (to M0).

The spectral moment of the m-th order is described by a general relation (5):

Mm = ∑ fN
i= f0
|Sn( fi)|·[ fi]

m, (5)

where Sn(f) is the frequency spectrum of the n-th data record, fi is the midpoint frequency
for the i-th frequency band defined for the spectral analysis, f 0 is the lower band frequency,
and fN is the upper band frequency.

The spectral moment of the 0-th order M0 is used for normalization of the higher order
moments and is given by the following relation:

M0 = ∑ fN
i= f0
|Sn( fi)|, (6)

It is usually convenient to use spectral moments normalized according to relation:

M∗m =
Mm

M0
, (7)

The moment (8) can be interpreted as a spectrum’s center of gravity (weighted
average frequency):

M∗1 =
∑

fN
i= f0
|Sn( fi)|· fi

M0
, (8)

The moment (9) can be interpreted as the spectrum dispersion around the spectrum’s
center of gravity:

M∗2 =

√√√√∑
fN
i= f0
|Sn( fi)|· f 2

i

M0
−
(

M∗1
)2, (9)
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Spectrum asymmetry measure parameter—skewness:

SKEWNESS =
M∗3(
M∗2
)3 , (10)

Spectrum flattening measure parameter—kurtosis:

KURTOSIS =
M∗4(
M∗2
)2 , (11)

The selection of the vibration signal parameters was related to the nature of the exam-
ined diagnostic problem: both in the time domain and in the frequency domain. The rms,
peak, and crest factor parameters give information about the energy carried by the working
joint. The frequency parameters M0, M1, and M2 inform the distribution of frequency
components: the center of gravity of the spectrum and the measure of dispersion from this
center. On the other hand, the skewness parameter informs the asymmetry of the spectrum
shape; if it is clearly different from 0, then the examined spectrum shape is asymmetrical
(for comparison, the normal distribution is symmetrical). If the kurtosis parameter is
clearly different from 0, then the examined shape of the spectrum is either more flattened
or slender compared to the normal distribution. The proposed parameterization will serve
as input data for the development of statistics in at least three stages of rehabilitation of
patients with temporomandibular joint disorders. This type of approach was used in earlier
research [1,46,47] relating to technical or medical assessments and diagnostics.

Electromyography (sEMG) time signals are very difficult to interpret. Therefore,
there are many approaches to representing them in the literature. In the evaluation of
muscle activity, studies show that better results are obtained with the energy approach.
On the other hand, frequency analyses are also used (often in the analysis of muscle
fatigue) [48–50]. Some of the most common parameters are rms (root mean square) and the
mean of the absolute value of the sEMG signal [49,51]. Therefore, these two parameters
were used in this study. The sEMG signal level is influenced by a number of factors, such as
the psychophysical state (including skin conductivity) or the quality of skin preparation [52].
Consequently, a comparison of signals recorded on different days cannot be used. Therefore,
the values are used in relation to the value obtained during the maximum contraction or
the so-called MVC (maximum voluntary contraction) [53]. In our case, it was the maximum
compression of the jaw without and with rollers placed between the molars. The test was
performed without rollers in order to find clicks during maximum intercuspation and
to assess maximum tension of the masseter muscles and, subsequently, was performed
with rollers placed between the molars to assess masseter muscle tone and find how the
deprogramming of the muscles changes the click or crepitation of the TMJ.

Additionally, frequency analyses were performed identical to those performed for the
vibration acceleration signal. This allowed for comparative analyses between vibration
signals and sEMG.

In the same was as the sEMG measurements, for acceleration, a 0.5 s time window
shifted continuously (every one sample) in order to find the maximum rms values was
used. That window served to obtain rms values and the mean of the absolute values as
well as spectral parameters.

2.4. State Recognition

Using the presented measurement system, a study was conducted on a group of fifteen
people (ten women and five men). Ten of the subjects were classified by the doctor as
patients with TMD (unhealthy people) and the remaining five as healthy. The mean age
of all people was 29.6 (±9.63) years (minimum and maximum age was 20 and 43 years).
All of the unhealthy people had temporomandibular joint crackles. Eight of them were
accompanied by crepitations and bruxism and seven had headaches associated with TMD.
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Two unhealthy people were also diagnosed with polyarticular flaccidity and one unhealthy
person had limited range of joint mobility.

