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Abstract: In this paper, we study the two-dimensional direction of arrival (2D-DOA) estimation
problem in a switching uniform circular array (SUCA), which means performing 2D-DOA estimation
with a reduction in the number of radio frequency (RF) chains. We propose a covariance matrix
completion algorithm for 2D-DOA estimation in a SUCA. The proposed algorithm estimates the
complete covariance matrix of a fully sampled UCA (FUCA) from the sample covariance matrix of
the SUCA through a neural network. Afterwards, the MUSIC algorithm is performed for 2D-DOA
estimation with the completed covariance matrix. We conduct Monte Carlo simulations to evaluate the
performance of the proposed algorithm in various scenarios; the performance of 2D-DOA estimation
in the SUCA gradually approaches that in the FUCA as the SNR or the number of snapshots increases,
which means that the advantages of a FUCA can be preserved with fewer RF chains. In addition, the
proposed algorithm is able to implement underdetermined 2D-DOA estimation.

Keywords: 2D-DOA estimation; uniform circular array; covariance matrix completion; neural network;
deep learning

1. Introduction

Two-dimensional direction of arrival (2D-DOA) estimation is a critical issue in the
domain of array signal processing and has a wide range of applications such as wire-
less communication [1], sonar [2], radar [3], etc. Meanwhile, the uniform circular array
(UCA) is a widely utilized configuration in the context of 2D-DOA estimation due to its
attractive abilities, including covering 360° azimuthal space and providing elevation angle
information [4,5].

Several algorithms have been proposed to estimate DOAs using UCA such as the
UCA-RB-MUSIC algorithm, the UCA-ESPRIT algorithm [6] and the UCA-RARE algo-
rithm [7]. In the above algorithms, it is beneficial to use a large aperture array equipped
with multiple synchronized RF chains to avoid spatial aliasing. To strike a good balance
between hardware cost and estimation performance, sparse arrays have received signifi-
cant attention [8–14]. The coprime array proposed in [8] and the nested array proposed
in [10] can obtain O(MN) degrees of freedom (DOFs) with O(M + N) physical sensors.
The generalized sum and difference coarray (GSDC) proposed in [12] can obtain O(M2N2)
DOFs with O(M + N) sensors. Sparse nested arrays with a coprime displacement (SNACD)
algorithm [14] combine the properties of a nested array and a coprime array, which can
simultaneously obtain high-resolution DOA estimation and avoid the mutual coupling
influence. However, the above 1D-structured sparse linear arrays (SLAs) cannot perform
2D-DOA estimation.

Furthermore, the switching array equipped with fewer RF chains is a commonly
used array structure in the interferometer direction finding systems [15,16]. However,
these systems cannot estimate the DOAs of multiple sources simultaneously. To solve this
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problem, a covariance-matrix-completion-based spatial spectrum estimation method in
the switching array was proposed in [17,18]. The shift-invariant matrix completion (SIMC)
algorithm proposed in [19] performed DOA estimation by retrieving the missing entries of
the sample matrix with reasonable DOA estimation performance. Meanwhile, the SIMC
algorithm took advantage of the Toeplitz property of the covariance matrix sampled by a
linear array. However, the covariance matrix of UCA did not possess the Toeplitz property.
In addition, ref. [20] proposed a covariance matrix completion method for a nested sparse
circular array (NSCA), but it has the limitation that the elevation angle is fixed at 90°.

Strikingly, deep learning (DL) is a data-driven technology that does not rely on pre-
assumptions about array geometries and has low online estimation complexity. Hence, DL
technology has become a significant tool for DOA estimation [21,22]. In [23–25], the DOA
estimation problem was treated as a classification problem by discretizing the angular
domains in several sectors; however, the classification problem becomes intractable in
the context of multiple sources. Additionally, ref. [26] treated DOA estimation as an end-
to-end regression neural network (NN) by training five convolutional neural networks
(CNNs) with different configurations; yet the number of sources was set to one. Moreover,
an NN-based DOA estimator for systems with subarray sampling was presented in [27].
The authors used an NN to estimate the complete covariance matrix from its partial entries;
afterwards, the DOA estimation was implemented based on the completed covariance
matrix. However, Ref. [27] only considered 1D-DOA estimation in scenarios where the
number of sources is not greater than the number of RF chains.

