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Abstract: The explosive growth of the Internet of Things (IoT) applications has imposed a dramatic
increase of network data and placed a high computation complexity across various connected
devices. The IoT devices capture valuable information, which allows the industries or individual
users to make critical live dependent decisions. Most of these IoT devices have resource constraints
such as low CPU, limited memory, and low energy storage. Hence, these devices are vulnerable
to cyber-attacks due to the lack of capacity to run existing general-purpose security software. It creates
an inherent risk in IoT networks. The multi-access edge computing (MEC) platform has emerged
to mitigate these constraints by relocating complex computing tasks from the IoT devices to the edge.
Most of the existing related works are focusing on finding the optimized security solutions to protect
the IoT devices. We believe distributed solutions leveraging MEC should draw more attention.
This paper presents a comprehensive review of state-of-the-art network intrusion detection systems
(NIDS) and security practices for IoT networks. We have analyzed the approaches based on MEC
platforms and utilizing machine learning (ML) techniques. The paper also performs a comparative
analysis on the public available datasets, evaluation metrics, and deployment strategies employed
in the NIDS design. Finally, we propose an NIDS framework for IoT networks leveraging MEC.

Keywords: internet of things; multi-access edge computing; network intrusion detection system;
machine learning; anomaly systems; IoT device; offloading; distributed NIDS

1. Introduction

The Internet of Things has experienced tremendous growth in area-specific applica-
tions such as healthcare, smart transportation systems, smart agriculture, and industries
to improve socio-economic development in recent years [1]. These IoT systems are com-
posed of many interconnected sensors, actuators, and varieties of network-enabled de-
vices [2] that exchange different types of data through both the Internet infrastructure and
the private networks. The cisco research team predicted an average of 75.3 billion actively
connected IoT devices by 2025 [3,4]. The absence of human intervention in data exchange
between IoT systems makes it unique from traditional Internet technology. Growth in IoT
devices has also increased the data network bandwidth demands. However, most IoT
devices have resource constraints, making it challenging to execute the traditional secu-
rity methods for system protection against cyberattacks. Critical concerns about the IoT
device arise when there is a need to process sensitive information. Hence, it is essential
to introduce the MEC platform that permits computation to be performed at the network
end to address the resource-constraint problems in IoT systems [5,6]. MEC allows IoTs
to offload high computational-intensive tasks to the proximal edge server [7].

Since the IoT has become the driving force of the current industrial revolution and
the system for collecting live dependent data, it is vital to take cyber-security seriously [8,9].
Hence, there is the need for a Network Intrusion Detection System (NIDS) that can detect
current and future attacks to protect the IoT network and the systems built on it.
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1.1. IoT Network Intrusion Detection Systems

NIDS monitors the internet traffic across the devices in an IoT network. It acts as a de-
fense line [10], which can identify risks and protect the network from intruders and mali-
cious attacks.

NIDS is the primary tool used to combat network intrusion and various attacks in cur-
rent computer network systems. NIDS examines and investigates the hosted device’s
network, user actions, and discovers signatures of known threats and unknown malicious
attacks within a network. Another goal of the NIDS is to monitor the IoT network, dis-
cover unauthorized intrusions within the network, and enable context-awareness to other
devices connected to the network and the execution of necessary defense (firewall rules).
NIDS also generates an alert or creates attack flags when it discovers internal and external
attacks. Cyber-attackers initiate internal attacks through the compromised IoT devices
connected to the network. Third parties outside the leading network initiate external
attacks. There are principally three general elements of NIDS [11], namely Observation,
Analysis and Detection. The Observation module monitors the network traffics, patterns,
and resources. Analysis and Detection are normally the core part of NIDS. They can
detect intrusions based on given algorithmic rules. The alert module raised attack flags
if an intrusion is detected [11]. Considering that the development of NIDSs for IoT systems
represents a significant challenge for information security researchers, this survey has
covered the following topics: detection method, NIDS placement strategy, security threats,
and validation strategy.

1.2. Motivation and Contribution

Several surveys have been published in diverse research areas related to IoT security,
including security frameworks [12], security in context of eHealth [12], privacy issues [13],
state of the art and security challenges [14], models, techniques, and tools [15], and at-
tacks [16]. Some of these papers were published during the early stage of IoT system
evolution. This paper focuses on the use of ML techniques to enhance security in IoT.
Additionally, we investigate how the emergence of MEC can aid to develop a sophisti-
cated security system (NIDS) for IoT systems. Moreover, this paper adds to knowledge
of the comprehensive reviews of state-of-the-art design of NIDS for the resource-constraint
IoT using the MEC, the implementation strategies, and the IoT dataset used. The study
extends the design approaches used by researchers and how the proposed methods fit into
NIDS design for IoT systems and MEC environment. We also proposed an NIDS frame-
work for the IoT utilizing MEC architecture and demonstrated the possible ways to choose
NIDS for the IoT devices based on some conditions. After reviewing the related research
publications in this field, this work serves the audience from the following perspectives:

• We examine some of the leading IoT challenges presented in the recent research trends.
Moreover, we analyze the feasibility of emerging technologies such as MEC to design
security applications for the IoT.

• We investigate the ML-based NIDS designed for IoT and their implementation strate-
gies.

• We examine the placement strategies used in MEC to develop NIDS for the IoT systems.
• We review various datasets and metrics used to develop NIDS for IoT systems.
• We propose a security framework for the resource-constrained IoT systems by utilizing

the modern MEC architecture.

1.3. Paper Outlines

We have organized the rest of this paper as follows: Section 2 provides a summarized
explanation of the key terminologies and security technologies used in IoT NIDS design.
We classify the IoT security threat classes in Section 2 and introduce the fundamental security
routines with attention to NIDS diversities. Section 3 describes the background of NIDS
in IoT systems. This section also elaborates on the various types or categories of NIDS.
In Section 4, we discuss how MEC are used to create NIDS, its design process, deployment
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strategies, and implications toward the heterogeneous IoT systems. Section 5 examines the mode
of implementation of NIDS in IoT, while Section 6 examines the NIDS design strategies.
Then, we compare and evaluate the various implementations of ML-based NIDS, datasets,
and metrics used in NIDS design for IoT systems in Section 7. Finally, the survey concludes with
an outline and future directions in Section 8. Figure 1 shows the brief taxonomy of the survey.
Table 1 also provides some of the commonly used acronyms in this survey.

Figure 1. Taxonomy of Survey.

Table 1. Summary of Some Important Acronyms.

Acronym Short Definition

IoT Internet of Things

NIDS Network Intrusion Detection System

ML Machine Learning

NIDS Intrusion Detection System

MEMS Micro-electromechanical System

OT Operational Technology

VHD Virtual Honeypot Device

IEEE Electrical and Electronics Engineers

6LoWPAN IPv6 Low-Power Wireless Personal Area
Network

LPWAN Low Power Wide Area Network

DoS Denial-of-Service

DDoS Distributed Denial-of-Service

MITM Man-In-The-Middle

WSN Wireless Sensor Network

RPL Routing Protocol for Low Power and Lossy
Network
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Table 1. Cont.

Acronym Short Definition

NFV Network Functions Virtualisation

ICN Information-Centric Network

SDN Software-Defined Network

MEC Mobile Edge Computing

VM Virtual Machine

RL Reinforcement Learning

LA Learning Automata

MLP Multilayer Perceptron

R2L Remote-to-Local

U2R User-to-Route

CNN Convolutional Neural Network

DIDS Distributed Denial of Service

LSTM Long Short-Term Memory

RNN Recurrent Neural Network

AIS Artificial Immune System

PCA Principal Component Analysis

QoS Quality of Service

2. IoT System and Security Issues

The IoT system has evolved with many use-cases. Each of the applications of the IoT
system comes with its own adverse security issues. This section elaborates on the IoT
system and the related security problems.

2.1. IoT System

IoT systems consist of interconnected computing devices [17,18], mechanical or any
object equipped with unique identifiers and the ability to transfer data over a network
without requiring human-to-human or human-to-computer interaction [19]. IoT systems
use distinctive network address schemes to connect to various objects or things [20]. Most IoT
devices connected to the Internet are exposed to cyber-attacks due to the weak security systems
as a result of resource constraints. Most IoT systems however operate autonomously via
untrusted network connections and the Internet, which is also a contributing factor that exposes
the network to cyber-attacks [21]. Considering cyber threats and network attacks versus
the promising future of IoT systems, the security issues should be addressed with urgency.