In the research material of this paper, we can distinguish the division of subjects into
two groups: healthy people and unhealthy people. These subjects were described by a
feature vector, obtained as a result of parameterization of the signal, which is an element
of the k-dimensional feature space. Using the k-nearest neighbors (k-NN) method, it was
decided to test the effectiveness of automatic classification of people into healthy and
unhealthy.

The k-NN method is a minimum-distance method. This means that it checks the
distance between the tested vector and the patterns of a given class in the feature space.
Such a classifier may use different types of metrics, such as Euclidean or Chebyshev [54].
The task of the k-NN classifier is to check for which class the number of elements in the set
of k closest objects to the classified vector is the largest. The distance d between objects in
the most frequently used Euclidean metric is expressed is the relation:

d(x, y) =

√√√√N−1

∑
i=1

(xi − yi)
2 (12)

where N—number of dimensions of the feature vector and x, y—analyzed feature vectors.

3. Results
3.1. Rehabilitation Progress

The results of the proposed system are shown in an example study performed in
three stages of treatment of one patient. The following set of results includes: comparisons
for four tests performed during three periods (the 1st before therapy; the 2nd at an early
control visit, i.e., 3 months after therapy and before the pandemic; and the 3rd at 14 months
after therapy and during the pandemic). The tests performed include slow opening (SO)
three times, fast opening (FO) three times in each direction, opening with protruding (OP)
the mandible and returning to the rest position, and slow protruding (SP) three times. Such
a presentation of the results is intended to show the potential of monitoring the progress of
treatment and rehabilitation of patients suffering from TMD.

The analysis of peak and rms parameters indicate that the right temporomandibular
joint was more active than the left one (Figure 6). In the case of both fast and slow protrusion
abduction, a linear increase in the value of these parameters was detected in subsequent
follow-up examinations. In an attempt to abduct from protrusion, there was a large
increase in the amplitude of vibrations between the first and second period, which may
indicate unblocking of the articular disc as a result of using the reposition and relaxation
splint, and then a decrease for the third period due to the reduction in the frequency of
physiotherapeutic procedures caused by the COVID-19 pandemic. For protrusion, there
was a slow, relatively large increase in the amplitude of vibrations between periods 1 and 2,
followed by another amplitude increase in the late control visit (period 3), which may have
been related to the limited possibilities of physiotherapy and splint therapy sessions due to
the COVID-19 pandemic. The analysis of the crest factor parameter showed an increase in
its value in the 3rd period in relation to the 1st and 2nd periods, where it was comparable.
There was a greater than 10-fold difference in the peak rms value in the 3rd period. This
directly suggests a correlation between an increase in dynamics (range) between the peak
value of the click and the remaining work energy of the joint. The analysis of the spectral
moments showed that the center of gravity of the spectrum decreased for the left side,
from approximately 800 Hz to approximately 200 Hz. However, for the right side, it was
approximately 200 Hz.
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Figure 6. Time domain results of vibration signals (left and right side)—energy parameters
(max-median-min). SO (slow opening), FO (fast opening), OP (opening with protruding),
SP (slow protruding).

The analysis of the parameter of spectral width square depicted the nature of the click
(Figure 7). Its high value suggests the flat nature of the spectrum, i.e., a crack that resembles
a distinct impulse. The unit jump spectrum was perfectly linear. As can be seen from the
data presented in Figure 8, a clear impulse (click) during the movement of the joint in the
case of the first period was detected bilaterally. This supports the hypothesis that there is
an effect related to activation (unblocking of the articular disc after the 1st period (during
regular controlled splint therapy and physiotherapy). This fact was further confirmed
by the spectral analysis presented in Figures 9 and 10. The values of the parameter in
three subsequent tests decrease by more than 20 times. An analysis of the spectrum
shape parameters (skewness and kurtosis) seems to be justified only when studying a
representative control group and the full group of patients.
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In the case of muscle activity testing by sEMG, the MVC parameter was used (com-
puted as a reference value to the maximum value of the determined value for each mea-
surement series). For the patient’s left side for all performed test exercises (SO, FO, OP, and
SP) an increase in the MVC value between periods 1 and 2 (controlled therapy and exercise
of the patient) and a decrease between periods 2 and 3 (lack of therapy and exercise due
to the COVID-19 pandemic) could be noticed. The MVC changes can be interpreted in
two ways:

• Periods 1 and 2: the muscle worked at the same level of activity during the exercise but
a lower maximum value was obtained during tooth clenching (as a result of muscle
relaxation due to regular splint therapy and physiotherapy).

