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Abstract: To solve the problem of inflexibility of offline hand–eye calibration in “eye-in-hand” modes,
an online hand–eye calibration method based on the ChArUco board is proposed in this paper.
Firstly, a hand–eye calibration model based on the ChArUco board is established, by analyzing the
mathematical model of hand–eye calibration, and the image features of the ChArUco board. According
to the advantages of the ChArUco board, with both the checkerboard and the ArUco marker, an online
hand–eye calibration algorithm based on the ChArUco board is designed. Then, the online hand–eye
calibration algorithm, based on the ChArUco board, is used to realize the dynamic adjustment of the
hand–eye position relationship. Finally, the hand–eye calibration experiment is carried out to verify
the accuracy of the hand–eye calibration based on the ChArUco board. The robustness and accuracy
of the proposed method are verified by online hand–eye calibration experiments. The experimental
results show that the accuracy of the online hand–eye calibration method proposed in this paper is
between 0.4 mm and 0.6 mm, which is almost the same as the offline hand–eye calibration accuracy.
The method in this paper utilizes the advantages of the ChArUco board to realize online hand–eye
calibration, which improves the flexibility and robustness of hand–eye calibration.

Keywords: hand–eye calibration; ChArUco board; robot

1. Introduction

The application of industrial robots has greatly improved the production efficiency
and product quality of enterprises [1,2]. However, the traditional working methods of
industrial robots have been unable to meet the increasing production demand. Industrial
robots equipped with vision sensors perceive the surrounding environment through image
processing technology, which improves the “flexibility” of robot operations, and enables
robots to complete more complex production tasks [3–5]. Hand–eye calibration is an
indispensable part of the visual servo operation of the robot, which is an important bridge
between the robot and the vision sensor. Hand–eye calibration is the process of solving
the coordinate transformation relationship between the camera coordinate system and the
robot coordinate system. The accuracy of hand–eye calibration directly affects the accuracy
of the robot operation. For the research of hand–eye calibration, scholars have proposed
many theories and methods. Wu et al. [6] and Yang et al. [7] solved the hand–eye problem
by tracking the position of the calibration ball in 3D camera and the movement trajectory
of the robot. Chen et al. [8] and Wang et al. [9] calibrated the relationship of the position
between the camera and the calibrator by identifying the feature points of the 3D calibration
object, and solved the hand–eye matrix through the corresponding posture of the robot.
Although the hand–eye calibration method based on 3D calibrators is one of the most
effective ways to solve the hand–eye matrix, the processing of 3D data consumes a lot of
time, and the quality of the 3D point cloud has absolute influence on the calculation results.

Compared with the hand–eye calibration method based on the 3D calibrators, the
hand–eye calibration method based on 2D images is more widely used. Since the feature
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points of the checkerboard pattern are easy to detect, most of the classical hand–eye cali-
bration theories use it as the calibrator [10–12]. In recent years, other scholars have carried
out research on hand–eye calibration methods based on the checkerboard. Deng et al. [13]
proposed a hand–eye calibration method based on a unit octonion, and verified the effec-
tiveness of the method using a camera and a checkerboard. Lee et al. [14] designed an
automatic hand–eye calibration system based on a checkerboard calibration. In addition,
as an image coding technique, an ArUco marker is often used for hand–eye calibration.
Huang et al. [15] adopted the hand–eye calibration method, based on using ArUco markers
and the support vector machine (SVM) detection method, to identify specific objects to
realize flexible grasping of the robot. Feng et al. [16] realized the robot’s autonomous
assembly and scanning was based on vision guidance, by using the hand–eye calibration
method based on the ArUco marker. The black and white interlaced pattern features of
the checkerboard make the feature points easy to identify. However, when the checker-
board target is occluded, or the lighting conditions are poor, the pose of the calibration
board is difficult to recognize. ArUco markers have the advantages of rapid detection and
flexibility. However, the detection accuracy of the ArUco marker in corners is not very
high. Furthermore, most hand–eye calibration algorithms are performed offline. When the
relative position of the camera and the robot changes, the hand–eye calibration often needs
to be reperformed.

