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Abstract: Current step-count estimation techniques use either an accelerometer or gyroscope sensors
to calculate the number of steps. However, because of smartphones unfixed placement and direction,
their accuracy is insufficient. It is necessary to consider the impact of the carrying position on the
accuracy of the pedometer algorithm, because of people carry their smartphones in various positions.
Therefore, this study proposes a carrying-position independent ensemble step-counting algorithm
suitable for unconstrained smartphones in different carrying positions. The proposed ensemble
algorithm comprises a classification algorithm that identifies the carrying position of the smartphone,
and a regression algorithm that considers the identified carrying position and calculates the number
of steps. Furthermore, a data acquisition system that collects (i) label data in the form of the number
of steps estimated from the Force Sensitive Resistor (FSR) sensors, and (ii) input data in the form of
the three-axis acceleration data obtained from the smartphones is also proposed. The obtained data
were used to allow the machine learning algorithms to fit the signal features of the different carrying
positions. The reliability of the proposed ensemble algorithms, comprising a random forest classifier
and a regression model, was comparatively evaluated with a commercial pedometer application.
The results indicated that the proposed ensemble algorithm provides higher accuracy, ranging from
98.1% to 98.8%, at self-paced walking speed than the commercial pedometer application, and the
machine learning-based ensemble algorithms can effectively and accurately predict step counts under
different smart phone carrying positions.

Keywords: pedometer; step-count algorithm; smartphone; machine learning; wearable position;
acceleration signal processing

1. Introduction

Step-count algorithms are valuable for various applications, some of which are- phys-
ical activity measurements [1–3], pedestrian dead reckoning [4], and physical rehabilita-
tion [5–7]. Recently, smartphone pedometer applications have gained more attention due
to their cost-effectiveness compared with commercial pedometer devices. According to
statistics that surveyed the global smartphone penetration rate, the global smartphone
penetration rate is estimated to have reached 78.1% in 2020 [8]. This implies that most
people can monitor their steps using a smartphone without additional devices. However,
smartphone pedometer applications have a notable drawback, i.e., insufficient and unstable
step-count accuracy, caused by the various carrying positions of smartphones [9,10].
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To resolve this issue, several step-count algorithms [11–14] have been proposed in
the last few years. In a study of a smartphone-based step-count algorithm that could
mitigate false step counts caused by random motions during phone handling, a step-count
accuracy of 98.7% was reported [14]. However, the algorithm uses an accelerometer, a
gyroscope, and magnetometer sensors, which are significantly power-consuming [15].
Another study [10] used a principal component analysis algorithm to reduce the dimension
of the gait feature and a random forest classification algorithm to identify the carrying
position of smartphones and reported a highly improved step-count accuracy. Although
the result was obtained on small datasets (approximately 250 steps in total), it shows that
the accuracy of step counts can be improved after identifying the carrying position.

The label dataset size limits machine learning-based step-count algorithms in most
studies. These studies collected label (number of steps) data using a mechanical counter or
by counting steps from a video [11–13,16]. These methods are cost-efficient and straightfor-
ward but not feasible for recording data continuously or accurately in long-term experi-
ments. Generally, the more training data a machine learning-based algorithm has available,
the better the performance. Hence, a better method is needed to collect label data over a
prolonged period to provide more training data to the machine learning-based algorithms
to improve step-count accuracy. The step-count method based on insoles integrated with
pressure sensors can solve this problem because of their high step-count accuracy (96% to
100%) and convenience [17–19]. These insoles mainly use Force Sensitive Resistor (FSR)
sensors to measure the ground reaction force dynamically [20], which is suitable for the
stable measurement of gait cycles [21], even on uneven surfaces such as stairs [22]. How-
ever, no commercial device can simultaneously record plantar pressure and smartphone
acceleration data. Although it is possible to use a separate pressure insole and smartphone
acceleration recording application, the following issues exist:

1. A system to keep the clock of the pressure insole consistent with the smartphone’s clock.
2. Shut down of the data recording application that has been running in the background

for too long, resulting in incomplete data recording.

Therefore, it is challenging to build a stable system that combines the pressure data
obtained from the FSR sensors with the acceleration data obtained from smartphones for
training the machine learning-based algorithms.