• Periods 2 and 3: there was an increase in muscle activity during maximum contraction
(higher maximum value) thus a relative decrease in muscle involvement in the exercise.
The reason may have been the lack of availability of physiotherapy and limitations
related to splint therapy during the COVID-19 pandemic.

In the case of the signal representing the sEMG muscle activity on the right side,
the changes were not as consistent: fluctuations of the obtained values oscillated around
20–30% of the MVC for SO, FO, and OP exercises for all three periods. The exception was
the SP exercise for which the recorded value increased during the periods, which was most
likely related to the reconstruction of the articular disc due to the difficulty in translating
into the articular tubercle. The graphs illustrating the discussed phenomena are presented
Figure 11.

Figure 7. Frequency domain results of vibration signals (left and right side)—spectral shape pa-
rameters (max-median-min). SO (slow opening), FO (fast opening), OP (opening with protruding),
SP (slow protruding).
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Figure 8. Frequency domain results of vibration signals (left and right side)—spectral moments
(max-median-min). SO (slow opening), FO (fast opening), OP (opening with protruding), SP (slow
protruding).

Figure 9. Average spectrum of slow opening (SO)—left side: 1st, 2nd, 3rd period.
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Figure 10. Average spectrum of slow protruding (SP)—left side: 1st, 2nd, 3rd period.

Figure 11. MVC of sEMG signals. Top row: left and right side (max-median-min); bottom row: the
quotient of the left and right sides (mean). SO (slow opening), FO (fast opening), OP (opening with
protruding), SP (slow protruding).

A different approach may be an interesting observation. It seems reasonable to assume
that in a properly working temporomandibular system, the load on both sides of the left and
right sides should be symmetrical, and the differences should certainly not be significant.
In the analyzed case, symmetry is indicated by the bottom graph (Figure 11). A value
close to 1 is an ideal situation (the left and right joints are loaded identically). Any number
less than 1.0 means the dominance (greater load) of the right joint, a value greater than
1.0 signifies the dominance of the left joint. Looking at both sides in this way, it can be
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noticed that, for SO and FO exercises, there was a change in the direction of symmetry
between the first and second periods (as expected). A lack of therapy and exercise between
periods 2 and 3 led to a return to dysfunction of the joints, putting more stress on the
right joint. In the case of the other two exercises, the results are inconclusive (unfavorable
changes for OP and a continuous decrease for SP).

The individual results of the measurements of the maximum voluntary contrac-
tion were lower each time during subsequent periods (left side: 1 = 272 µV, 2 = 210 µV,
3 = 195 µV; right side: I = 243 µV, II = 137 µV, III = 56 µV). Based on the research [53], which
showed a very high variability between sEMG measurements at intervals of days, it did not
necessarily indicate a gradual weakening of the muscle because too many factors affected
the level of the measured signals. However, it allowed for the visualization of changes
taking place in the signal and may be useful for the initial selection of the parameters of the
conditioning system.

On the practical side, the procedure of designating MVC (maximum contraction value)
of the examined muscles may turn out to be crucial, influencing the obtained test results. It
is worth noting that during the studies conducted thus far (including unpublished results
of several patients), it often happened that the MVC occurred during different exercises
(e.g., for the left side while clenching without rollers and for the right side while clenching
with rollers). This may be due to the fact that the rollers deprogram the muscles of the
masticatory system, preventing the possibility of maximum intercuspation and maximum
contraction of the masseter muscles. Therefore, it is advisable to perform both tests (with
and without rollers) each time in order to obtain a reliable maximum value.