As mentioned above, the challenge of performing 2D-DOA estimation in a SUCA has
not been well investigated so far. In this paper, we propose a deep feedforward network
(DFN)-based matrix completion algorithm to address the 2D-DOA estimation problem in
a SUCA. The proposed algorithm is named SUMC (switching UCA matrix completion).
The DFN accepts the sample covariance matrix of the SUCA as input, and the output of the
DFN is the completed covariance matrix. Afterwards, the MUSIC algorithm is performed
for 2D-DOA estimation with the completed covariance matrix. The major contributions of
this paper are threefold.

1. A SUMC algorithm is proposed to estimate the complete covariance matrix from the
sample covariance matrix of the SUCA, which means that fewer RF chains than anten-
nas are needed. Therefore, the proposed algorithm can be applied to underdetermined
2D-DOA estimation.

2. A 2D spatial spectrum search scheme based on the classical MUSIC algorithm is
performed to estimate the coupled elevation and azimuth angles.

3. Multiple 2D-DOA estimation simulations are carried out to demonstrate that the
proposed SUMC-based 2D-DOA estimator (SUMC estimator) is able to preserve the
advantage of a FUCA with fewer RF chains.

The rest of the paper consists of four parts. Section 2 formulates the signal model of 2D-
DOA estimation in a SUCA. Section 3 presents the proposed DFN framework. Section 4 car-
ries out simulations to demonstrate the predominance of the proposed algorithm. Section 5
concludes the whole paper.

Notations: Vectors are bold lowercase; matrices are bold uppercase. For example, a is
a vector and A is a matrix. Ai: denotes the i-th row of A; Aij denotes the (i, j)-th entry of A;
a[i] denotes the i-th entry of a. Superscripts (·)−1 , (·)∗ , (·)T and (·)H denote the inverse
operation, complex conjugate, transpose and conjugate transpose, respectively. Diag{·}
and tr{·} are diagonal matrix and trace operator, respectively. The notation 〈a, b〉 = aTb
represents the inner product of a and b; ‖a‖ =

√
〈a, a〉 is the l2-norm of a; |x|means taking

the absolute value of the real number x.

2. System Model

Consider D uncorrelated far-field narrowband sources from directions {θd, φd}D
d=1

impinging on a the FUCA consisting of NT identical antenna elements distributed over a
circle with radius R.
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The manifold matrix A of the FUCA is given by

A = [a(θ1, φ1), · · ·, a(θd, φd), · · ·, a(θD, φD)] ∈ CNT×D (1)

where
a(θd, φd) = [a1(θd, φd), · · · , an(θd, φd), · · · , aNT (θd, φd)]

T (2)

is the d-th steering vector, and

an(θd, φd) = ej 2πR
λ sin θd cos(φd−γn) (3)

is the phase difference between the array center and the n-th antenna element whose
angular coordinate is γn = 2(n−1)

NT
π.

Moreover, this system is equipped with NRF (NRF < NT) RF chains and a switching
network to sample the arriving signals. Notably, only the signals received by NRF selected
antennas are sampled at every time instant. As shown in Figure 1, we assume that each
RF chain is connected to exactly one antenna element at any time instant; meanwhile, we
design the following sampling scheme:

1. NL antennas are locked, which means these antennas are always connected to NL
RF chains;

2. NS (NS = NRF − NL) antennas are selected and connected to NS RF chains in
each switching;

3. The remaining ND (ND = NT − NRF) antennas are dumped, which means these
antennas are not connected to the RF chain in each switching.

𝛾𝑛

v4

Switching Antenna

Locked Antenna

Dump Antenna

X

Y

Z

𝒔𝒅(𝑘)
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6
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n
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NT－1

RF Chain
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5

6

7

n

NT

vND

－

Figure 1. System model.