In this study, we first developed a data-collection system for the problem of hard-
to-obtain label data. Then we collected a large amount of data to train step-counting
models by labeling the number of steps detected in the pressure peaks obtained from
the plantar pressure sensor. To the best of our knowledge, no such study has been done
before. Moreover, since the different carrying positions of the smartphone result in different
patterns of acceleration data, a classification algorithm was used to identify the carrying
position of the smartphones before a regression algorithm was used to count the steps.

The proposed algorithm was compared with a commercial pedometer application un-
der self-paced walking conditions to verify its reliability and performance. Six participants
participated in the experiment. The results show that this method dramatically improves
the accuracy and stability of the step-counting model. In summary, our work makes the
following contributions:

1. A plantar pressure and smartphone acceleration data-collection system.
2. Data processing methods to convert raw plantar pressure data and smartphone

acceleration data into datasets usable by machine learning models.
3. A carrying position-independent step-counting algorithm, which detects the position

through a classification model, and then uses the corresponding regression model to
count steps.

4. An evaluation of the proposed step-counting algorithm based on extensive samples
collected from six participants, and a comparison of the performance of our approach
to a commercial pedometer.
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The rest of the paper is organized as follows: In Section 2, we describe the data-
collection system, data pre-processing methods, and data labeling algorithms. Then, we
describe the model building process. In Section 3, we describe the experimental procedure
and the structure of the dataset, and we then evaluate the performance of the proposed
algorithms. In Section 4, we discuss the study results, and the conclusions are given in
Section 5.

2. Methods
2.1. Data Acquisition

A data-collection system was developed to collect the acceleration data from smart-
phones and plantar pressure data. In contrast to existing FSR-based smart insoles (such as
Footslogger [19]) and smartphone-based acceleration acquisition software (such as inertial
measurement units (IMU) Logger and Sensor stream IMU), the proposed data acquisition
system integrates the smartphone’s acceleration data-collection module and the FSR-based
pressure collection module into a single application (Figure 1A). The two types of data
are finally processed and stored on a smartphone. This solved the problem of the data
acquisition system being too complicated when collecting the gait data. Data collection
was performed in the following steps:

1. The smartphone connects to the Arduino board and sends the current 13-digit times-
tamp after the user clicks the start recording button. The Arduino board starts record-
ing the plantar pressure data and adding the timestamp. The smartphone starts
recording the acceleration data.

2. The Arduino board sends the pressure data and timestamp to the smartphone at
30 Hz.

3. After the user clicks the stop recording button, the smartphone will disconnect after
the last data received from the Arduino board.
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Figure 1. (A) The FSR-based pressure data-collection module measures the number of steps by
collecting plantar pressure data. The IMU data acquisition module uses an Android API to collect
the three-axis acceleration data. After the data are collected, a real-time timestamp is added to align
the acceleration data and the pressure data’s time. (B) The FSR-based pressure collection module.
(C) The wearing position of the FSR-based pressure collection module.

2.1.1. Acceleration Data Collection Module

The acceleration data-collection module was developed through the Uni-app Frame-
work [23], and three-axis acceleration data were obtained through the API provided by
HTML5 + Plus [24]. The present data-collection module was designed to collect data at
30 Hz. This study used a smartphone with Android 8.1 (Rakuraku F-01L, Fujitsu, Japan).
To avoid background operating restrictions by the Android system [25], we applied a
long-term data recording function to allow for listing and self-starting in the background.
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2.1.2. FSR-Based Pressure Data Collection Module

The FSR-based pressure data-collection module collected plantar pressure data and
transmitted them to the data-collection module in the smartphone via Bluetooth (Figure 1A).
The module consists of the following three components:

• FSR sensor Researchers favor FSR sensors because of their simplicity, flexibility, low
cost, and high durability. We used IMS-C20A FSR sensors to collect plantar pressure
data. The IMS-C20A FSR sensors were circular and 20 mm in diameter. The sampling
frequency of pressure data was 30 Hz. The IMS-C20A FSR sensors have a sensitivity
range of 0.05 kg to 6 kg. Pressures above or below this range will hardly cause changes
in resistance values. Therefore, we identified values less than 0.5 N as 0 N and greater
than 60 N as 60 N. The IMS-C20A FSR sensors were placed on the insole near the toe
to collect the plantar pressure data for each gait cycle (Figure 1B).