Vibration (acc) and electromyographic (EMG) phenomena during the tests (SO, FO,
OP, and SP) should be related to each other. For example, muscle activity (EMG) may
increase due to the force that must be exercised to overcome the resistance of the disc
with a simultaneous strong vibration impulse (acc) at the time of overcoming them and
translation in the joint. Therefore, a comparative analysis of the obtained results for these
two types of signals was performed. These analyses were carried out separately for each of
the tested tasks as each of them activated the masticatory muscles and TMJ movements
in a different way. It should be noted that when comparing the repeatability of these
two types of signals, the EMG signals are characterized by a greater dispersion when the
patient performs the same task (test exercise). The fact that not each of the tasks generated
characteristic vibration waveforms meant that, in a few cases, a similar phenomenon was
observed in the change of the vibration level and muscle load.

An example of a compliance of parameter changes was the left side for the OP test
(opening with protruding) (Figure 12). In this test, similar changes in the level of vibrations
generated by the joint and the load on the muscles could be observed, which could have
been caused by the partial blockage of the disc in this joint in the initial clinical examination
(increase and then decrease). These changes do not coincide any more for the right side. For
period 2, we see an vibration increase compared to period 1, with a simultaneous muscle
activity decrease.

Figure 12. Comparison of acceleration and EMG signals for OP (opening with protruding).
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We can assume that a properly working joint should be characterized by symmetry
both in the case of vibrations and muscle load. A comparative analysis of both sides was
performed by introducing the index calculated as the quotient of the signal level recorded
for the left side to the signal level recorded on the right side. A value close to 1 is an
ideal situation (the left and right joints are loaded identically). Any number less than
1.0 means the dominance (greater value) of the right joint, a value greater than 1.0 signifies
the dominance of the left joint.

While in the case of OP (opening with protruding) there are significant differences
in terms of values between the vibration and the load on the muscles (EMG), the changes
taking place during the visits or periods are consistent. For Period 2, there is a noticeable
increase in the percentage of the left side compared to the previous state (Period 1), and
then a decrease to the level close to the baseline (Figure 13 left).

Figure 13. Acceleration (blue bar) and EMG signals (orange bar) ratio for OP (opening with protrud-
ing) and SP (slow protruding).

In the case of SP (slow protruding), the recorded signals behave inversely proportional
(Figure 13 right). In the case of vibrations, the dominant role of the right side changes over
the course of visits to a dominance of the left side, which may be related to the deformation
of the left joint disc. The opposite situation occurs for the registered muscle load (EMG):
the dominance of the left side during Period 1 (value > 1) is significantly weakened, leading
to the balance between the right and left side (value close to 1) due to the conducted
myotherapy in the form of splint therapy, physiotherapy, and autotherapy.

Figures 6–8 and 11 present the change of vibration and EMG signal parameters during
the rehabilitation process. In order to check the statistical significance of differences between
individual stages of rehabilitation, statistical tests were performed for them (assumed
p = 0.05). Among others, due to a small number of samples, the vast majority of tested
groups were not characterized by normal distribution, so a non-parametric sign test was
used (H0—no statistically significant differences between the tested groups). A test of the
difference between the results for period 1 vs. period 2 and period 1 vs. period 3 for four
exercises in total (SO, FO, OP, and SP) was performed. A sign test (equivalent to Student’s
t-test) was used, which is a non-parametric test for dependent variables (the study involved
the same patient).

Table 1 shows the results, where A means acceptance of hypothesis H0 (there is no
statistically significant difference between the tested groups) and R means acceptance of
alternative hypothesis H1 (there is statistically significant difference).

In Table 1 each parameter was compared independently in Period 1 (before treatment)
vs. Period 2 (early control) and Period 1 vs. Period 3 (late control); differences of Period 2
vs. Period 3 were not investigated due to the specificity of this patient (interrupted re-
habilitation under specialist care due to COVID-19). The aim was to see if the proposed
parameterization of the vibration and EMG signal carried diagnostic information about
the progress of rehabilitation (before and after rehabilitation). Therefore, a comparison of
Period 2 vs. Period 3 would not be meaningful for this case (too long a break in contact
with the specialist due to COVID-19).
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Table 1. Statistical significance of differences between the individual stages of rehabilitation (R—there
is a difference, A—there is no difference).

