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Abstract: The Research Octane Number (RON) is a key quality parameter for gasoline, obtained
offline through complex, time-consuming, and expensive standard methods. Measurements are
usually only available a few times per week and after long delays, making process control very
challenging. Therefore, alternative methods have been proposed to predict RON from readily
available data. In this work, we report the development of inferential models for predicting RON
from process data collected in a real catalytic reforming process. Data resolution and synchronization
were explicitly considered during the modelling stage, where 20 predictive linear and non-linear
machine learning models were assessed and compared using a robust Monte Carlo double cross-
validation approach. The workflow also handles outliers, missing data, multirate and multiresolution
observations, and processes dynamics, among other features. Low RMSE were obtained under testing
conditions (close to 0.5), with the best methods belonging to the class of penalized regression methods
and partial least squares. The developed models allow for improved management of the operational
conditions necessary to achieve the target RON, including a more effective use of the heating utilities,
which improves process efficiency while reducing costs and emissions.

Keywords: Research Octane Number; catalytic reforming; dynamic soft sensors; data synchroniza-
tion; data resolution

1. Introduction

With the increased interest in Industry 4.0 solutions and in the opportunities emerging
from big data scenarios, data-driven models, such as soft sensors, have been increasingly
explored in industrial processes to take advantage of the huge volumes of industrial data
that are being continuously collected and stored [1–3]. These models are instrumental for
the optimized conduction of process operations, as well as for diagnostic activities focused
on detecting problems and potential improvement opportunities. The quality of those
models critically depends on the quality of data [4] and how the several challenges typical
of industrial contexts are handled, such as the complexity of the systems under analysis,
the high-dimensionality, presence of outliers, missing data, multirate and multiresolution
measurements, time delays between different units, multiscale dynamics, etc.

Industrial processes are equipped with a wide diversity of sensors that allow the
collection of a large number of variables alongside the process, primarily for the purposes
of real-time monitoring and control [5–9]. These data often show patterns of correlation
and effect sparsity that need to be handled properly during the development of inferential
models or soft sensors. For instance, several variable selection and modelling algorithms
(also known as wrapper methods) have been proposed with the goal of reducing data

Sensors 2022, 22, 3734. https://doi.org/10.3390/s22103734 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22103734
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4997-8865
https://doi.org/10.3390/s22103734
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22103734?type=check_update&version=2


Sensors 2022, 22, 3734 2 of 25

redundancy and selecting the more predictive regressors, such as heuristic stepwise selec-
tion regression methods (based on different criteria), genetic algorithms and best subset
selection methods. On the other hand, latent variable methods accommodate redundancy
through projection into low-dimensional subspaces. This is the case of principal compo-
nent regression (PCR) [10] and partial least squares (PLS) [11–13]. PLS, in particular, is a
methodology that has been extensively applied to develop inferential models in industrial
scenarios due to its ability to handle collinearity, noise and a reasonable amount of missing
data [12,14].The class of penalized regression methods can also deal with high-dimensional
data. This class includes the Least Absolute Shrinkage and Selection Operator (LASSO) [15],
Ridge Regression [16–18] and Elastic Net [19–21].

Another important aspect of industrial data is their sparse data structure due to the exis-
tence of missing data, different acquisition rates (multirate data), or operational/communication
problems. The multirate scenario can occur when certain variables, for example, quality
variables, are obtained less frequently due to the more complex measurement protocols,
while other variables, such as process variables, are collected at very high rates through
process sensors.