• Arduino controller with battery and Bluetooth module An Arduino Uno development
board was used to collect the pressure data from the FSR sensors, and data were
transmitted to the smartphone’s data-collection module via the Bluetooth modular.
We used a model JDY-16 Bluetooth module, which is based on Bluetooth 4.2 standard;
the working frequency is 2.4 GHz, the modulation mode is GFSK, the bit rate is 115,200
bps, the maximum transmission distance is 80 m, and the communication rate is 8
Kbytes per second. We placed the controller node far away from the sensor nodes
and used larger-capacity batteries along with sub-components to solve the problem of
insufficient power caused by real-time data collection and transmission. The device
was placed in a trouser pocket (Figure 1C) for convenience, allowing the subject to
change the batteries quickly.

• Data acquisition and storage components The data acquisition and storage components
collected pressure data and three-axis acceleration data at 30 Hz, and an Android
smartphone was used to save data and time stamps to match the acceleration data and
pressure data. The frequency range of human walking and running is approximately
0.5–5 Hz [26,27], and according to the Nyquist criterion, the sampling frequency
should be at least twice the target frequency to obtain complete information. Therefore,
the sampling frequency in this study was set to 30 Hz.

2.2. Data Pre-Processing

This study focused on smartphones’ three-axis acceleration data and plantar pressure
data. To train and fit the machine learning-based algorithms to count steps, we used a
series of algorithms to pre-process the data.

First, the Signal Vector Magnitude (SVM) algorithm [28–30] was used to compute the
magnitude from the raw three-axis acceleration data (including gravitational acceleration)
to eliminate the noise caused by the changes in the smartphone’s angle. The SVM is defined
as follows:

SVM =
√

X2 + Y2 + Z2 (1)

where X, Y, and Z represent the components of acceleration on the x-, y-, and z-axis,
respectively.

Subsequently, a Moving Average Filter (MAF) [29] was applied to eliminate noise and
obtain a smooth signal from the acceleration magnitude and plantar pressure data. The
MAF is defined as follows:

At =
at−2 + at−1 + at + at+1 + at+2

5
(2)

where at is the unfiltered signal at position t, and At represents the filtered version of the
signal. All four closest neighbors were assigned the same weight.

A peak detection algorithm was applied to extract the peak value of the plantar
pressure data after a MAF was used. Finally, a sliding window algorithm extracted the
input data and labels.
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2.3. Data Labeling
2.3.1. Plantar Pressure Data and Gait Cycle

A gait cycle is defined as a series of actions comprising the foot touching the ground,
leaving the ground, and reaching the ground again [19]. It is a combination of phases,
usually marked as (i) heel strike (HS), (ii) foot flat (FF), (iii) mid stance (MS), (iv) heel
off (HO), and (v) toe off (TO) [31]. A complete gait cycle consists of a stance phase and
a swing phase, which can be detected by changes in plantar pressure [32,33] (Figure 2).
Zero pressure indicates that the foot is not in contact with the ground (swing), whereas a
non-zero value represents the stance stage in which the foot is in contact with the ground.
Consequently, the number of steps can be calculated by counting the number of pressure
changes from zero to non-zero.
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2.3.2. Threshold-Based Peak Detection Algorithm for Pressure Data

The gait cycle can be monitored by distinguishing between zero and non-zero values
of plantar pressure. However, the pressure sensor placed on the insole produces noise
caused by uneven heat distribution or by the foot contact when swinging [19]. We used a
MAF to filter the noise in the pressure data. Subsequently, a threshold-based peak detection
algorithm was developed to extract the gait event from the pressure data (Figure 3). The
threshold was set to 30 N to reduce noise because the maximum range of the pressure
sensor used in this study was 60 N, and most of the noise was lower than 30 N (Figure 4).
As the typical walking frequency for a person is 0.5–3 Hz, it can be considered that the time
interval of pressure peaks generated by walking is approximately 0.3 s–1 s. Therefore, we
set the minimum detection interval of the peak to 0.2 s. The peak intervals less than this
period were considered noise.
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2.3.3. Sliding Window Algorithm