2.2. IoT-MEC Architecture

There is no one defined architecture that is generally accepted by the IoT commu-
nity. Different architectures are designed based on the use case, the technology used, and
the size of the IoT network. In smart health use cases, ref. [22–25] proposed a smart
architecture to monitor and track patients’ health records and transmit physiological pa-
rameters to control centers where the advance interpretation of the data is performed.
Wang et al. [26] proposed a novel IoT access architecture based on field-programmable
gate array (FPGA) and system on chip (SoC), which provides a unified approach to the IoT
for a wide assortment of low-speed and high-speed devices with associated extendibility
and configurability [27]. In technology and communication, Shang et al. [28] analyzed
the security and challenges in implementing TCP/IP technology for IoT systems architec-
tures. In [29–31], the authors also created different routing protocol for IoT communication.
These architectures can be implemented in Autonomous Systems of Things (ASoT) and
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legacy Autonomous Systems (ASs). Different configuration techniques were applied for IoT
routing architectures. Notwithstanding, different architectures have been implemented
for assorted use scenarios such as in [32], where the authors proposed an IoT-based archi-
tecture for sport (football). Their aims were to embed sensing devices (e.g., sensors and
RFID), telecommunication technologies (e.g., ZigBee) and cloud computing with the mis-
sion to monitor the health of footballers and eradicate the occurrence of diverse health
problems in football. In all the above-mentioned architectures, they have different use-cases;
therefore, the sensitivity of data in each scenario differs. Creating security for each system
requires special knowledge in the field of application. However, the IoT-MEC architecture
follows the level such as Sensor Level (IoT end-device), MEC/Fog Layer, and the Cloud.
Detailed the structure of the IoT devices, MEC, and the cloud is shown in Section 3.

2.2.1. Sensor Level (IoT End-Device)

Mobile devices (e.g., smartphones, tablets, and laptops) and IoT devices (e.g., indus-
trial actuators, wearable devices, and smart sensors) make up the bottom of the IoT or
sensor layer [33]. Based on their ownership, co-location, and use cases, these devices can
be grouped into clusters.

2.2.2. MEC/Fog

The MEC is a layer that lies between mobile devices and the cloud [19]. The MEC
system directly connects to the IoT gateway. The MEC is usually equipped with high-
performance computational resources [34] to support the IoT devices connected at the net-
work edge. In an IoT MEC-enabled environment, security is vital. Hence, the computational
resources of the MEC provide an opportunity to design a sophisticated security system
to protect the IoT system.

2.2.3. Cloud

The cloud layer is part of the core network, and it consists of various cloud servers
and data centers that can process and store massive quantities of data [33].

2.3. IoT Network Security and Attacks

IoT applications and technologies are expected to step farther ahead than anyone could
possibly imagine [35]. However, the development of IoT technologies is still in transition
and has not fully matured in terms of security protection. The IoT systems have several
security challenges [16], such as non-uniform manufacturing standards and update man-
agement problems caused by IoT software developers. Physical handling of the security
issues and users’ ignorance due to their lack of awareness of security problems associated
with the IoT systems are also critical problems. Moreover, there is no standard defined
security architecture accepted by the IoT community. Different security architectures are
adopted based on the use case, system requirement, the available technology, and the IoT
network size. For example, in the intelligent health use cases discussed in the research
works in [22], the authors proposed different intelligent security architectures to mon-
itor and track patients’ health records. The sensitivity of data in IoT use cases varies.
Hence, the need to create security for each scenario requires special knowledge in the field
of application. It is therefore convincing that NIDS designed to target the various archi-
tecture and use case in IoT requires customization [36]. Apart from adopting encryption
methods to safeguard the IoT system data transmission, the network and environment
of the IoT systems must also be protected. Unfortunately, traditional network security
systems are not applicable in IoT systems due to the nature of the resource constraints.
Furthermore, different network attacks have also emerged due to the rapid development
and wide application of the IoT system applications [16,37]. The amount of attacks will
continue to rise as the IoT use cases expands. Being able to recognize and comprehend
the intense rise in cyber-threats in the IoT system drastically decreases the risk of a net-
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work security and data breach. Detailed discussions of these attacks are found in [4,16].
Recently, some of the most frequent attacks initiated to target the IoT systems include:

• Spoofing: Attackers impersonate a legitimate IoT system in a network to gain control
or illegal access to the network. When the attacker obtains access, they initiate DoS
and Man-In-the-Middle attacks against targeted devices [38–40].

• Denial of Service (DoS): A cyber-attack makes IoT systems or resources on the network
unavailable to the intended legitimate users. These attacks are launched by the perpetrators
to temporarily or permanently disrupt a host IoT system’s services [41–43].

• A distributed denial-of-service (DDoS): The attack is a malicious network attack that
can disrupt the regular traffic and the network’s services. DDoS floods the target or
surrounding infrastructure with highly intense network traffic [44]. DDoS attacks
become successful when attackers apply multiple compromised computing systems
as the sources to generate a large amount of network traffic. The targets can be either
the IoT system or other networked devices [45,46].

• Jamming: Most IoT devices communicate to other devices through wireless networks.
The perpetrators attack the targeted IoT system and send a fake signal to interrupt
the radio transmission, thereby depleting the bandwidth, processing power, and
memories [47,48].

• Man-In-the-Middle: Figure 2 shows a diagram of Man-In-the-Middle (MITM) attacks.
MITM attackers secretly relay and manipulate the communication between two IoT
systems, the remote devices, and eavesdrop the private communications among
the parties [49,50].

Figure 2. Network Attack.

• Privacy leakage: Data protection and privacy should be a priority in IoT system
communication. Most IoT system manufacturers and users pay minimal attention
to the contents of information stored on their devices and how third-party companies
analyze and process such IoT privacy information. IoT systems such as wearable
devices that collect user’s information about their location, situation, and health
information have contributed immensely to the high rise in the risk of personal
privacy leakage [51,52].

• Marai Botnet Attack: Mirai is malware that turns networked devices into remotely
controlled bots that cyber-attackers use as part of a botnet in a large-scale network.
It primarily targets online consumer devices such as IP cameras and home routers.
Attacks such as DoS/DDoS also used Mirai as a prevalent initiator [53,54].

• Sybil Attack: Sybil attacks are found in peer-to-peer networks. A Sybil attack sub-
verts the IoT device’s identity to create many anonymous identities and consume
a disproportionate power. It is named after Sybil, the author of the book Sybil, which
is a case study of a woman dealing with a dissociative identity disorder. An IoT
device in a network that operates multiple identities often undermines the authorized
network access in reputation systems [55,56]. Sybil attacks capitalize on this weakness
in the IoT system network to initial attacks.
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• AI-Based Attacks: AI attacks have been around since 2007 [57,58], and the high
threats they pose to the IoT are becoming more prevalent. Hackers now create AI-
powered tools that are quicker, simpler to scale, and more efficient than human-centric
attacks. This is a significant danger to the IoT ecosystem. While the techniques
and features of conventional IoT risks offered by cybercriminals may appear to be
the same, the scale, automation, and customisation of AI-powered attacks will make
them increasingly difficult to eradicate.

Table 2 summarizes some common attacks in IoT systems and their modes of initiation.

Table 2. Common Attacks in IoT-MEC.

Source Attacks Mode of Attack Initiation

[38–40] Spoofing Impersonation

[41–43] Denial of Service (DoS) Network Flooding

[44–46] Distributed Denial-of-Service
(DDoS) Network Flooding

[47,48] Jamming Fake Signaling

[49,50] Man-In-the-Middle Eavesdropping Packets

[51,52] Privacy Leakage Attack Authentication Storage

[53,54] Marai Botnet Attack Malware Implant on Devices

[55,56] Sybil Attack Creates Anonymous Identities

[57,58] AI-Based Attacks Creates AI-powered Tools

3. Background of NIDS in IoT and Their Classification

The IoT security problems are similar to the early genealogy of computers in the mid-
1990s [59] when the unreliability of personal computers (PC) security required emergency
attention. Many computer networks were vulnerable to threats, and there were no direct
approaches to fix them. Organizations kept vulnerabilities as a mystery and did not
discharge security overhauls rapidly. Moreover, it was hard, if not incomprehensible,
to motivate clients to introduce new security systems. In recent years, this has changed
because of a mix of full divulgence distributed vulnerabilities to organizations’ constraints.
The skills of attackers, the developing technologies, and the enormous growth of Internet
traffic have made it difficult for any existing NIDS to offer a reliable service to the IoT
system. However, a close examination of the IoT system’s cyberattack shows that there
usually exists a behavioral pattern in the attacks [60], which can be learned when ML and
MEC are combined to design NIDS more effectively.