After L (L = (NT −NL)/NS) switchings, all antennas of the SUCA are selected.
The label set of the switching antennas in the l-th switching is Sl , {pl

1, pl
2, · · · , pl

NS
};

the label set of locked antennas in a SUCA is L , {q1, q2, · · · , qNL}; the dump antennas in
the l-th switching are labeled as {vl

1, vl
2, · · · , vl

ND
}. Thus, the label set of switching antennas

in a SUCA can be expressed as

S = S1 ∪ · · · ∪ Sl ∪ · · ·SL. (4)

We try to recover the complete covariance matrix of the FUCA by jointly processing K
snapshots collected in each switching.
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The k-th snapshot in the l-th switching can be written as

x(l)(k) = G(l)(As(l)(k) + η(l)(k)), k = 1, 2, · · · , K (5)

where s(l)(k) = [s1(k), · · · , sd(k), · · · , sD(k)]T denotes the arriving signals, and η(l)(k) ∼
CN (0, σ2

ηINT ) is the additive white Gaussian noise with zero mean and σ2
η variance. The di-

agonal matrix G(l) ∈ {0, 1}NT×NT represents the connections between the RF chains and
antenna elements in the l-th switching, defined as

G(l)
i,i =

{
1, if i ∈ L∪ Sl

0, otherwise
(6)

Hence, the sample matrix received by the l-th switching is written as

Xl = [x(l)(1), · · · , x(l)(k), · · · , x(l)(K)] ∈ CNT×K. (7)

Afterwards, the L sample matrices are packed in X which is given as

X = [X1
... · · ·

... Xl
... · · ·

... XL] ∈ CNT×LK. (8)

Notably, the simultaneously sampled snapshots are able to construct the sample
covariance matrix. More specifically, each switching antenna collects only K snapshots,
but each locked antenna collects LK snapshots because the locked antenna is selected all the
time. Consequently, the sample covariance matrix R̂ of the received data can be estimated as

R̂i,j =
1

LK
Xi:XH

j: , i, j ∈ L (9a)

R̂i,j =
1
K

Xi:XH
j: , i, j ∈ S (9b)

R̂i,j =
1
K

Xi:XH
j: , i ∈ L, j ∈ S (9c)

R̂i,j =
1
K

Xi:XH
j: , i ∈ S, j ∈ L (9d)

For the purpose of illustrating the switching scheme clearly, the SUCA with NT = 10
antenna elements and NRF = 4 RF chains connected to NL = 2 locked antennas and NS = 2
switching antennas is shown in Figure 2. We lock the center antenna together with the
first antenna on the circle, and L = 4 switchings are conducted. Thus, the structure of the
covariance matrix R̂ in this switching scheme is plotted in Figure 3.

Similarly, the k-th snapshot received by the FUCA is written as

xC(k) = As(k) + η(k), k = 1, 2, · · · , K, · · · , LK (10)

where η(k) ∼ CN (0, σ2
ηINT ). Moreover, the complete covariance matrix of the FUCA is

calculated as

R̂C =
1

LK

LK

∑
k=1

xC(k)xC(k)H. (11)

Additionally, the 2D-DOA estimation can be conducted with the classical MUSIC
algorithm as follows

R̂C = ÛsΛ̂sÛH
s + ÛnΛ̂nÛH

n (12)

where Ûs and Ûn are the estimated signal subspace and noise subspace, respectively.
Accordingly, the 2D spatial spectrum is formed as

f (θ, φ) =
1

‖a(θ, φ)HÛn‖2
2

. (13)



Sensors 2022, 22, 3754 5 of 15

We try to recover R̂C by retrieving the missing entries of R̂. This is a tricky problem
because the covariance matrix of UCA does not have the Toeplitz property.
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Figure 2. Switching scheme: (a) the first switching; (b) the second switching; (c) the third switching;
(d) the fourth switching.
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Figure 3. Structure of R̂.

3. Deep Feedforward Network for Covariance Matrix Completion

In this section, we design the label and input of the proposed DFN and discuss the
network architecture and training strategy.