The feature extraction of time-series data was performed using the sliding window
algorithm with a 50% overlap [34]. Because the human walking frequency is approximately
0.5–3 Hz, the length of the window used in this study was 2 s to contain at least one gait
cycle. As shown in Figure 5, data with a sampling rate of 30 Hz contain 60 data points in a
2 s window. If a 50% window stride is applied, half of the data (30 data points) will repeat
in the next window.
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2.4. Model Building

The various carrying positions of a smartphone will result in various acceleration
signal patterns [14]. Therefore, it is necessary to use a classification model to classify
the carrying position before counting steps. Thus, classification algorithms were used to
identify the location of the smartphones, and then the corresponding regression models
were applied to the specific carrying position (handheld, pocket, and handbag) to predict
the number of steps (Figure 6).
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Seven machine learning-based regression and classification algorithms were identified
as possible candidates for the step-count algorithm. The main parameters of the algo-
rithms are recorded in Table 1. We used the Keras Python library to create the Multilayer
Perceptron and Convolutional Neural Networks, and the Sklearn library to create the
Random Forest, Histogram-based Gradient Boost, Support Vector Machine, and K-nearest
Neighbors. The Ensemble Model was the weighted average of the Support Vector Ma-
chine, Multilayer Perceptron, and Random Forest. Each of the algorithms was evaluated
and analyzed, and each of the algorithms was evaluated using the same datasets and
data-preprocessing techniques.

Table 1. Parameters of proposed algorithms.

Classifiers Parameters Regressors Parameters

Multilayer Perceptron Hidden layers = 4
Total units = 920 Multilayer Perceptron Hidden layers = 4

Total units = 920

Convolutional Neural
Networks

1D convolutional
layers = 2

Max pooling
layers = 2

Fully connected
layers = 1

Convolutional Neural
Networks

1D convolutional layers = 4
Max pooling

layers = 4
Fully connected

layers = 2

Random Forest N_estimators = 200
Max_depth = 200 Random Forest N_estimators = 500

Histogram-based
Gradient Boost Default Histogram-based

Gradient Boost Default

Support Vector
Machine Kernal = linear Support Vector

Machine Kernal = linear

K-nearest Neighbors Default K-nearest Neighbors Default

Ensemble Model - Ensemble Model -

3. Experimental Evaluation
3.1. Experimental Procedure

Data were extracted from six healthy participants (Table 2). We recorded data at
a self-paced walking speed (0.8 m/s to 1.5 m/s) for 30 min to train the algorithms and
evaluate their performance. The experiment was conducted at Dong-A University, Busan,
South Korea. The participants walked along the sidewalk at their preferred gait speed with
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three smartphones—one placed in the pocket, one held in the hand, and one placed in a
handbag. An FSR sensor was placed in the shoe’s sole under the toe, and a mechanical
counter was used to record the actual number of steps.

Table 2. Demographic characteristics of the participants.

No. Gender Age
(Years)

Weight
(kg)

Height
(cm) Steps Time

(Minutes)

1 Male 27 49.5 170.0 2451 30
2 Male 26 68.3 180.0 3100 30
3 Male 27 74.5 170.0 3122 30
4 Male 29 84.2 177.5 2850 30
5 Female 26 41.3 160.0 2431 30
6 Female 27 69.1 170.5 3025 30

3.2. Training Procedure and Testing Procedure

The dataset was divided into a training set and a test set at the ratio of 7:3. In the
training procedure, we used the acceleration data corresponding to the three carrying
positions to train the classification model, where the input data were the acceleration data,
and the label was the corresponding carrying position. Then, the acceleration data and the
number of steps obtained from the pressure sensor were used to train the regression model.
Each carrying position corresponded to seven proposed regression models, i.e., the three
carrying positions corresponded to a total of 3 × 7 regression models.