This section provides a comprehensive review of the various classifications of the state-
of-the-art NIDS used in IoT systems. Since IoT networks operate similar to traditional
general purpose computer networks, researchers have adopted the traditional techniques
to design NIDS and propose numerous models. We based our classification in this section
on the framework, implementation, and operation to categorized NIDS into Signature,
Anomaly, Specification, and Hybrid based [61].

3.1. Signature-Based NIDS in IoT Systems

IoT devices have limited resources, such as the memory, the processing ability, and
the energy constraints of the physical IoT devices [62]. Therefore, the use of traditional
signature-based intrusion detection systems on these devices is practically impossible.
To construct robust detection systems for IoT, signature-based NIDS often requires large
datasets. However, conventional signature-based NIDS must be restructured in accordance
with the resources of the IoT devices. Various attempts have been made to design signature-
based NIDS for IoT devices. Kasinathan et al. [63] proposed a signature-based NIDS
framework. Their framework identifies DoS attacks in 6LoWPAN-based [64] networks.
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The authors used signature-based NIDS known as Suricata (an open-source NIDS soft-
ware) [65] to test their proposed framework. Suricata was designed to detect intrusion
in general computer networks, which does not specifically target IoT networks. Moreover,
there were no clear evidence of the effects of Suricata on their IoT devices use in their
research. In [66–69], the authors presented different strategies to design NIDS to protect
the IoT devices. The authors used ML methods to design signature-based NIDS to detect
network attacks in IoT devices. In [70,71], the authors applied deep reinforcement learning
to create NIDS for industrial IoT. This approach combines the observational capabilities
of deep learning with the decision-making capabilities of reinforcement learning to allow
the effective detection of various types of cyber-attacks on the Industrial Internet of Things.
However, in each of the research works, the experimental results presented are promising,
but the authors failed to demonstrate how their method could work in a real-world IoT
network environment.

3.2. Anomaly-Based NIDS for IoT Systems

Anomaly-based NIDS compare an IoT system’s activities instantly against the standard
behavioral profile and generate notifications whenever a deviation from such operation
exceeds a threshold. This approach is efficient in detecting new attacks on IoT systems.
In particular, those attacks initiated misuse of the IoT devices’ resources. Unlike signature-
based NIDS, anomaly-based NIDS are designed with either normal or anomaly data
(one-class of data) [72]. Several NIDS developed to secure IoT devices use anomaly-based
techniques since they can be modeled with the intention of being lightweight. In [73],
the authors highlighted the necessity to obtain custom anomaly-based security in an IoT
system. They also emphasized that vulnerabilities in IoT systems are due to insecure
web interfaces, insufficient authentication and authorization, insufficient transport layer
protection, broken cryptography, insecure software/firmware updates, or poor physical
security. Their research presented an efficient hierarchical anomaly-based intrusion de-
tection system. In their experiments, the proposed framework applied a resilient policy
that enables the IoT system to detect malicious attacks. In [74–77], the authors also used
ANN to detect intrusion in the IoT system’s gateway. They used ANN to detect anomalies
in the data sent from the edge devices. The researchers connected multiple IoT devices and
a high-resourced network device to operate as the gateway. Their results were immaculate
and promising. In [78–80], the authors presented an NIDS algorithm that detects attacks
in IoT systems, which uses anomaly detection systems based on different ML methods.
The authors explained that an IoT network attack typically leaves its traces on the sys-
tem. Using this approach, the authors proposed three techniques to identify such anoma-
lies in their network. However, they did not demonstrate any experimental results
of false-positive rates, which is a major problem with anomaly-based NIDS. The authors
also performed a further study on the power and memory consumption of IoT devices.
The authors of [81,82] proposed a smart home NIDS that alters the decision function
of its underlying anomaly categorization models autonomously in response to changing
conditions in the smart home.

The research works in this subsection demonstrate that anomaly-based NIDS often
start by establishing a baseline of the network’s normal traffic and activity. They compare
the current condition of network traffic to this baseline in order to find patterns that deviate
from the normal traffic. Anomaly-based NIDS are suitable for IoT systems due to the ability
to scale them into a lightweight but are prone to false-negative rates. The false-alarm rate is
due to two main reasons: (1) researchers failed to obtain a credible training dataset that
holds all the necessary intrusion signatures; (2) not all normal or intrusions behaviors were
captured during training.

3.3. Specification-Based NIDS for IoT Systems

The Specification-Based NIDS defines a set of rules that can be manually updated by
the IoT systems administrator to detect intrusion on a network. The specification-based
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approach identifies threats by the definition of high-level rules in the IoT network envi-
ronment, operational features, and mechanisms. Due to the resource constraint problems
in IoT systems, specification-based NIDS is recommended. However, specification-based
NIDS detects only specific kinds of attacks that fall within the rules defined in IoT systems.
The critical difference between specification-based and anomaly-based NIDS is their manu-
ally defined rules for each attack [83]. The authors argued in [84,85] that specification-based
NIDS can identify attacks that disturb the optimal protocol structure of IoT networks.
The authors presented an RPL specification to be used as a reference to evaluate the IoT
node’s behaviors, which was created using a semi-auto profiling approach that creates
a high-level abstract of activities using network simulation traces. This specification,
which includes all valid protocol states and transitions as well as statistics, is imple-
mented as a collection of rules in the NIDS agents, which are transmitted in the form
of cluster heads to monitor the whole network. Instead of allowing the cluster head
(usually an MEC server) to monitor everything, the members of the cluster report relevant
information about themselves and their neighbors to the cluster head to conserve resources.
Moreover, the authors in [86–88] applied a specification-based method to detect attacks
in the IoT network. All the research works in this subsection demonstrates that specific
attacks such as those that target RPL protocols in IoT devices can efficiently be detected by
applying specification-based NIDS.

3.4. Hybrid-Based NIDS for IoT Systems

The hybrid strategies use two or more signature-based, anomaly-based, and specification-
based NIDS to create one system. Hybrid-based NIDS for IoT systems capitalize on the strength
of the combined methods and minimize the impact of their setbacks. To eradicate false alarm
rate flops in anomaly-based NIDS and keep the advantages of signature and specification-
based detection, some researchers proposed hybrid-based NIDS for IoT systems. Based on this
combined approach, we categorize the hybrid NIDS into two categories:

• Sequence-based: either anomaly or misuse detection is applied first, and a different
technique is applied next.

• Parallel-based: multiple detectors are concurrently applied, and the final decision is
made based on multiple output sources.

The most common type of hybrid NIDS combines signature-based detection and
anomaly detection. In such a hybrid system, the signature-base detection technique detects
known attacks, and the anomaly detection technique detects novel or unknown attacks.
Due to the resource constraint nature of the IoT systems, applying hybrid-based NIDS
in the same IoT systems is practically difficult and not recommended. However, a lot
of research works demonstrate the feasibility of hybrid-based NIDS on IoT systems.

According to Ning and Lui [89], human activities also cause security problems through
the architecture differences and the standards used in IoT design. The authors introduced
a hybrid security framework called IPM (that deals with information, physical, and man-
agement security perspectives). Cervantes et al. [90] combined Watchdog, Reputation, and
the Trust Strategy to detect intrusion in IoT systems. Their approach detected the sinkhole
attack. INTI (Intrusion detection of Sinkhole attacks on 6LoWPAN for Internet of Things)
investigates NIDS’s effects that cause problems with the performance. According to their
study, the sinkhole has advanced effects on networks such as mobile ad hoc networks
(MANETs), wireless sensor networks (WSNs), and vehicular ad hoc networks (VANETs).
They emphasized that sinkholes cause a high positive rate, false negatives, high energy
consumption rates and slow down the IoT system’s performance. Their system analyzed
each IoT device’s behavior in the network and checked for the existence of sinkholes.
They also identified attacks on IoT devices through inter and intra-cluster communication
channels. Constrained Application Protocol (CoAP), designed by Krimmling and Peter [91],
used hybrid NIDS to combat intrusion in IoT. Their system was tested with the OMNET++
simulator. The authors also evaluated their framework with an intelligent transport appli-
cation system that uses CoAP. The heterogeneous nature of the communication network
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poses a critical challenge to IoT systems. Therefore, they employed signature-based and
anomaly-based NIDS in their research. They detected known attacks with signature-based
NIDS, while the anomaly detected unknown attacks that they introduced during their
experiment.

The application of hybrid-based NIDS in IoT systems solves the problems associated
with a single NIDS. However, hybrid-based NIDS require more computational resources,
storage capacity, and energy, which makes them an imperfect fit for the IoT system. Recently,
researchers have utilized MEC computing to resolve the resource constraint problems
associated with the IoT system. Researchers apply MEC technology to design NIDS
for the IoT to offload the most resource-intensive part of the NIDS to a proximal MEC
server [92,93]. A detailed discussion of this approach is provided in Section 4 of this paper.