3.1. Data and DFN Architecture

To construct the input data x, we use the real and imaginary parts of the upper
triangular elements of the sample covariance matrix R̂ and arrange them into a real vector
in terms of
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x =[R̂1,1, R̂2,2, · · · , R̂NT ,NT , Re
{

R̂1,2

}
, Im

{
R̂1,2

}
,

Re
{

R̂2,3

}
, Im

{
R̂2,3

}
, · · · , Im

{
R̂NT−1,NT

}
, · · · ,

Re
{

R̂1,n

}
, · · · , Re

{
R̂NT−n+1,NT

}
· · · , Im

{
R̂1,NT

}
]

∈ RN2
T

(14)

where Re
{

R̂i,j

}
and Im

{
R̂i,j

}
denote the real part and the imaginary part of R̂i,j, respec-

tively. The vectorization of the upper triangular part of R̂ is shown in Figure 4.

d1
d2

dn

dNT

NT

NT

Matrix

Vectorization

d1 d2
dNTdn

Alternate arrangement of

real and imaginary parts

𝐝1
Re{𝐝2[1]}
Im{𝐝2[1]}

⋮
Re{𝐝2[𝑁𝑇 − 1]}

Im{𝐝2[𝑁𝑇 − 1]}
⋮

Re{𝐝𝑛[1]}
Im{𝐝𝑛[1]}

Re{𝐝𝑛[𝑁𝑇 − 𝑛 + 1]}
Im{𝐝𝑛[𝑁𝑇 − 𝑛 + 1]}

⋮
Re{𝐝𝑁𝑇

}

Im{𝐝𝑁𝑇
}

Figure 4. Vectorization of the upper triangular part of R̂.

Similarly, the label y is a real vector obtained by the vectorization of the upper triangu-
lar part of R̂C according to (14).

Our goal is to design a DFN D(·) that can estimate the complete covariance matrix R̂C
from R̂. Given R̂, the estimation of R̂C can be expressed as

R̂DFN = D(R̂; Θ) (15)

where Θ denotes the parameters of the network. The values of the parameters Θ are
learned via the offline training.

A sketch of the DFN architecture is shown in Figure 5. The DFN consists of one
input layer, one output layer and some hidden layers. The main design considerations for
network D(·) are to choose the depth of the network and the width of each layer. As a
consequence, we choose a fully connected, feedforward network with Nh = 5 hidden layers,
and each hidden layer is composed of Nu = 4096 neurons via experimentations guided by
monitoring the estimation error. Moreover, each hidden layer consists of a fully connected
(FC) layer and an active function.

Input Layer Output layer

4096 4096 4096 4096

2
TN

2
TN

st1 nd2 th4 th5

4096

rd3
Hidden Layers

Figure 5. Architecture of DFN.
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In the i-th FC layer, weights and biases are expressed by wi and bi, respectively.
Furthermore, the output vector of the i-th FC layer ŷi is defined as

ŷi = wixi + bi (16)

where xi is the input vector of the i-th FC layer.
Next, the output of the i-th FC layer is sent into the active function. Owing to the

nonlinearity of the active function, the DFN can fit arbitrary curves. We employ the Leaky
rectified linear unit (LeakyReLU), which is defined as

fLeakyReLU(x) =

{
x, if x > 0
λx, otherwise

(17)

where λ is a small constant. As a result, the output of the i-th hidden layer can be ex-
pressed by

xi+1 = fLeakyReLU(ŷi) (18)

where xi+1 is the input of the (i + 1)-th FC layer.

3.2. Training Strategy

The training setup of the DFN is illustrated in Figure 6. In the strategy, x, y and ŷ are
the input vector, label vector and output vector of the DFN model, respectively.

Adam
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21 TN Input Vector x

ˆ( , )CS y y

Figure 6. Block diagram of the DFN training system.