On the other hand, multiresolution (or multi-granularity) can also occur when the
collected values have different levels of granularity in time. Their values, instead of repre-
senting instantaneous measurements, are the result of aggregation operations that merge
observations with finer granularity into new ones with a coarser granularity. Quite of-
ten, these aggregations can occur by simple averaging operations. Figure 1 schematically
depicts the differences between multirate and multiresolution scenarios: in the multirate
scenario, the values represent the instantaneous measurement of the variables with dif-
ferent sampling rates (process variables X1, X2, and X3 have a sampling rate of t, while
Y has a sampling rate of 3t), whereas, in the multiresolution scenario, the values contain
information with different levels of granularity (different resolutions). Regarding Figure 1b,
in multiresolution data structures, the time window used for the aggregation is also called
the time support. Thus, process variable X2 has a time support of 2t, while Y has a time
support of 3t. Although the two data tables may look similar, the values were obtained
differently, and their meaning is also distinct. The concept of multiresolution or multi-
granularity is often overlooked and still underexplored in data analysis [22]. However, it
may have important implications for model development. Even when data are available at
a single resolution, there is no assurance that the native resolution is the most adequate
for model development. In fact, data collecting systems were designed and installed by
third-party contractors, and their concerns were not to optimize the performance of future
predictive models but to ensure that the relevant variables are sampled at a sufficiently
high resolution and rate in order to control and monitor the system. Thus, it is important to
include the selection of the modelling resolution as an aspect to be considered during the
development of the inferential models [23].

In this work, we illustrate how the above-mentioned issues can be handled, in a
systematic way, in the scope of a real process, catalytic reforming, which is one of the
most important processes in petrochemical refineries. Catalytic reforming is the operation
responsible for the conversion of low-octane naphtha into high-octane gasoline blending
components, called reformates [24–26]. The Research Octane Number (RON) characterizes
the resistance to knocking (or antiknocking tendency) of gasoline during its combustion in
the engine and is a key quality parameter. If the gasoline RON is not within specifications,
engines may not work properly, with significant consequences also on power loss and
emissions. The goal of this work is the development of robust inferential models for
predicting RON by considering different data granularities and assessing their impact
on model accuracy. Furthermore, the alignment of the data from different units was also
considered in each granularity scenario. The industrial process consists of a continuous
catalyst regeneration (CCR) reforming unit from a major refinery located in Portugal. Using
easy-to-measure process variables collected from the catalytic reforming process, our aim is
to produce estimates of RON in real-time. With such an inferential model available, plant
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engineers can perform corrective actions earlier instead of waiting hours or even days for
the laboratory results.
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Figure 1. Schematic illustration of (a) multirate and (b) multiresolution data. A black circle 
represents an instantaneous measurement; a blue circle represents the aggregated value of several 
measurements. The grey rectangle represents the time window considered for each aggregation 
operation. 
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Figure 1. Schematic illustration of (a) multirate and (b) multiresolution data. A black circle represents
an instantaneous measurement; a blue circle represents the aggregated value of several measurements.
The grey rectangle represents the time window considered for each aggregation operation.

The rest of this article is organized as follows. Section 2 briefly describes the process
analyzed in this work. Section 3 presents the main steps of the analytical workflow followed
to develop soft sensors, including data collection, cleaning, pre-processing, and model
development. The framework used to compare the different modelling alternatives is also
described. Section 4 provides a brief summary of the different predictive methods that
were tested and compared. Section 5 presents and discusses the main results obtained.
Finally, Section 6 summarizes the main findings and conclusions of this work.

2. The Continuous Catalyst Regeneration (CCR) Unit

In this section, we present a brief description of the continuous catalyst regeneration
(CCR) reforming unit. This unit converts linear paraffins present in the naphtha cut to
higher reformate products for gasoline blending. This process essentially restructures
the hydrocarbon molecules, transforming linear paraffins with low octane ratings into
branched paraffins and aromatics [24–26].