3.5. Host and Network-Based NIDS for IoT Systems

NIDS design for IoT can also be classified based on their mode of operation. There are
two main mode of NIDS operation: namely, Host-based and Network-based.

Host-based NIDS identifies the threats and attacks on the same system or devices
in which they have been installed. Host-based NIDSs use system data from normal routine
processes, the same subnet as the monitored machines, and system call on a particular
device [94]. Wang et al. [95] designed a host-based NIDS that detects cyber attacks
in IoT. The authors experimentally demonstrated the existence of the mimicry attacks and
demonstrated the need to prevent them. In [96], the authors propose a host-based intrusion
detection system that was created and prototyped to safeguard IoT devices, that make up
IoT network backbones. In their approach, a set of suggested NIDS performs traditional
security verification, and it engages with a controller from the host-based NIDS to enable
the coordination of intrusion detection activities in response to IoT devices affected by
DDoS attacks throughout the network. The of authors [97] argued that network-based
NIDS required a large amount of data to make meaningful decisions. Table 3 shows some
differences between Host-based and Network-based NIDS.

Table 3. Different between Host-Based and Network-Based IDS.

Host-Based NIDS Network-Based IDS

Data Source System call logs Captured network traffic

Placement Strategy Locally on the hosted device or machine Specific IoT devices on the same subnet

Detection Rate Low, difficult to detect new attacks High, can detect new attacks in real time

Threats Trace-ability Based on system calls Trace intrusion based on network
addresses and timestamps

Limitations
Cannot analyse network attacks, rules

created can be obsolete, depends
on the operating system (OS)

Monitor only network traffic within
a specific subnet

4. Multi-Access Edge Computing as a Resource to Provide Security for IoT

The interest in applying MEC over cloud computing to combat network attacks in IoT
systems has risen dramatically recently. Hence, MEC standardization has become of pivotal
interest to major telecommunication and network stakeholders under the supervision of in-
stitutions such as the European Telecommunications Standards Institute (ETSI) and Open
Edge Computing Initiative (OEC [98]) [7,99,100]. Moreover, it is known that NIDS designed
for IoT systems use case scenarios based on MEC require high quality of service, reduced
latency, high throughput, and real-time operation. Researchers desist from the use of cloud
computing due to its crucial drawback of low propagation delay (high latency) [101,102].
The most influential features that make IoT system developers select MEC over cloud
computing for NIDS design include:
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1. Providing security context-awareness (the capability of the MEC server to disseminate
real-time security information to the IoT device)[103];

2. Energy-saving during and after data transfer;
3. Improvement of privacy/security in IoT (users are deprived of the total ownership

of their data in cloud computing, which results in private data leakage and loss) [104];
4. Optimal resource allocation by the MEC for the IoT system [105].

Figure 3 shows the structural layout of a cloud or remote server, the MEC, and the IoT.
MEC-based NIDS for the IoT system is implemented based on virtualized platforms

that use modern technology improvement in network functions virtualization (NFV) [106],
information-centric networks (ICN) [107], and software-defined networks (SDN) [108–110].
Specifically, NFV enhances an edge device to supply computing services to numerous
connected IoT systems to create multiple virtual machines (VMs) to execute their NIDS
tasks spontaneously or operating different network functions [111]. The IoT systems
offload computationally intensive tasks to the MEC platform for execution. The security
task offloading takes place in different forms. The next sections examine the various
possible offloading techniques for NIDS implementation in IoT systems.

Figure 3. MEC Architecture.

4.1. NIDS Task Offloading in IoT-MEC Environment

This section elaborates the mechanism of slicing the NIDS (tasks) and transferring part or all
to the MEC platform. Task offloading is the primary technology used in MEC and Fog for such
kind of NIDS design to secure the IoT system from cyber attacks. Task offloading is employed
as a mechanism to reduce energy consumption, latency, and the resource-constraints problems
in IoT system [112–114]. Hence, the proximity of the IoT system from the MEC server during
NIDS task offloading is significant. It determines the intensity of tradeoffs (bandwidth, amount
of energy, scheduling algorithms, etc.) required for a complete execution cycle of the NIDS
in IoT systems [115,116]. NIDS tasks offloading can be categorized as follows: Binary NIDS
Tasks Offloading; Partial Computational NIDS Tasks Offloading

4.1.1. Partial Computational NIDS Task Offloading

Partial Computational Offloading dividends the underlying NIDS into sub-tasks.
The IoT system offloads sections of the sub-tasks to a proximal edge computational
platform for execution, while less computational tasks are executed on the IoT system.
Wang et al. [117] proposed a distributed framework in their NIDS design for IoT systems.
Their approach uses the partial computational offloading technique to distribute the NIDS
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on the IoT system and MEC platform. They also believed that the NIDS sub-task offloading
to the MEC platform reduced workload and energy consumption. In [80,118,119], the au-
thors proposed an internal distributed NIDS for IoT. They offloaded sections of the NIDS
system across the various IoT systems. Each IoT device in the network monitors its in-
ternal network but provides computational support to other devices whenever there is
an intrusion. Their analysis showed that the above approach has higher accuracy of de-
tection compared to a standalone NIDS. Figure 3 shows the structure of an MEC design.
Different partial computational offloading algorithms have been designed for IoT systems
in a 5 G heterogeneous network. A review of these research works shows that the algo-
rithms implemented are directed toward minimization of energy consumption and low
latency [120–122]. However, the researchers pay less attention to the use of MEC offloading
to secure the IoT. In [123], the authors implemented a multi-user partial computation
offloading. To this aim, Alladi et al. [123] described a Deep Learning Engines (DLEs)-
based artificial intelligence (AI)-based intrusion detection architecture to identify and
classify vehicle traffic within internet of vehicles (IoV) networks into probable cyber-attacks.
These DLEs were also implemented on MEC servers rather than remote cloud, which takes
into account the mobility of the vehicles and the real-time requirements of the IoV networks.
The following conditions must be considered to apply partial computational offloading
to design NIDS for IoT systems:

• First, the sequence of execution functions or routines cannot be discretionarily selected
because the outputs of some components of the NIDS model are the inputs of others.

• Second, due to resource constraints and security considerations, some algorithms
or routines of the NIDS must be offloaded to the MEC for execution, while others have
to be executed locally.

4.1.2. Binary NIDS Task Offloading

The binary NIDS task offloading allows the IoT device to execute the entire NIDS either
on the local IoT device or remotely in the edge platform [124]. An integrated NIDS cannot be
divided into sub-tasks. Hence, those kinds of NIDS are executed fully in the edge platform
or locally in the IoT system. In [125], the authors proposed a Markov decision process
as a means to enhance tasks offloading to the edge. They first proposed a double deep
Q-network (DQN)-based strategic computational offloading algorithm to study the optimal
policies before they implemented their original technique.

4.2. MEC-Based NIDS Design for IoT Systems

In NIDS design, the MEC provides the hosting infrastructure to support the computa-
tional intensive security services that manage the real-time detection of threats within and
outside the IoTs’ network. Table 4 summarizes the various research works that used MEC
technology to design NIDSs for IoT systems. In this section, we review the use of MEC
platforms to design NIDS for IoT systems and discuss their strengths and weaknesses.
Since there are limited MEC-based NIDS for IoT systems, we provide a comprehensive
survey of the state-of-the-art related designs and their application.

In [105,126], the authors provided closely related findings on MEC-based NIDS
for IoT systems. Their research provided a security end-to-end protocol for resource-
constrained devices, especially in the context of healthcare sensors. The authors also
applied security functionality and reduced computationally intensive operations to satisfy
the IoT system’s resources constraints problem. The authors offloaded the computation-
ally intensive algorithm of the NIDS to an edge platform in neighboring trusted devices.
They introduce a technique to select the proximal MEC platform with unique selection
criteria. Ranaweera et al. [127] highlighted some security flaws in 5 G-based IoT use
cases that have been implemented in the MEC setting. They suggested solutions to mit-
igate the security flaws that they identified. In [128,129], the authors proposed security
as a service (SECaaS) architecture that protects the IoT from cyber-attacks. They test their
suggested architecture by creating a virtualized infrastructure that combines lightweight
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and hypervisor-based virtualization technologies to design a security system for the IoT
using MEC. Sha et al. [130] proposed a new security system deployed at the MEC platform
to secure connected IoT systems. Their security system, which was known as EdgeSec,
comprised six major modules that systematically handle specific security challenges in IoT
systems. The modules include a security profile manager, security analysis, protocol
mapping, a security simulation, communication interface management, and request han-
dling. In their experiment, each IoT device is registered to the security profile to manage
the device-specific information collected and the device-specific security requirements.
An NIDS deployed to an MEC platform controls the security of the various IoT sys-
tems. They also utilized protocol mapping to choose the appropriate security protocols
from the protocol library for each IoT device in their setup. In [131], the authors proposed
a privacy-aware scheduling algorithm based on MEC. The research’s primary purpose is
to execute tasks from different IoT systems with different privacy requirements connected
to different MEC platforms. The proposed scheduling algorithm also aims to satisfy the real-
time requirements of IoT system operation. The authors of [105] in their paper examine
ways to improve the security of MEC systems by utilizing the cooperative mechanism
amongst non-orthogonal multiple access (NOMA) user pairs. They presented a two-slot
hybrid cooperative NOMA security (THCNS) system that uses cooperative interference
between NOMA user pairs to improve the security of offloading, taking into account
the varying latency needs of IoT users.