To solve these problems, an online hand–eye calibration method based on the ChArUco
board is proposed in this paper. The ChArUco board is a combination of an ArUco marker
and a checkerboard, and possesses the advantages of both. The ChArUco board rectifies the
shortcomings of the ArUco marker’s poor positioning accuracy by using the high sub-pixel
detection accuracy of the checkerboard corners of the calibration board, and solves the
problem of the poor anti-interference of the checkerboard through the unique encoding of
the ArUco marker. Based on the detection advantages of the ChArUco board, this paper
designs a closed-loop feedback adjustment system for the robot to realize online hand–eye
calibration of eye-in-hand mode.

The other parts of the paper are arranged as follows: Section 2 introduces the principle
of hand–eye calibration and the ChArUco board; Section 3 describes the online hand–eye
calibration method, based on the ChArUco board; Section 4 verifies the accuracy and
feasibility of the method proposed in this paper; finally, Section 5 summarizes the work of
this paper, and looks into future research issues.

2. Hand–Eye Calibration and ChArUco Board

The purpose of hand–eye calibration was to calculate the coordinate transformation
relationship between the camera coordinate system, and the robot coordinate system, that
is, to solve the rotation matrix R and the translation vector t. The essence of hand–eye
calibration was to solve the problem of AX = XB [17–19]. Hand–eye calibration was divided
into eye-in-hand and eye-to-hand modes, as shown in Figure 1. As shown in Figure 1b, the
relative position of the robot base and the calibration board was unchanged, as was the
relative position of the camera and the robot end. According to multiple sets of known
invariants, the hand–eye calibration matrix could be solved.

As shown in Formula (2), the hand–eye calibration matrix could be solved through
the calculation of the robot pose transformation, and the camera extrinsic parameters.

bT(1)
g · gTc · cT(1)

t = bT(2)
g · gTc · cT(2)

t (1)

(bT(2)
g )

−1
· bT(1)

g · gTc =
gTc · cT(2)

t · (cT(1)
t )

−1
(2)

Let (bT(2)
g )

−1
· bT(1)

g = A, cT(2)
t · (cT(1)

t )
−1

= B, gTc = X, then:

AX = XB (3)
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where bTg represents the homogeneous matrix of the robot end coordinate system, rela-
tive to the robot base coordinate system; cTt represents the homogeneous matrix of the
calibration board coordinate system, relative to the camera coordinate system; gTc repre-
sents the homogeneous matrix of the camera coordinate system, relative to the robot end
coordinate system.
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Figure 1. Two hand–eye calibration modes: (a) Eye-to-hand; (b) Eye-in-hand. Where Base represents
the base coordinate system of the robot; Camera represents the camera coordinate system; and
Calibrator represents the calibration board.

According to the described mathematical model of hand–eye calibration, the solution
process of hand–eye calibration needed to obtain the homogeneous matrix cTt of the
calibration board coordinate system, relative to the camera coordinate system, that is, it
needed to calculate the external parameters of the camera. In this paper, the ChArUco
board was selected as the calibration object to calculate cTt.

ArUco markers have the advantages of flexibility and easy detection. However, the
ArUco marker has the problem that the detection accuracy of the edge corners is not high.
Even if sub-pixel processing is performed on the corner, the expected accuracy is still not
achieved. The black and white interlaced pattern of the checkerboard makes the corners easy
to detect. Unfortunately, the flexibility of the checkerboard is not as extensive as the ArUco
marker. When the checkerboard was used as a calibration object, the checkerboard needed to
be completely visible, and could be blocked. The ChArUco board possessed the advantages
of both the checkerboard and the ArUco marker. In addition, the ChArUco board ameliorated
the deficiencies of both. Figure 2 shows a schematic diagram of three calibration objects.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 13 
 

 

  
(a) (b) 

 

 

(c)  

Figure 2. (a) ArUco marker; (b) Checkerboard; and (c) ChArUco board. 

3. Online Hand–Eye Calibration Based on ChArUco Board 
As shown in Figure 3, when corner detection was performed on the ChArUco board, 

the corners of the checkerboard and the coding pattern were identified. According to the 
decoding information of the coding pattern, the positions of each corner of the calibration 
board could be sorted in an orderly manner. Even if the ChArUco board was partially 
occluded, it did not affect the order of the corners. 