Left Side Right Side

Period

1–2 1–3 1–2 1–3

VIB

MAX R R A R

RMS R R A A

CF A R A R

M0 R R A A

M1 R A A A

M2 R A A A

SKEWNESS A A A R

KUROSIS A A A R

EMG MVC_RMS R A A A

The tests show that significant statistical changes between periods 1 and 2 and 1 and 3
occur for only the left side for the vibration parameters MAX, RMS, and MO. For the CF
parameter, on the other hand, the difference occurred only between periods 1 and 3 (for
both sides). For the M1 and M2 parameters, only between periods 1 and 2 for the left side
was a statistically significant difference observed. For M1 and M2 parameters, there was no
statistically significant difference between periods 1 and 2 and 1 and 3 (left side). For the
MVC_RMS signal there are differences only between periods 1 and 2 for the left side.

For the right side there are only differences between periods 1 and 3 for parameters
MAX, CF, SKEWNESS, and KURTOSIS.

The large variation in the above results confirms the impossibility of univocal inference
based on the presented data. Studies on a larger statistical group are necessary.

3.2. k-NN Recognition

Using the k-nearest neighbors method, it was decided to test the effectiveness of
automatic classification of the people described in Section 2.4 into healthy and unhealthy
recognition. For the vibration signal, the feature vector was formed by the statistical
parameters described in Section 2.3:

VnL/nR = 〈EX, NUM, REC, PEAK, RMS, CREST, M0, M1, M2, SKEWNESS, KURTOSIS〉

where n is the identification number according to the database of healthy and unhealthy
people; L is the left side of the face; R is the right side of the face; EX is the name of the
exercise, such as SO (slow opening), FO (fast opening), OP (opening with protruding), or
SP (slow protruding); NUM is the exercise repetition number; and REC is the recognition
of healthy or unhealthy.

Examples of vibrational signal features vector from the database are shown in Table 2.
For the EMG signal, the feature vector was formed by the pairs of MVC changes for

the left and right sides:

EnL/nR = 〈EX, NUM, REC, MVC〉

where n is the identification number according to the database of healthy and unhealthy
people; L is the left side of the face; R is the right side of the face; MVC is the maximum
voluntary contraction; EX is the name of the exercise, such as SO (slow opening), FO (fast
opening), OP (opening with protruding), and SP (slow protruding); NUM is the exercise
repetition number; and REC is the recognition of healthy or unhealthy.
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Table 2. Examples of vibrational signal features vector.

EX NUM REC PEAK RMS CREST M0 M1 M2 Skewness Kurtosis

V1L SO 2 uh 7.3 1.2 5.9 7.1 637 1,176,830 5.8 39.4

V1R SO 2 uh 13.8 2.3 6.1 5.0 211 102,890 6.1 46.2

V1L FO 2 uh 8.8 1.0 8.5 3.5 302 211,548 5.2 33.9

V1R FO 2 uh 1.8 0.3 5.8 1.7 321 345,269 5.9 40.8

V1L OP 2 uh 0.1 0.02 4.5 0.1 574 1,295,310 8.3 74.4

V1R OP 2 uh 3.2 0.3 11.6 1.5 463 442,047 3.7 19.2

V1L SP 2 uh 0.03 0.01 3.1 0.06 807 1,670,840 11.3 164.4

V1R SP 2 uh 0.05 0.01 3.6 0.04 995 214,817 8.9 89.8

V11L SO 3 h 0.07 0.01 6.8 0.04 1329 2,495,700 10.9 144.7

V11R SO 3 h 0.04 0.01 2.9 0.04 1374.3 2,525,430 8.4 82.0

V11L FO 3 h 0.03 0.1 2.8 0.03 1362.9 2.51 × 106 13.5 218.4

V11R FO 3 h 0.16 0.03 4.7 0.24 453.7 743,576 6.14 49.6

V11L OP 3 h 0.06 0.01 3.8 0.04 869.4 1.96 × 106 10.2 116.7

V11R OP 3 h 0.1 0.02 4.7 0.2 424.3 1.0 × 106 9.8 111.8

V11L SP 3 h 0.02 0.01 2.0 0.02 1353.8 2.5 × 106 12.7 190.1

V11R SP 3 h 0.03 0.01 2.6 0.05 972.9 2.07 × 106 11.1 141.7

Examples of EMG signal features vector from the data base are shown in Table 3.