The research works in this section demonstrate that the use of MEC to create NIDS
for the resource-constraint IoT devices is still in the early stage. Hence, researchers must provide
robust frameworks for the offloading process, detection models, and implementation strategies
to design sophisticated NIDS to secure the IoT system and their network environments.

5. Mode of NIDS Implementation in IoT Systems

Additionally, we categorize the NIDS based on their mode of implementation.
This category of NIDS depends on the location, position, and part of the network where
it is hosted. This subsection discusses the NIDS placement strategies in IoT systems.

5.1. IoT NIDS Based on Placement Strategies without MEC

There are different techniques to implement NIDS in IoT systems. Most of the imple-
mentation strategies depend on the structure and the type of network technology available.
Although different IoT systems have different network architecture, however, we classified
the placement strategy under the following:

• Physical domain: interfaces the sensors to the IoT board.
• Network domain: gives the IoT device the capabilities to transfer data.
• Application domain: gives the user power to interact with the IoT device.

Usually, NIDSs are placed in network equipment such as routers, installed in between
the IoT device network and the Internet connectivity to the Internet Service Provider (ISP).
These routers are known as border routers [132]. The following subsections explain some
of the NIDSs’ placement strategies in IoT systems.

5.1.1. Centralized Placement

In the centralized placement, NIDS analyzes all the traffic that goes in and out
of the boarder router from the connected IoT devices. The centralized placement strat-
egy has the disadvantage of not identifying attacks within the internal IoT networks.
In [63], the authors used the centralized placement method to deploy their proposed
NIDS. Their research focused on prevention of the DoS attack against the IoT system.
Therefore, they used a dedicated host that sniffs network data and analyzed it.
They connected the host NIDS through a wired network connection, leaving the remaining
IoT devices connections in a wireless mode. The technique helps the NIDS to identify
the DoS attack when the network is compromised. Wallgren et al. [133] designed a cen-
tralized NIDS placement system by setting up their NIDS in a border router. Instead
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of analyzing the network traffic, echo messages were sent to the various IoTs regularly
to determine whether the network has been under attack.

5.1.2. Distributed Placement

In the distributed placement strategy, the NIDSs are spread across the various IoT
devices in the network. Due to the IoT system’s resource-constrained nature, each system
must be optimized independently, and the NIDS must be lightweight.

IoT devices that are configured to keep track of threats in nearby connected devices
are known as watchdogs. Cernantes et al. [90] used this placement strategy in their work.
The INTI used the watchdog to detect and mitigate attacks. In their experiment, an IoT
device within the network clusters was classified as the leader or the head node. Each
connected IoT device’s role can change over time due to the network reconfiguration
policy they introduced. Whenever an IoT device detects an attack, it broadcasts a message
to the other connected devices to protect themselves from the attacker.

5.1.3. Hybrid Placement

The hybrid NIDS placement integrates the technique of centralized and distributed place-
ment strategy. It dwells on the advantages of both methods and avoids their pitfalls. In Pongle
and Chavan [134], the authors stated that IoT devices are responsible for detecting changes
in their neighborhood and sending information about neighbours to centralized modules.

Their experimental results showed that the energy, computational, and memory usage
overhead matched the constrained IoT system’s resources. In [118], the authors proposed
an NIDS that allocates different responsibilities to the border router and the connected
IoT systems. The NIDS module, in their experiment, monitored the neighbors to identify
possible intrusions. When an intrusion is detected, the IoT sends an alert to the NIDS model
placed within the border router. In [135,136], the authors used a distributed placement
strategy to implement their proposed security system for the resource-constraint IoT system.
Thanigaivelan et al. [118] classified their system as a distributed NIDS. However, the border
router’s central role to make the final decision about intrusion detection makes the proposed
NIDS a hybrid approach.

5.2. Distributed Placement Strategies of NIDS in IoT with MEC

Distributed NIDS (DIDS) consists of two or more NIDS places over a wide span
of a network(s), which interact with each other. Some distributed systems have a centralized
NIDS that supervises the other security systems placed in other IoT systems in the same
network [137]. DIDS operates by the process of cooperative intelligent systems spread
across the network in a distributed IoT MEC environment. Due to the resource constraints
in IoT, distributed data-flow programming models are used to build IoT applications
utilizing the MEC platform [138,139].

In [140], the authors proposed a novel NIDS architecture model for the IoT system.
The model operates based on the MapReduce approach in the context of distributed detec-
tion. The model also incorporated a multi-faceted detection technique based on anomaly-
based and misuse-based NIDS agents. Farhoud et al. [141] designed a distributed and
lightweight NIDS based on an Artificial Immune System (AIS). They distributed their AIS
across the cloud, the edge, and the IoT devices. In [142], the authors developed a distributed
NIDS that detected attacks, where part of the detection model is placed on the IoT device
and hosted the remaining model on the resources of the Internet Service Provider (ISP).
They designed the NIDS to secure home gateway devices that connect smart home IoT
devices to the Internet. Zeeshan et al. [143] designed and evaluated an NIDS system
suitable for small IoT devices. They used a trust management process that allows IoT
devices to handle vital information about connected neighbors. This mechanism allows
the IoT device to identify malicious patterns in the network. [144] proposed an NIDS
that utilizes information flow processing to obtain event data from distributed sources
as soon as relevant data arrive. Their system also was equipped with capabilities to detect
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attacks in real time. In [145], a collaborative NIDS was proposed by distributing the NIDS
algorithm across the various IoT devices to detect intrusions. In this way, the IoT devices
share the cost of running the NIDS, which reduced the energy, processing power, and
storage capacity required for the detection.

5.3. Centralized NIDS Placement Strategies Based on IoT with MEC

In the centralized strategy based on the MEC platform, the NIDS is placed in the cen-
tral part (proximal MEC platform). Usually, most network system administrators adopt
centralized placement strategies and install NIDS in the border router. However, analyzing
the network traffic that crosses the border router is insufficient to detect attacks that involve
IoT devices within the network. Then, researchers must create NIDS that can monitor
the traffic transferred between IoT devices. Cho et al. [146] proposed NIDS for IoT systems
to analyze the packets that traverse through the border router (proximal MEC platform)
to connected physical IoT devices and other connected network devices. The work focused
on botnet attacks that pass through the border router. Wallgren et al. [133] proposed
a centralized NIDS IDS that was placed in the border router. Their main aim was to de-
tect network attacks within the IoT network. The authors proposed a heartbeat protocol
placed in the border router that transmits ICMPv6 echo requests to all the IoT devices
in the network to detect attacks. Jun et al. [147] also proposed Complex Event-Processing
(CEP) techniques for network intrusion detection in IoT systems. The authors adopted
a centralized approach and placed the NIDS in the border router to monitor network
traffics. The main advantage of the proposed system is the use of features of the events
flows to detect the intrusions, which can reduce the false alarm rate. Table 4 summarizes
some of the NIDS designed with MEC by the research community.

Table 4. Analysis of NIDS in IoT systems using MEC and Placement Strategies.