The cosine similarity (CS) can better measure the similarity of two vectors. Therefore,
the loss function is defined as

LCS(y, ŷ) =
∣∣∣∣ 〈y, ŷ〉
‖y‖‖ŷ‖ − 1

∣∣∣∣. (19)

During training, Θ is updated by an Adam optimizer that runs back propagation based
on the loss function in (19). To improve training efficiency, the following techniques are
employed. Training data are provided to the model in minibatches, which takes advantage
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of the high throughput of parallel processing in the graphics processing unit (GPU) and
minimizes the latency of memory copying. The learning rate decays exponentially for
fine-tuning as the training proceeds.

The training configurations for the DFN are listed in Table 1. A stochastic gradient
descent (SGD)-based Adam optimizer is used. The learning rate is initially set to 0.001 and
decayed by 0.02 in each epoch.

Table 1. DFN hyperparameters.

Setting DFN

Maximum Epochs 150
Initial learning rate 10−3

Learning rate decay Exponential, rate 0.02, step one epoch
Optimizer Adam

Mini-batch size 256× 1×N2
T

4. Simulation Results

In this section, we conduct numerical experiments to validate the effectiveness of the
SUMC estimator.

4.1. Simulation Conditions

The considered system consists of NT = 10 antennas in the form of UCA and NRF = 4
RF chains. At each time instant, the switching network sequentially selects 4 antennas out
of the 10 antennas according to Figure 2, where the UCA antenna elements are numbered
counterclockwise, and the center element is marked as 10. In addition, the simulation
parameters that are used to generate the training and test datasets are listed in Table 2.

Table 2. Simulation parameters.

Parameter Value

Number of antennas NT 10
Number of RF chains NRF 4

Radius of UCA R 0.7
Number of Monte Carlo trials W 500

Number of snapshots K 128, 256, · · ·, 8192
Number of sources D 1, 2, 3, 4, 5

Elevation angle θ 0◦:0.1◦:90◦

Azimuth angle φ 0◦:0.1◦:360◦

SNR 5:5:30 dB

To evaluate the performance of the SUMC estimator for 2D-DOA estimation, the root
mean square error (RMSE) is calculated by running Monte Carlo simulations. The RMSE is
defined as

RMSE =

√√√√ 1
WD

W

∑
w=1

D

∑
d=1

[(φ̂w
d − φw

d )
2 + (θ̂w

d − θw
d )

2], (20)

where W is the total number of Monte Carlo simulations, and θw
d , φw

d , θ̂w
d and φ̂w

d are
the actual elevation angle, actual azimuth angle, estimated elevation angle and estimated
azimuth angle of the d-th source in the w-th Monte Carlo simulation, respectively. Moreover,
θ̂w

d and φ̂w
d are obtained by a 2D spatial spectrum search scheme based on the classical

MUSIC algorithm. Meanwhile, the direction of D sources are randomly generated from
the two-dimensional angular space {(θd, φd) | θd ∈ (0◦, 90◦], φd ∈ (0◦, 360◦]} in each Monte
Carlo simulation.
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4.2. Network Architecture Analysis

In this section, we evaluate the performance of different FC networks for covari-
ance matrix completion. Four datasets were generated in scenarios of D = 1, 2, 3 and 4,
respectively. Each individual dataset contains 250,000 sample covariance matrices and
corresponding 250,000 complete covariance matrices, of which 80% are used for training,
and a subset of the remaining 20% is used for validation. The training data for all FC
networks is a mixture of the four datasets. The evolution of the loss on the validation set in
the training of different FC networks is shown in Figure 7. In the legend of Figure 7, the
N-M represents the FC network with N hidden layers, and each hidden layer is composed
of M neurons; moreover, 6-2048×2-4096×4 represents the FC network with six hidden
layers. The first two hidden layers consist of 2048 neurons each, and the remaining hidden
layers consist of 4096 neurons each.