Table 3. Examples of EMG features vector.

EX NUM REC MVC

E1L SO 2 uh 11.51

E1R SO 2 uh 2.90

E1L FO 2 uh 12.60

E1R FO 2 uh 3.31

E1L OP 2 uh 43.69

E1R OP 2 uh 11.28

E1L SP 2 uh 40.68

E1R SP 2 uh 9.75

E11L SO 3 h 12.71

E11R SO 3 h 7.67

E11L FO 3 h 12.38

E11R FO 3 h 7.50

E11L OP 3 h 26.03

E11R OP 3 h 10.32

E11L SP 3 h 24.44

E11R SP 3 h 6.63

Tables 4 and 5 show the results of the classification efficiency of both signal types
for the four previously presented exercise types (slow opening (SO), fast opening (FO),
opening with protruding (OP), and slow protruding (SP)). Table 3 contains calculations
made on the vectors of common and disjointed features obtained in the vibration and EMG
signal separately for each exercise. Table 5 contains variants of calculations taking into
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account two tests, giving the best results and the worst results in the studies presented
in Table 4.

Table 4. Effectiveness of k-NN classification.

Effectiveness of Classification [%]

Slow Opening (SO) Fast Opening (FO) Opening with Protruding (OP) Slow Protruding (SP)

VIB EMG VIB EMG VIB EMG VIB EMG

76.6 62.5 82.1 68.7 71.1 75.0 73.6 62.5

VIB + EMG VIB + EMG VIB + EMG VIB + EMG

62.1 85.3 79.1 56.3

Table 5. Effectiveness of k-NN classification.

Effectiveness of Classification [%]

Slow Opening (SO) + Slow Protruding (SP) Fast Opening (FO) + Opening with Protruding (OP)

VIB EMG VIB EMG

79.8 54.7 84.3 63.3

VIB + EMG VIB + EMG

63.6 85.9

From the results presented in Tables 4 and 5, it can be concluded that, for the feature
vectors used, the classification performance ranged from 54.7% to 85.3%.

What should be noted is that the use of combining vibration and EMG parameters
for exercises FO and OP improved the effectiveness of classification in relation to the
recognition based separately on the vibration signal and EMG. As can be seen from the
results presented in Table 4, it is advisable to use the classification based on these two
exercises, fast opening (FO) and opening with protruding (OP), and to jointly use the
vibration and EMG parameters. The expected result of the classification is at a level
of 85.9%

The obtained values are not high; therefore, further work is being planned to acquire
research material (further measurements of patients) and to test estimators that allow for
the determination of new feature vectors.

4. Discussion

Temporomandibular joint disorders are a growing health problem in contemporary
society and include a group of complaints related to pain in the muscles of mastication,
headaches, abnormalities of mandibular movements, and pain and sound phenomena
generated in the joints during mandibular movements. The classic diagnosis of temporo-
mandibular joint dysfunction is based on imaging evaluation—X-ray, magnetic resonance,
or computed tomography—performed by radiology specialists.

This paper presents the results of research conducted on the objective and non-invasive
assessment of temporomandibular joint function using surface electromyography (sEMG)
and analysis of vibrations generated during mandibular movement. A measurement
system was developed for the purpose of the study, consisting of a hardware module for the
acquisition of vibration accelerations and sEMG signals, along with proprietary software for
analysis and evaluation of these signals in correlation to video images recorded within the
mandible during a protocol-determined test. Few attempts to use temporomandibular joint
function assessments (especially locking of the articular disk of the temporomandibular
joint) based on acoustic, vibration, or EMG signal have been presented in diagnoses and
evaluation of rehabilitation treatment [16–19,27,30,55–57]. However, the literature reports
do not indicate the combination of these methods along with a new parametric assessment
approach [25,29,45,58]. Several studies [59–61] have concluded that the clinical use of the
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sEMG method in the diagnosis of TMD has limited value and reported problems with
the reliability and reproducibility of sEMG. In our opinion, combining the vibroacoustic
method with sEMG seems to be one of the most objective, noninvasive methods to analyze
and monitor TMD treatment in terms of displacement of the articular disc. The synchronous
combination of measurements gives a more reliable assessment of mandibular activity and
function. The limitation of using sEMG is the difficulty of assessing muscle activity after the
application of immediate physiotherapy, which would require the removal of the electrodes,
performing the therapy, and then replacing them, which may involve the exclusion of
the area of electrode application before the therapy. The first preliminary analyses of
the application of both types of signals do not allow for unambiguous assessment of
their usefulness.