Reference Detection Methods Threats Identified Placement Strategies

Thanigaivelan et al. [118] Network fingerprinting Network Anomalies Distributed locally in the IoT
Devices

Ferdowsi and W. Saad [119] Artificial Neural Network
(ANN) Data Intrusion Distributed locally in the IoT

Devices

R. Chen, C. M. Liu, and C.
Chen [148]

Artificial Immune-Base
(ANN) Network Intrusion Distributed locally in the IoT

Devices

Wang et al. [117] ZeroR, KNN, SVM,
NaiveBayes, Neural Network Network Intrusion Distributed with MEC

Hosseinpour et al. [141] Negative selection algorithm Network Intrusion
(DoS/DDoS)

Distributed with cloud, Fog,
and MEC

D. A. Abeshu and C. Naveen
[149]

Stacked Autoencoder Deep
Learning Network Intrusion Attacks Distributed with MEC

A. Abeshu and C. Naveen
[150] Multi-Layer Deep Network Network Intrusion Attacks Distributed Locally and Fog

Diro Abebe and Chilamkurti
Naveen [151] LSTM Deep Learning Network Intrusion Attacks Distributed Locally and Fog

A. S. Sohal et al. [152] Markov Model and Virtual
Honeypot Device Network Intrusion Attacks Distributed with Fog to MEC

J. Stolfo et al. [153] Offensive Decoy technology Cloud Data attacks Distributed with cloud and
Fog

B. K. Sudqi et al. [154] Multilayer Perceptron (MLP) Network Intrusion Attacks Centralized on Fog
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Table 4. Cont.

Reference Detection Methods Threats Identified Placement Strategies

Sheikhan Mansour and
Bostani Hamid [140] MapReduce approach anomaly-based and

misuse-based attacks Distributed locally on IoT

Gajewski M et al. [142] Co-responsible distributed
NIDS Network Intrusion Attacks Distributed between IoT and

ISP’s Server

Xingshuo et al. [155] Sample extreme learning
Machine Network Intrusion Attacks Distributed between IoT,

MEC, and Fog

6. NIDS Design Strategies for IoT Systems

NIDS design strategies can be categorized into Packet Parsing-based, Payload Analysis
based, and encrypted traffic analysis [156]. NIDS examines the payload information
of transmitted packets in the IoT network. However, this strategy sometimes fails because
the payload information is inaccessible in encrypted transmission. To solve the limitations,
researchers apply encryption traffic analysis. Due to the resource constraint problems
in IoT, most NIDS designed to protect IoT systems adopt lightweight design principles.
This section examines the various design strategies and the technique of reducing the NIDS
into a lightweight to match the resources in the IoT system.

6.1. Packet Parsing-Based NIDS Design for IoT

The network packets form the fundamental structure of network communication and
are the data that are used for NIDS. They contain different forms of binary data that need
first to be parsed [157]. Data transmitted through the network contain the header and
the application data. The header consists of IP addresses, ports, and other essential fields
specific to various protocols. The main advantages of using packets parsing to design NIDS
data sources include:

• Packets consist of communication contents and can effectively be employed to detect
U2L and R2L attacks.

• Packets contain TCP/IP data content and timestamps that precisely provide the NIDS
information about attack sources.

• Packets analysis promote real-time data processing without content caching within
the IoTs’ network.

Meanwhile, each of the packets do not indicate the complete communication state or
every packet’s contextual information. Hence, it is difficult to detect some attacks, such
as DDoS [158]. The packet analysis detection methods support packets that mainly include
packet parsing methods and payload analysis methods.

Packet parsing-based detection utilizes different sorts of protocols in network commu-
nications such as HTTP and DNS. These protocols operate in different forms; the packet
parsing-based detection methods primarily concentrate on the protocol header section.
The standard practice is to extract the header fields using parsing tools (i.e., Wireshark,
Scapy, or the Bro) and convert the most vital fields’ values into feature vectors. The header
section also extracts necessary features from packets using classification algorithms to de-
sign attack detection systems. In [159,160], the authors proposed models to captured
packets from a trustworthy enterprise network and parsed them with different tools. In
packet parsing-based NIDS design, the packets are grouped into protocol types. Different
clusters are then formed based on the information with the ML cluster algorithm using
the protocol datasets. Thus, the first dataset contains many clusters, where the informa-
tion from any given cluster is homologous. Finally, a new classified dataset is created
for the NIDS model with an ML algorithm to detect IoT system attacks.
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6.2. Payload Analysis-Based NIDS Design for IoT

Payload analysis-based detection is also another approach to design data-centric NIDS.
The payload of the application layer protocols forms the data section of the packet sent through
the IoT network. The payload analysis-based methods work well in a multi-protocol network en-
vironment because the packet headers do not need to be analyzed [161,162].
As a type of unstructured data, payloads can be processed directly by deep learning models [163].
However, this method does not include encrypted payloads.

6.3. Encrypted Traffic Analysis-Based NIDS Design for IoT

The accessibility of dataset features in encryption data is hardly limited. As a result,
it is tempting to concentrate on assaults that are ostensibly apparent due to increased
traffic. Scanning, brute force, and DoS/DDoS attacks are all examples of these types
of attacks. Many research studies have demonstrated that such attacks may be seen
in network traffic [164,165]. Other sorts of attacks on encrypted traffic that do not involve
decryption, on the other hand, have received far less attention. The attack must meet
a few characteristics in order to be apparent without decryption. To begin with, attacks
can only be detected if traffic passes through the NIDS. Some Nattacks can be carried out
locally or via a different path to the target. In certain instances, NIDS may not be able
to detect the direct attack, but it may be able to detect the indirect attack. Second, the attack
must alter some aspects of network flow. Without depending on existing attack signatures,
zero-day and targeted cyber-attacks may be detected by concentrating on network traffic
flow and modeling different detectable attack aspects [156].

6.4. Lightweight NIDS Design in IoT Systems

Due to the aforementioned resource constraints in IoT systems, the idea of lightweight
NIDS is coming into the limelight in the research domain to conform to the IoT devices
architecture. Based on Tiburski et al. [166] research, lightweight NIDS does not mean
simplicity, but it should be able to deliver its mandated security duties without compro-
mising the resource constraints. Sedjelmaci et al. [167] reflected on a lightweight NIDS
in their research as a security system that is more resilient and robust but modest in size
to enhance the ease of implementation on the IoT devices in a network. In [168], the authors
also defined a lightweight NIDS as having the ability to save energy and to require less
computational resources. Therefore, we define NIDS as lightweight when it can fully
perform the required security operations regardless of the IoT device’s resource constraints.
One way of achieving lightweight NIDS is to use feature selection and reduction models.
Feature reduction such as PCA, auto-encoder, Pearson correlation, etc. [169] are used
to reduce the dimensionality of datasets, which affect the model size, computation, storage
capacity, and complexity of the NIDS model on the IoT device. Xingshuo et al. [155]
proposed a lightweight ML algorithm called sample selected extreme learning machine
(SS-ELM). They assumed that the IoT device could not host a large size of data from their
analysis. Therefore, the data selection occurs on the server remotely before being submit-
ted to the MEC for training and detection. To create lightweight NIDS for IoT systems,
researchers use one or a combination of the following principles:

• Applying new protocols to decrease the number of computational operations required
by a traditional NIDS;

• Utilizing optimization techniques to design a security system such that the scalar
multiplication, addition, and doubling are reduced.

• Offloading of all or parts of the computationally intensive algorithms to a proximal device
(MEC platform) in the same network that has more resources than the IoT device;

• Using modern algorithms that require less computational resources instead of the use
of classical, alternative methods;

• Utilizing data feature dimensionality reduction. Different algorithms such as sparse
auto-encoder, the Ranker method,principal component analysis (PCA), etc., are used
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by researchers to reduce the dimension of the dataset to lightweight ML-based NIDS
for IoT devices.

All the above methods have effects on the performance of the NIDS. Therefore, extra
care is required to minimize the loopholes for cyber-attackers to mount attacks against
the IoT device.

7. Machine Learning, Dataset, and Metrics for IoT Systems NIDS

Regardless of the number of NIDS development years, current NIDSs face challenges
in enhancing detection accuracy, reducing the false alarm rate, and detecting newly created
attacks. To eradicate the above problems, modern researchers focused on developing NIDS
that utilize ML methods. ML algorithms automatically identify the vital differences in ab-
normal data existing within standard data with high accuracy. Moreover, ML algorithms
have strong generalization potentials; therefore, they can detect unknown attacks [170].
This section of the survey focuses on some of the standard ML algorithms that are fre-
quently used in NIDS, the metrics, and benchmark datasets. ML-based NIDS is designed
to monitor the host and its environment, analyze the systems’ behavior, generate alerts,
and respond to all suspected attacks [171]. We consider ML methods under two main head-
ings: supervised and unsupervised learning methods. There are other schools of thought
in which there are more modern types classified as semi-supervised learning methods.

Supervised learning methods require classified and labeled data. In contrast, unsuper-
vised learning extracts valuable information from an unlabeled dataset. To implement ML
for any activity, three main important facets—time, space, and output—must be considered.