As shown in Figure 7, the training process starts with a fast fitting followed by a long
fine-tuning phase. The loss decreases drastically in the first 40 epochs, then decreases
slowly but steadily until hitting a floor. Obviously, the 5-4096 curve is the lowest, and
the 2-4096 curve is the highest, indicating that properly expanding and deepening the
network can improve its ability to estimate the complete covariance matrix. However,
the 6-2048×2-4096×4 curve is higher than the 5-4096 curve. The main reasons for the
performance degradation are gradient instability and network degradation issues in deep
networks. Therefore, larger and deeper networks do not necessarily perform better, and the
appropriate network needs to be selected according to the specific problem. For the
covariance matrix completion problem in this paper, the optimal FC network contains
five hidden layers, and each hidden layer consists of 4096 neurons.
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0.0015

0.0017

0.0019

115 125 135 145
0.00030
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5-4096
6-2048  2-4096  4

 

 

Figure 7. Evolution of loss on the validation set in the training of different FC networks.

Consequently, we trained two DFN models to perform covariance matrix completion
in scenarios of D = 1, 2, 3, 4 and the scenario of D = 5, respectively.
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4.3. Comparison to Fully Sampled UCA

In this section, we assess the performance of the SUMC algorithm in scenarios of
D = 1, 2 and 3. Additionally, we consider the RMSE of the classical MUSIC algorithm
applied to the FUCA, which we use as a lower bound. The RMSE of the classical MUSIC
algorithm applied to the FUCA is labeled as FUCA; meanwhile, the RMSE of SUMC
algorithm applied to a SUCA is labeled as SUCA.

Figures 8 and 9 depict that the RMSE of the SUMC algorithm decreases considerably
as SNR or K increases in scenarios of D = 1, 2 and 3. Apparently, the SUCA curve
gradually approaches the FUCA curve as SNR or K increases. Nevertheless, there is a gap
between the two curves, and the gap between the SUCA and FUCA curve is becoming
wider as D increases. Notably, the proposed algorithm performs worse than the MUSIC
algorithm applied to the FUCA because the estimated covariance matrix in (15) is only an
approximation of the complete covariance matrix in (11). In summary, the SUMC estimator
can perform 2D-DOA estimation and provide reasonable performance.
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Figure 8. RMSE versus SNR, K = 1024: (a) D = 1; (b) D = 2; (c) D = 3.
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Figure 9. RMSE versus K, SNR = 15 dB: (a) D = 1; (b) D = 2; (c) D = 3.

4.4. Comparison to Partial Array

In this section, we compare the performance of the SUMC algorithm and classical
MUSIC algorithm applied to a partial array (PA) in the scenario of D = 3. In addition,
the layout of the PA is the same as in Figure 2a because a SUCA without matrix completion
can use only four elements for DOA estimation. The performance of 2D-DOA estimation is
evaluated by RMSE and Success Probability. A successful trial is defined as follows:

1. The number of peaks searched by 2D spatial spectrum search scheme is equal to D;
2. The divation (∆θd, ∆φd) of each DOA estimate (θ̂d, φ̂d) satisfies

∆θd = |θd − θ̂d| < 3◦ && ∆φd = |φd − φ̂d| < 3◦.
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Therefore, the Success Probability is expressed as

Success Probability =
Wsuccess

W
(21)

where Wsuccess is the number of successful trials in each simulation scenario.
As shown in Figure 10a, the estimation accuracy of the three methods is improved

as SNR increases, and the RMSE of the proposed method is significantly smaller than
that of the MUSIC algorithm applied to PA under low and moderate SNRs. As shown
in Figure 10b, it is apparent that the PA curve is far below the SUCA curve. Moreover,
the PA curve is always below 40%, and both the SUCA curve and the FUCA curve are
almost 100% when SNR ranges from 5 dB to 30 dB. As a result, the effective aperture of the
SUCA is enlarged by the SUMC algorithm; meanwhile, the accuracy of DOA estimation
is improved.
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Figure 10. RMSE, Success Probability versus SNR, K = 1024, D = 3: (a) RMSE versus SNR; (b) Success
Probability versus SNR.