The k-nearest neighbor method for analyzing the parameters separately yielded results
ranging from 62.5% (a low result that does not allow the clustering to be used as a method
in practice) to 82.1% (an acceptable result for screening diagnostics). It is promising that,
in the case of building a classifier based on both types of signals (vibration and EMG), an
improvement in classification performance was obtained in some of the completed tests.
An example is the opening with protruding (OP) exercise, where for each of the signals
analyzed independently, 71.1% and 75.0% effectiveness were obtained, respectively, while
the combined classification allowed an increase of 79.1% effectiveness. In addition, for
fast opening (FO) the recognition efficiency after data fusion increased by several percent
(from 73.6% to 85.3%). For the remaining exercises (slow opening (SO) and slow protruding
(SP)), the results were not as promising. Thus, this indicates a significant variation in the
information contained in the signals from different exercises.

Interesting results were also obtained for classification using parameters from two
types of exercises performed simultaneously (Table 2). This procedure allowed the increase
in the effectiveness of classification compared to the results obtained for each of the exercises
separately. It is worth noting, however, that this increase was not spectacular. For example,
in the case of fast opening (FO) and opening with protruding (OP) exercises, a slight
increase in efficiency was obtained for both separate analysis of acceleration and EMG and
for the analysis performed using both types of signal simultaneously. Nevertheless, on the
basis of the analyses performed, it can be concluded that it is advisable to use claudication
based on two (or more) exercises in order to increase the classification efficiency.

In conclusion, the presented results show that the use of signals from fast opening (FO)
and opening with protruding (OP) exercises allows us to obtain the highest classification
efficiency. The higher effectiveness of fast exercises in comparison to slow ones may be
associated with greater muscle activation during their execution. The faster execution
of a movement is associated with a shorter execution time and therefore greater muscle
activation in a shorter period of time. This facilitates the analysis and separation of the
EMG signal from the resting state (for some slow exercises this difference was very small).
In addition, simultaneous relative classifiers from vibration and EMG signals together
allow an increase in the classification efficiency. Furthermore, combining the classifiers
from both exercises as well as from the signals (vibration and EMG) allows for a slight
increase in the effectiveness of the applied classification method.

The vibration description and EMG signal parameters used in the presented analyses
were chosen based on the authors’ experience. In this study, they were all used as a
feature vector for the k-NN method. In the future, in order to minimize the feature
vector, additional analyses should be performed to exclude features that carry the same
or redundant information (for this purpose, among others, correlation techniques can
be used).

It should be emphasized that the presented classification results were determined for
k = 1. This is important because, in many cases, the application of the k-NN method for
a larger number of k gives better results. Therefore, this is an element that will certainly
be taken into account in future research. Additionally, we assume that effectiveness can
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also be increased with the use of other classifiers and by increasing the amount of data to
be analyzed.

A practical application of this study is presenting to the patient the correlation be-
tween excessive muscle tension and acoustic sensations, which may contribute to better
awareness of the problem and implementation of early diagnosis and prevention of seri-
ous consequences such as blockage of the TMJ disc as well as degenerative changes on
the surfaces of the temporomandibular joints. It can help in justifying the importance of
physioprophylaxis of TMD disorders and implementing rehabilitation as early as possible.
However, further research on outcomes, safety, and long-term quality of life data with the
application of randomized controlled trials is recommended. Such research is currently
being conducted by the authors.

Limitations

The main limitation in inference was the small statistical group. The authors are in the
process of collecting a large statistical group of TMD sufferers and non-TMD sufferers so
that a strong statistical analysis of the obtained research results is possible. In particular,
we aim to assess the validity of the assumed feature space, including feature correlations
and thus redundancy of information. Another limitation was showing the results for only
one classification method: k-NN. The results obtained so far are promising and indicate
the validity of other methods. The authors would like to emphasize that the purpose of
this paper was to show the possibility of combining several measurement techniques to
evaluate TMD.
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