In the testing procedure, the carrying position of the acceleration data was identified
by the classification model. Then the number of steps was calculated using the regression
model. Figure 7A show the recording of the recognition accuracy of the classification
model. Figure 7B shows the comparison of the step-count accuracy before and after
position identification.
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3.3. Accuracy of the Proposed Algorithms

Previous studies [35,36] that used commercial pedometers reported that the step-count
algorithm exhibited lower accuracy in low-speed walking compared to high-speed walking.
The authors in [36] tested four different step counters at different walking speeds on a
treadmill and reported poor performance for all devices at low-speed walking (0.6 m/s). In
our study, the data were collected at a low self-paced walking speed (0.8 m/s to 1.5 m/s). In
the test set, the accuracy of the Random Forest algorithm reached 85.1%, which was the best
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overall, which indicates that it had the best modeling accuracy for the various smartphone
carrying positions (Figure 7A). These results show that the smartphone carrying position
can be accurately identified via accelerometer signals.

The accuracy of the proposed regression algorithms and the commercial smartphone
pedometer application was determined as follows:

Accuracy(%) = (1− |Ne− Nr|
Nr

)× 100% (3)

where Ne is the estimated step count, and Nr is the real step count.
The accuracy of regression models in Table 3 was obtained after using the classifi-

cation model to classify the carrying positions (Section 3.2). The commercial pedometer
application exhibited lower average accuracy, ranging from 75.3% to 81.9% at self-paced
walking speed. In contrast, the Ensemble Model had an average accuracy of 98.5%, which
was higher than that of the commercial pedometer application and the other algorithms.
A previous study [36] reported a smartphone step-count accuracy of 69.7% in a field test,
which was lower than that of the ensemble model obtained in this study. In addition, the
six regression algorithms proposed in this study performed better than the commercial
pedometer application in all cases.

Table 3. Accuracies of step-count algorithms.

Mean Accuracies (%)

Carrying
Position

Regression Algorithms Pedometer
Application

Average
Random

Forest

Convolutional
Neural

Network

Histogram-
Based

Gradient
Boost

Multilayer
Perceptron

Support
Vector

Machine

K-Nearest
Neighbors

Ensemble
Model

Rakuraku
Smartphone
Pedometer

Handheld 94.1 90.4 87.7 90.8 79.4 82.1 98.1 75.3 87.2
Pocket 85.0 91.3 95.8 99.3 89.8 95.7 98.6 80.8 92.0

Handbag 89.2 89.0 86.9 91.6 77.4 83.6 98.8 81.9 87.3

Average 89.4 90.2 90.2 93.9 82.2 87.1 98.5 79.3

Our results indicate that different smartphone carrying positions have a significant
impact on the step-count accuracy (Figure 7B). Before using the classification algorithm,
the accuracy of the ensemble model varied according to the carrying position. In contrast,
the proposed Ensemble Model exhibited consistent accuracy after using the classification
algorithm to identify the carrying position (98.1% to 98.8%). These results demonstrate
that the proposed algorithms are significantly more stable for counting steps than are
commercial pedometer applications at varying carrying positions.

4. Discussion

In this study, to identify which machine learning algorithm provides the most accurate
step-count and carrying position detection, we developed a step-count recognition method
using an accelerometer in a practical real-world smartphone use environment.

Our study results indicate that different carrying positions result in different accelerom-
eter signal patterns, which impact the step-count accuracy of the smartphones (Figure 7B).
To address this problem, we proposed an ensemble algorithm comprising a classification
algorithm and a regression algorithm. The classification algorithm identifies the carrying
position of the smartphone and passes this information to the regression algorithm, which
then counts the steps accordingly.

The Random Forest algorithm was used to identify the carrying position of the smart-
phones while walking, with an accuracy of 85.1%. The classification accuracy obtained in
this study is higher than that of other acceleration-based solutions. Kaori et al. extracted
60 behavioral characteristics from acceleration data for nine storing positions of a smart-
phone (neck, pocket, backpack, handbag, and other positions) to build a Support Vector
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Machine classifier. Their overall accuracy reached 74.6% [37]. In [38], using a polynomial
kernel classifier-based Support Vector Machine algorithm, 79.0% classification accuracy
was found. The authors pointed out that by using a combination of accelerometer and
multispectral sensors, the classification accuracy was increased. However, using multiple
sensors significantly increases energy consumption [15]. In another study, the Random
Forest algorithm was used to identify the carrying position of the smartphones (hand,
bag, pocket) in six daily activity environments (sitting, standing, walking, stairs, running,
and bus) [39]. The algorithm achieved an average classification accuracy of 77.3%. In
contrast to these studies that focused on identifying the carrying position of smartphones,
the Ensemble Model proposed in this study exclusively used the classification algorithm to
determine the specific carrying position. The information was then used by the regression
algorithm to improve the step-count accuracy.