4.5. Resolution of 2D-DOA Estimation

In this section, we evaluate the resolution of the proposed algorithm and the MUSIC
algorithm performed in PA when SNR is set to 10 dB and K is set to 1024. The DOAs of
two sources in each Monte Carlo trial are selected as follows:

1. The total angular separation of two sources is defined as

ε =
√

ε2
θ + ε2

φ;

2. The εθ is randomly selected from (0◦, ε), εφ is then calculated by

εφ =
√

ε2 − ε2
θ ;

3. The DOA of the first source is randomly selected from the two-dimensional angu-
lar space

{(θ1, φ1) | θ1 ∈ (0◦, 90◦ − ε], φ1 ∈ (0◦, 360◦ − ε]};

4. The DOA of the second source is then given by

θ2 = θ1 + εθ , φ2 = φ1 + εφ.

The RMSE for DOAs and the Success Probability for DOA estimation are shown in
Figure 11a,b, respectively. As detailed in Figure 11a, for ε as high as 24◦, SUCA has an
RMSE smaller than 0.48◦, whereas PA has an RMSE larger than 1◦; moreover, the difference
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between the PA and the SUCA is most significant at low ε. Figure 11b displays that the
Success Probability of the SUCA reaches 90% when ε = 8◦; however, the Success Probability
of PA is less than 66% when ε < 12◦. The results in Figure 11 indicate that the SUMC
estimator provides better resolution.
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Figure 11. RMSE, Success Probability versus ε, K = 1024, SNR = 10 dB: (a) RMSE versus ε; (b) Success
Probability versus ε.

4.6. Underdetermined 2D-DOA Estimation Problem

In this section, we focus on the capability of the SUMC estimator to solve the un-
derdetermined 2D-DOA estimation problem where D ≥ NRF. D is set to four and five
as NRF = 4. The RMSE in scenarios of four sources and five sources are displayed in
Figures 12 and 13, respectively.
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Figure 12. RMSE versus SNR, K: D = 4. (a) RMSE versus SNR, K = 1024; (b) RMSE versus K,
SNR = 15 dB.

As shown in Figures 12 and 13, the performance of the SUMC estimator improves
considerably as SNR or K increases in scenarios of four and five sources. In addition, it
should be noted from Figure 12 that the RMSE of DOAs in the SUCA approaches that in the
FUCA under large K. In detail, Figure 13 depicts that the RMSE of the proposed algorithm
is lower than 2.8◦ in the scenario of five sources when SNR > 20 dB and K = 1024.

Moreover, the spatial spectra obtained from the SUMC estimator are depicted in
Figures 14 and 15, where the red circles represent the ground truth value of DOAs. The SNR
and K are fixed at 15 dB and 1024, respectively. Figure 14 shows four high and sharp peaks.
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Significantly, there is almost no deviation between the four peaks and the four red circles.
It can be seen from Figure 15 that five peaks have been found by the SUMC estimator; yet
there is a slight deviation between the five peaks and the five red circles. On the whole,
the proposed algorithm can deal with the underdetermined 2D-DOA estimation problem
with acceptable performance under moderate SNR and K.
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Figure 13. RMSE versus SNR, K. D = 5: (a) RMSE versus SNR, K = 1024; (b) RMSE versus K,
SNR = 15 dB.

(a) (b)

Figure 14. Spatial spectrum using SUMC estimator for solving four sources, SNR = 15 dB, K = 1024:
(a) front; (b) top.

(a) (b)

Figure 15. Spatial spectrum using SUMC estimator for solving five sources, SNR = 15 dB, K = 1024:
(a) front; (b) top.
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5. Conclusions

In this paper, a 2D-DOA estimation scheme based on covariance matrix completion
in a SUCA is proposed. The proposed algorithm starts by using a DFN to complete the
sample covariance matrix of a SUCA; then the MUSIC algorithm is performed with the
completed covariance matrix. The simulation results indicate that the SUMC estimator
enlarges the effective aperture of a SUCA; thereby improving the accuracy, resolution
and success probability of 2D-DOA estimation in a SUCA. Furthermore, the results show
that the proposed algorithm is able to handle the underdetermined 2D-DOA estimation
problem with reasonable performance.
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