  
(a) (b) 

Figure 2. (a) ArUco marker; (b) Checkerboard; and (c) ChArUco board.



Sensors 2022, 22, 3805 4 of 11

3. Online Hand–Eye Calibration Based on ChArUco Board

As shown in Figure 3, when corner detection was performed on the ChArUco board,
the corners of the checkerboard and the coding pattern were identified. According to the
decoding information of the coding pattern, the positions of each corner of the calibration
board could be sorted in an orderly manner. Even if the ChArUco board was partially
occluded, it did not affect the order of the corners.
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Figure 3. ChArUco board corner detection under different circumstances: (a) Corner detection under
normal circumstances; (b) Corner detection when corners are occluded; and (c) Corner detection with
intermediate occlusion.

As shown in Figure 4, it is the calculation result of camera extrinsic parameters under
different occlusion conditions of the ChArUco board. When the occluded area of the
ChArUco board was small, it did not affect the calculation results of the camera external
parameters. When the occluded area of the ChArUco board was too large, the external
parameters of the camera could not be calculated. However, some coding patterns and
checkerboard positions could still be recognized.

In addition, the pose of each recognizable encoding pattern on the ChArUco board
could be computed as if the pose of a single ArUco marker were recognized. Figure 5a
shows the pose of the ArUco marker in the camera coordinate system. Figure 5b shows the
pose of each recognizable coding pattern of ChArUco in the camera coordinate system.

Based on the detection advantages of the ChArUco board, this paper designed a closed-
loop feedback adjustment system for the robot to realize online hand–eye calibration. As
shown in Figure 6, in the case of the eye-in-hand, the camera could be seen as a “tool”
attached to the end of the robot. The “inaccurate” gTc was calculated by the robot-based
tool calibration method [20]. In addition, cTt could be calculated by the detection of the
ChArUco board. bTg could be obtained directly through the robot teach pendant. With the
above information, the approximate positional relationship between the ChArUco board
and the robot could be calculated.
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Figure 7 shows the online hand–eye calibration process, based on the ChArUco board.
Firstly, after the robot moved to the teaching posture, the camera captured the ChArUco
board calibration image. Then, it was judged whether the position of the calibration board
satisfied the condition by detecting the ChArUco board. If it was not satisfied, the robot
posture was automatically adjusted, according to the feedback of the ChArUco board
position information, and the above steps were repeated. Otherwise, the data were saved,
the posture of the robot adjusted, and the next teaching action was reached. When the
collected hand–eye calibration data met the requirements, the hand–eye calibration matrix
was solved.
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4. Experiments and Analysis

In this paper, Hikvision’s MV-CE050-30GM camera, FUJINON’s CF8ZA-1S lens and
ABB’s IRB2600-20 robot were used to build the experimental platform. The experimental
platform is shown in Figure 9. The camera was fixed on the end of the robot, and the
calibration board was fixed on the experimental table. Based on this experimental platform,
this paper tested the accuracy of the three calibration methods of the ArUco marker, the
checkerboard and the ChArUco board, and carried out an online hand–eye calibration
experiment based on the ChArUco board.
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Before the experiment, the internal parameters of the camera used in the experiment
were calibrated. The calculation results of camera internal parameters were as follows:

CameraMatrix =

 3797.467 0 1310.649
0 3801.126 923.535
0 0 1


DistCoeffs =

[
−0.1793 1.2373 −0.0014 0.0008 −7.1253

]
In this paper, 10 sets of hand–eye calibration independent experiments were carried

out, and 25 sets of hand–eye calibration data, based on the ArUco marker, the checkerboard
and the ChArUco board, were collected in each experiment. The calculation results of
camera extrinsic parameters for the three calibration methods are shown in Figure 10.
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board and the ChArUco board, were collected in each experiment. The calculation results 
of camera extrinsic parameters for the three calibration methods are shown in Figure 10. 
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Figure 10. (a) Calculation of camera external parameters based on ArUco Marker; (b) Calculation of
camera external parameters based on checkerboard; and (c) Calculation of camera external parameters
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Figure 11 shows the hand–eye calibration uncertainty, based on the ArUco marker,
the checkerboard and the ChArUco board. From the analysis of the experimental data, it
could be seen that the hand–eye calibration accuracy of the ArUco marker was the worst,
and compared with the checkerboard and the ChArUco board, the maximum deviation
was 1.5 mm. Compared with the checkerboard and the ChArUco board, the calibration
accuracy of the two was almost the same.
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Figure 11. Hand–eye calibration uncertainty: (a) x coordinate reprojection uncertainty; (b) y coordi-
nate reprojection uncertainty; and (c) z coordinate reprojection uncertainty.