Previous studies have shown that the accuracy of the step count with smartphones
is insufficient under low-speed walking conditions [35,36,40]. Our study also observed
similar results (Table 2). After identifying the position of the smartphone, the step-count
accuracy of the proposed Ensemble Model was higher than that of the commercial pe-
dometer application and other algorithms. Moreover, the Ensemble Model proposed in
this study achieved a higher average step-count accuracy without a pre-set threshold in
three carrying positions (clothing pocket, handheld, and handbag). These findings extend
those of Vandermeeren, confirming that a machine learning-based step-count algorithm can
count steps more accurately than commercial pedometer applications [12]. By identifying
the carrying positions of smartphones, the step-count accuracy of the Ensemble Model was
98.5%, which was higher than the accuracy (97.7%) obtained in [12]. In another study, after
identifying the carrying positions of smartphones, the step-count accuracy was high and
close (no significant changes in different carrying positions) [10]. Although the result was
obtained on small datasets (approximately 250 steps in total), our study proves that similar
step-count accuracy could be achieved in different carrying positions after identifying the
carrying positions (Figure 7B).

To train machine learning-based step-count algorithms and improve their performance,
we developed a data acquisition system to collect smartphone acceleration data at a self-
paced walking speed. This data acquisition system estimated the time of the gait event
by detecting the peak pressure of the plantar pressure data (Figure 4). In this way, the
automatic labeling of supervised learning in gait detection was realized, enabling the
generation of a large amount of data during the experiment and avoiding the cost and error
of manual counting. Future research could involve the training of larger neural network
models in this way to achieve higher step-counting accuracies.

Our results indicate that the proposed Ensemble Model achieved higher step-count
accuracy and stable performance after identifying the actual carrying position of the smart-
phones in living conditions. This work will not only promote the research on accelerometer-
based walk-counting algorithms based on machine learning technology but also accelerate
the development of more applications that rely on accurate step counting.

There are some limitations worth mentioning. Although the proposed algorithm
achieves high accuracy in the case of self-paced walking speed (0.8 m/s to 1.5 m/s),
participants of varying age ranges and different walking speed experiments could further
improve the reliability. Future studies should therefore cover participants of varying age
ranges and collect data under different walking speed conditions and carrying positions to
obtain higher step-count accuracies and broader applicability.

5. Conclusions

In this study, we developed a carrying position-independent step-count algorithm for
smartphones. A data collection system was developed to record smartphone acceleration
data and plantar pressure data while walking. The proposed data-collection system and
step-counting algorithm can be used to collect plantar pressure data and smartphone accel-
eration data in complex walking environments to provide labels for analyzing gait events
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from smartphone acceleration data (walking, running, and climbing). On the other hand,
by analyzing the plantar pressure data and smartphone acceleration data of patients with
gait disorders, the gait disorders can be observed. The number of steps comprises the basic
data for many applications (such as walking speed and walking distance). Therefore, the
proposed step-counting algorithm can be considered packaged as a smartphone pedometer
application, or it can be built into other health monitoring applications.

Furthermore, our study revealed the potential to improve the performance of smart-
phone pedometers by plantar pressure data and indicated that the proposed ensemble
algorithm approaches provide higher accuracy, ranging from 98.1% to 98.8%, at self-paced
walking speeds. Therefore, machine learning-based ensemble algorithms can count effec-
tively and accurately predict step counts under different smart phone carrying positions.
Future research could use this method in larger, more diverse samples to identify a higher
number of more differentiated gait patterns and plantar pressure, for example, collecting
the plantar pressure and smartphone acceleration data of people of different age groups
when walking differently to develop a step-counting algorithm suitable for people.
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