The development of anomaly detection systems using ML tools creates a generaliza-
tion platform to generate futuristic normal or anomalous data to develop detection models.
This generalization approach consists of generative and discriminative methods. Genera-
tive approaches construct ML-based models based on standard training data samples and
perform several tests to determine how well they fit such a model [172]. Discriminative
methods learn the difference between normal or anomalous data instances to create a model
based on the results [173]. NIDS implemented in IoTs can be categorized based on the type
of traffic and network structure. The detection is classified based on packet analysis, packet
parsing,and payload analysis. Table 5 provides a summary of some of the machine learning-
based NIDS and their metrics. In [174], the authors used recurrent neural network (RNN)
deep learning to detect the intrusion. Their research focused on the analysis of ARM-
Based IoT devices against malware with 98 % efficiency using 10-fold cross-validation
consisting of two-layer neurons. As described in Saeed et al. [175], the energy-efficiency
IoT devices operating with a batteries source cannot hold highly computationally inten-
sive NIDS algorithms. Hence, choosing the right ML to create an intelligent security
model for IoT systems is critical. The researcher must include critical evaluation pro-
cesses such as the resources, power consumption, and performance of the IoT system.
There are numerous ML-based NIDS for IoT in the research domain with different tech-
niques. Azmoodeh et al. [176] used a deep Eigenspace learning approach to detect malware
in IoT devices. Their proposed NIDS identifies malware that is located in the device’s
Operational Code (OpCode) sequence. They generated the dataset for this experiment,
making it difficult to benchmark their results with existing systems. In [177,178], the au-
thors designed an intrusion detection system using a one-class support vector machine
(SVM). Their one-class SVM is effective in providing good analysis with well-behaved
feature vectors. However, the authors used deep belief networks (DBNs) for robust fea-
ture engineering. They show comparable anomaly detection while reducing the training
and testing time. La et al. [179] modeled a Bayesian game theory-based NIDS to detect
intrusion in the IoT system. From their analysis, attackers try to deceive security systems
deployed in a network to initiate successful attacks against connected IoT devices in a net-
work. Therefore, NIDS systems can use the honeypots technique to identify such intrusions.
In [180,181], the authors developed an intrusion detection system that identifies an anomaly
in IoT systems. The goal was to make an NIDS adaptive to its deployed environment and
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to detect intrusion based on the behavior of the attack. In [182], the authors used K-NN
and Naive Bayes to identify intrusion. They tested their model using the NSL-KDD dataset.
In [183,184], the authors proposed an NIDS model for detecting intrusion (BOTNET) for IoT
devices using logistic regression. ML methods such as Decision Tree [185], K-Mean [186],
DNN (using the NSL-KDD dataset) [187], and CNN (using the NGIDS-DS and ADFA-LD
dataset for benchmark) [188] have been used by researchers to design NIDS for IoT systems.
RNN, LSTM, GRU, and GAN [151,174] are also one of the most common neural network
ML-based methods used by the research community to create NIDS for IoT. All the above
models provide promising results but lack the analysis of the effects they pose on resources
of the IoT devices.

Table 5. Analysis of ML-Based NIDS in IoT.

Reference ML Methods Precision Recall Accuracy

Mayhew et al. [189] Behavior-Based Access
Control 99.1% - -

Haddadpajouh et al.
[174] RNN, LSTM - - 98.18%

Saeed et al [175] RNN - - 97.23%

Azmoodeh et. al. [176] Deep Eigenspace
learning 98.59% 98.37% 99.68%

Erfani et al [177] One-Class SVM - - -

La et al. [179] Bayesian Game Theory - - -

Arrington et al. [181] Behavioral Modeling - - -

Li et al. [190] KNN 98.5% - -

Pajouh et al. [182] Naïve Bayes 84.86% - -

Ghosh and Mitra. [183] Logistic Regression - - 93.26%

Prokofiev et al. [184] Logistic Regression 94.0% 98.0% 97.30%

Singh and Neetesh
[191] Self-Organizing Map 64% - -

The “Applicable with Edge” column was established based on our observation on various system implementation.

7.1. Evaluation Metrics for NIDS in IoT

This subsection investigates the various metrics that are mostly used and also other
metrics that are not widely considered in NIDS design and implementation for IoTs.
The fundamental purposes of evaluating NIDS are:

• Compare two or more NIDS on a similar scale.
• Evaluate the required performances.
• Determine the best configuration of the NIDS.

7.1.1. Performance and Evaluation Metrics Used in ML-Based NIDS for IoT Systems

Cardenas et al. [192] proposed that the Bayesian detection rates, the cost effects
of failure detection rates [193], and the detection capabilities of any NIDS must be critical
metrics to study. In [194], NIDS were evaluated based on the scorecard metrics in real-
time and distributed systems. They argued that the data payload of the packets under
analysis by an NIDS must contain realistic content. From their conclusion, the best way
to evaluate any NIDS is by using real-time data from the deployed devices’ network rather
than modeling or simulation. Data packets classified as an attack in a network using some
ML-based NIDS algorithm may be regarded as legitimate packets by other classification
models. Researchers use many metrics to evaluate NIDS. No single metric seems adequate
to measure the capability and performance of NIDS. According to [195], the performance
of an NIDS can be determined based on the Detection Rate (DR) and the False Alarm Rate
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(FAR). All the above analyses indicate that the performance of the NIDS designed for an IoT
use case may differ. The implementation process, type of attack, IoT device’s resource, and
the ML used during the NIDS contribute to the type of metrics.

However, the most common metrics used by researchers include Accuracy, Recall/
Sensitivity, and F1-Score. Metrics such as false negative rate (FNR) (the number of negative
samples predicted expressed as a ratio to the available, total positive samples) and false
positive rate (FPR) (the ratio of positive samples predicted to the total predicted positive
samples) are used to measure the performance of an NIDS for IoT systems.

7.1.2. Other Required Metrics

When designing NIDS for massive IoT devices, researchers must consider some critical
issues. Conventional IoT devices are energy resource-constrained. It is hard to recharge or
replace the batteries, especially in a dynamic-isolated environment [196]. Some IoT devices
are also deployed for specific jobs and therefore equipped with limited computational
power and limited storage capacities. Hence, the power consumption and the IoT devices’
storage capacities are both critical factors in designing NIDS.

For instance, an IoT device equipped with low operating rate and limited storage ca-
pacity will require a constant power supply in order to measure the environment condition
in a remote area. The IoT device has to transmit the measured weather data in a timely
manner to a proximal MEC platform for processing [197]. Therefore, any NIDS design
for such a system must be evaluated with these hardware settings. Most current research
works ignored the importance of accommodating these critical considerations in their
designs and performance evaluations.

7.2. Datasets Used in IoT Systems NIDS Design

The dataset is an essential part of an ML-based NIDS design. It consists of features
observed from normal and abnormal operations of the targeted systems. For IoT net-
works, innovative methods and detecting algorithms necessitated a well-designed dataset.
The most common data generation sources for NIDS for IoT are network packet extraction
flows, system logs, and sessions. Building a dataset specifically for IoT NIDS can be compli-
cated and time consuming. Table 6 shows an overview of several selected public datasets
widely used by the research community for NIDS design.

Most researchers choose to create their own datasets to train the ML-based NIDS.
Regardless of the difficulty in dataset construction, a common and well-established bench-
mark dataset is required in order to evaluate and to compare models. Researchers have
used several datasets to train NIDS. The most commonly used datasets in the literature
are the KDD-Cup’99 [198], which was created for the KDD competition, and it contains
41 attributes similar to a NetFlow dataset.

The UNB-ISCX 2012 [199], CICIDS2017 [200], and the AWS(CSE-CIC-IDS2018) [201]
datasets were created by the Canadian Institute of Cybersecurity. According to the authors [200],
the dataset was based on five days of normal and attacks traffic data. The CICIDS2017 contains
most of the necessary modern and updated attack criteria such as DoS, DDoS, Brute Force, XSS,
SQL Injection, Infiltration, Portscan, and Botnet. The dataset has 80 features extracted using
the flow meter [202]. Another popular dataset currently used as a benchmark for NIDS in IoT
is the UNSW − NB15, which was created by the defense force academy of University of New
South Wales Australia [203,204]. The UNSW − NB15 was created based on the current attack
categories through realistic network operations. The UNSW − NB15 dataset consists of ten
(10) categories of attacks: Analysis, Backdoor, DoS, Exploit, Fizzers, Generic, Reconnaissance,
Shellcode, and Worm. Recently, there are several open source datasets that target different IoT
attacks. In [205], the authors simulated a variety of network attacks in an IoT environment.
Their dataset consists of benign, mitm-arpspoofing, DoS-synflooding, scan-hostport, scan-
portos, and Mirai Botnet. Ullah et al. [206] created a dataset for IoT NIDS known as IoTID20.
The authors proposed the IoT botnet dataset, which is suitable for DoS attacks. Moustafa [207]
proposed a new dataset called TON_IoT, which contains IoT/IIoT service telemetry, as well
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as Operating System logs and IoT network traffic, obtained from a realistic approximation
of a medium-scale network at the UNSW Canberra Cyber Range and IoT Labs.