In online hand–eye calibration experiments based on the ChArUco board, 10 sets of
online hand–eye calibration independent experiments were carried out. In a single set of
independent experiments, 25 sets of robot teaching actions were set, and the ChArUco
board was placed away from the center of the camera’s field of view. Figure 12 shows
the change of the camera angle of view, before and after the online hand–eye calibration
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experiment based on the ChArUco board. Through the code identification of the ArUco
marker on the ChArUco board, and the statistics of the identified code number, the position
of the ChArUco board and its proportion in the image could be determined. It can be seen
from the figure, that the posture recognition of the ChArUco board could be realized after
the robot adjustment, through closed-loop feedback.

In addition, as shown in Figure 13, this paper conducted uncertainty analysis on
10 sets of online hand–eye calibration experiments. It can be seen from the figure, that the
uncertainty of the online hand–eye calibration, based on the ChArUco board, is between
0.4 mm and 0.6 mm, which is almost the same as the accuracy of the offline hand–eye
calibration. The experimental results showed that the method in this paper effectively
solved the problem of online hand–eye calibration, and also ensured the stability of the
calibration accuracy.
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Based on the above experimental results, it can be seen that the online hand–eye
calibration method proposed in this paper could effectively solve the problem of online
hand–eye calibration, and had good performance in robustness and accuracy.

5. Conclusions

In order to reflect the practicability of this method, the performance of this method
was compared with the existing methods, and the results are shown in Table 1. The
methods of [21,22] could only obtain the position of the calibration plate in the image.
In the process of hand–eye calibration, the methods of [21,22] needed to ensure that the
calibration plate was visible as a whole, and the checkerboard feature points and circular
patterns could not be blocked. The ChArUco board used in this method could obtain the
position and posture of the calibration board, and had certain interference to the occlusion
situation. Therefore, the method in this paper had better flexibility in robot adjustment.
In the process of hand–eye calibration, the method in this paper had better robustness.
The feature point calculation process of the ChArUco board used in this paper was more
time-consuming, but the method in this paper was able to obtain the position and attitude
of the calibration board, which reduced the number of adjustments of the robot. The overall
time consumption was better than the methods of [21,22]. The method in this paper only
needed 0.5–2 s to complete a single valid hand–eye calibration datum. In addition, the
method in this paper had better flexibility and robustness, so that more effective hand–eye
calibration data could be collected under the same disturbance. Therefore, the accuracy of
hand–eye calibration would also be better.

Table 1. Performance comparison of online hand–eye calibration algorithms.

Methods Flexibility Robustness Time Consumption Accuracy

Reference [21] Low Bad High Low
Reference [22] Low Bad High Low
Our Method High Good Low High

Aiming at the problem of inflexible offline hand–eye calibration in eye-in-hand mode,
an online hand–eye calibration method based on the ChArUco board was proposed in this
paper. The method in this paper utilized the advantages of the ChArUco board, which has
the advantages of high sub-pixel recognition accuracy of the checkerboard corner, and the
strong flexibility of the ArUco marker, to realize the positioning of the calibration board.
The position relationship between the calibration board and the robot was established.
Then, the closed-loop feedback automatically adjusted the robot by detecting the position
of the ChArUco board in the image. Enough hand–eye calibration data were collected
by robot automatic control to complete online hand–eye calibration. In this paper, the
accuracy of hand–eye calibration based on the ChArUco board was verified by comparative
experiments. The robustness and accuracy of the method were verified by online hand–eye
calibration experiments.

In the current research of this paper, the influence of the hand–eye calibration caused
by the robot motion error was not considered. In future work, we will study the influence of
robot motion error on hand–eye calibration accuracy, and consider how to eliminate the in-
fluence of robot motion error. This will be an interesting and meaningful research direction.
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