The OPCUA dataset [208] was created by developing and injecting several attacks
on a CPPS testbed based on OPC UA to allow users to assess the efficiency of vari-
ous strategies for built Intrusion Detection Systems (IDS) in the industrial environment.
Table 6 provides detailed information about NIDS in IoT systems. Datasets such as the EL-
EGANT dataset [209–211] targets DoS/DDoS attacks in IoT and SDN-based IoT net-
works, [212] detects anomalies in industrial IoT, Mqtt-iot-ids2020 dataset [213] detects
network intrusion in MQTT protocol IoT network, Edge-IIoTset dataset [214] was also cre-
ated for industrial IoT to detect DoS/DDoS attacks, Information gathering, Man in the mid-
dle attacks, Injection attacks, and Malware attacks. The X-IIoTID dataset [215] is a dataset
for fitting the heterogeneity and interoperability of industrial IoT systems that is network
and device agnostic. The final dataset on the NIDS IoT system radar is the IoT-BDA Botnet
Analysis Dataset [216], which was created to make it easier to refine and create host and
network-based IoT botnet detection systems. All the above datasets are publicly available
for researchers to design robust NIDS to secure the IoT system.

Table 6. Some Popular Public Datasets for NIDS for IoT.

Dataset Description Telemetry Attack Types Year Created

NSL-KDD [217] General Purpose 2009

UNB-ISCX 2012 [199] General Purpose
DoS, DDoS, Brute Force, XSS,

SQL Injection, Infiltration,
Portscan, and Botnet

2012

UNSW − NB15 [203,204] General Purpose

Analysis, Backdoor, DoS,
Exploit, Fizzers, Generic,

Reconnaissance, Shellcode,
and Worm

2015

CICIDS2017 [200] General Purpose
DoS, DDoS, Brute Force, XSS,

SQL Injection, Infiltration,
Portscan, and Botnet

2017

AWS(CSE-CIC-IDS2018) [201] General Purpose
DoS, DDoS, Brute Force, XSS,

SQL Injection, Infiltration,
Portscan, and Botnet

2018

IoT Network Intrusion
Dataset [205] IoT

Benign, mitm-arpspoofing,
DoS-synflooding,

scan-hostport, scan-portos,
mirai-udpflooding,
mirai-ackflooding,
mirai-httpflooding,

mirai-hostbruteforce

2019

IoTID20 Dataset [206] IoT DoS/DDoS attacks 2020

TON_IoT Dataset [207] IoT, IIoT, MEC, Fog DoS, DDoS and ransomware 2019

OPCUA dataset [208] IoT

DoS, Eavesdropping,
Man-in-the-middle,

Impersonation, Spoofing
attacks

2020

IOT DOS AND DDOS
ATTACK DATASET

[209–211,218]
IoT DoS and DDoS attacks 2021

IOT HEALTHCARE
SECURITY DATASET [219] IoT, SDN, IIoT Normal and IoT attack traffic 2021
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Table 6. Cont.

Dataset Description Telemetry Attack Types Year Created

Mqtt-iot-ids2020 DATASET
[213] IoI, IIoT

Normal operation, aggressive
scan, UDP scan, Sparta SSH

brute-force, and MQTT
brute-force attack.

2020

Edge-IIoTset DATASET [214] IoT, IIoT, MEC

DoS/DDoS attacks,
Information gathering, Man

in the middle attacks, Injection
attacks, and Malware attacks

2022

NSS MIRAI DATASET [220] IoT Mirai type botnet attack 2020

WUSTL-IIOT-2021 [221] IoT Command Injection, DoS,
Reconnaissance, Backdoor 2021

IOT-BDA BOTNET
ANALYSIS DATASET [216] IoT

Port scanning, exploitation,
C2 communications and

DDoS
2021

THE BOT-IOT DATASET [222] IoT
DDoS, DoS, OS and Service
Scan, Keylogging and Data

exfiltration attacks
2019

X-IIoTID dataset [215] IoT, IIoT

Brute force attack, dictionary
attack, and the malicious
insider, reverse shell and

Man-in-the-Middle

2021

Note: Network were captured as a Pcap. Users can extract features and records based on their preference.

8. Discussion and Future Trends

With an extensive increase in different IoT architectures ranging from well-defined docu-
mentation to unstructured standards, the IoT is confronted with new security issues.
Due to the increase in cyber-attacks and the diversified capabilities of the IoT devices, manufac-
turers and developers need to adopt to a common standard when designing NIDS for these
cyber-physical devices. The utilization of ML and the concept of MEC should be considered
as a significant component in the NIDS design for IoT. This section examines a systematic
process for choosing NIDS for IoTs and proposes an NIDS framework using MEC.

8.1. Choosing NIDS for IoT Systems

NIDS developers must consider some major factors when choosing the NIDSs for IoT
systems. Firstly, the available resources of the IoT system must be analyzed, especially
when the edge or fog computing platform can be utilized. The next factor to exam-
ine is how to implement a proper NIDS. Figure 4 summarizes the process of choosing
an NIDS for the IoT systems. The specific IoT application also should be considered
to choose the type of NIDS. Assuming a network consists of several IoT systems connecting
to an MEC platform, a distributed anomaly-based ML model will be adequate.
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Figure 4. Structure of Choosing NIDS for IoT.

If a single IoT device is installed remotely with limited resources, a good choice of NIDS
for such a system will be a signature-based with centralized placement.
Such a system should be updated frequently to identify new attacks. A hybrid-based
NIDS will work well in an IoT MEC environment with equipped resources. In Figure 4,
a link joining the anomaly-based and the ML-based NIDS demonstrates that combining
the two approaches will be a suitable approach. The single arrow pointing to a method
indicates that such a method alone will be a suitable choice. It is important to consider all
the above scenarios in order for the manufacturers and developers to select the right NIDS
for a certain IoT system.

8.2. Proposed NIDS Model for IoT Systems

A proposed model of distributed NIDS comprising of the IoT end-dive, edge, and
the cloud has been elaborated in Figure 5. As explained in previous sections, IoT MEC has
emerged to help resolve the resource constraints in IoT. Therefore, designing NIDS utilizing
MEC will allow the implementation of a sophisticated high-end security system for IoT
devices. Moreover, using the proposed model will help to control the amount of traffic that
needs to be analyzed by the NIDS model on the MEC platform. The model does not require
extensive resources on the edge platform to control the wide-range connected IoT devices.

In our proposed model, the training and retraining are located in the cloud, since
it contains enough resources. Two different models, including a highly in-depth NIDS
and a lightweight binary NIDS, can be created using the same dataset in the cloud.
The lightweight model will be implemented in the IoT devices. The lightweight NIDS
performs binary classification to check the availability of intrusion in the IoT end device.
If an intrusion is detected, it then forwards the captured data to the edge platform for in-
depth intrusion analysis. The results of the two models are compared and the decision
is made. This will help reduce the false positive rates, which is a significant problem
in the ML-based NIDS. Retraining is scheduled when there are new intrusions detected.
Since MEC platforms can monitor and provide resources for a large number of IoT de-
vices, the lightweight model will detect and control whether in-depth analysis should be
performed on edge.
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Figure 5. Proposed NIDS Model.

9. Conclusions

The necessity to secure IoT systems has stimulated many novel solutions to NIDS
design. This paper has conducted a comprehensive review on NIDS that leverages MEC
and ML. A taxonomy and tabular classification of detection methods, NIDS placement
strategies, security threats, and validation methods were illustrated. We have discovered
that there is a large body of theoretical studies. However, real-world NIDS development
has not been fully testified yet. There are no specific detection techniques and deployment
methods that have been accepted as standards to secure IoT systems. It still requires more
effort to design a practical NIDS solution that effectively detects cyber-attacks in real IoT
systems. Furthermore, critical IoT system evaluation metrics such as energy consumption,
processing, and storage efficiency are not considered in most of the related studies.

Through our thoughtful review, we have identified several potential research direc-
tions. Firstly, future NIDS for IoT systems should focus on addressing the following issues:
(1) improve the effectiveness of NIDS; and (2) demonstrate how their proposed system can
be implemented in realistic IoT-MEC infrastructure. Secondly, researchers need to consider
the critical metrics discussed in Section 7 for future NIDS design. We are confident that this
survey and our proposed framework will serve as references and guidelines for researchers
developing NIDS for IoT systems.
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