The CCR process is the most recent catalytic reforming technology. The main difference
between CCR compared to other catalytic reforming units is the continuous addition of
catalyst to the reactors, mitigating the effects of catalyst deactivation over time. A schematic
representation of a CCR unit can be found in Figure 2. As in all catalytic reforming units,
a preheating stage increases the temperature of the naphtha in the feed. The reactor is
divided into three sections since different reactions occur at different stages. The final
reaction products go to the separator section (LPS), where the heavier liquid (reformate)
is sent to the stabilization column (“ST”) and recovered at the bottom. In addition to the
reformate, another product of this unit is hydrogen, which is not only reused in this process
but also directed to other processes in the refinery as well. The main goal is to deliver
an exit stream with RON under specifications, despite the existing variation in the heavy
gasoline stream entering the unit, and other causes of variability (e.g., due to environmental
factors, operational actions, equipment-level events and degradation, catalyst modification,
etc.), and at a minimum cost, both operational and for the environment (through reduced
emissions), for instance avoiding the use of heat in excess in the furnace. For this reason,
better control of RON is necessary, which requires more frequent access to good estimates
of the RON level. Currently, RON measurements are made in the local laboratory through
reference methods only a few times per week. Therefore, the development of inferential
models appears as a valid alternative to improve the control of the unit. In the next section,
we present the main steps of the workflow followed for developing inferential models
for RON.
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3. Data Analysis Workflow

As mentioned before, industrial data can raise a variety of analytical challenges.
During the development of data-driven models, it is necessary to ensure that data have the
required quality and the right structure to support the development of predictive models.
Therefore, a framework suitable for this objective should be established that addresses
all the relevant challenges that come with a particular industrial data set. In this section,
we provide a brief overview of the main stages of such a workflow for inferential model
development, as they were proposed in the literature.

Park and Han [27] described a three-step methodology for soft sensor design, includ-
ing (i) preliminary process understanding, (ii) data pre-processing and analysis, and (iii)
model determination and validation. The first stage is associated with finding a prior
understanding of the process, its variables and existing interactions. In the second stage,
the issues of outlier detection, noise reduction and data transformation are addressed. The
final stage concerns the selection of the model structure, estimating its parameters and
validating the model obtained with a new data set.

Alternatively, ref. [28] described a three-step strategy encompassing (i) data collection
and conditioning, (ii) influential variable selection, and (iii) correlation building. The first
step is related to the collection of data, an understanding of the problem, and assessing the
relevance of the variables gathered. In addition, an outlier detection strategy needs to be
implemented to exclude observations that do not represent valuable information about
the process. It is also important to ensure that data are representative of the process for
which the model is built. In the second step, a variable selection strategy is conducted to
reduce the number of variables for analysis. The final step concerns the development of the
predictive model.

In [5], several practical aspects of soft sensors are presented and organized in a five-
step procedure, including (i) the selection of historical data from the plant database, (ii)
outlier detection and data filtering, (iii) model structure and regression selection, (iv) model
estimation, (v) and model validation. The first step involves a rigorous selection of the
inputs that are to be collected. In the second step, an overview of the entire data set is
performed for detecting and removing outliers and dealing with the presence of missing
data. The following steps are related to the development of the model, starting with the
selection of the model structure (linear or non-linear). Finally, the model is trained and
validated using a new set of data.
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Another five-step methodology was proposed by [29], involving (i) data inspection, (ii)
data selection and steady-state identification, (iii) data pre-processing, (iv) model selection,
training, and validation, and (v) soft sensor maintenance. This methodology starts with a
first inspection of the structure of the data and the variability of the response variables. The
second step is devoted to the selection of data (variables) and time frame (period of time
for analysis). The data pre-processing step has the objective of dealing with missing data,
the detection of outliers, feature selection, and accommodation for the existence of different
sampling rates. The next step is focused on the selection of the model structure, which can
also benefit from past experience. Once the model is estimated, it is always necessary to
assess its performance on an independent data set. After developing the inferential model,
it is important to perform its maintenance and to retune its parameters on a regular basis to
overcome potential process and instrumentation drifts.

The different proposals for data analysis workflows presented above share some
communalities. More specifically, it is possible to identify four stages that they have in
common, which include gaining process insight and data collection, data cleaning, data
pre-processing, and model estimation and validation. These stages are presented in Figure 3
and will be followed in this work, with some adaptation. In the following subsections, we
describe the operations conducted in each stage of the refinery case study.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 26 
 

 

Alternatively, ref. [28] described a three-step strategy encompassing (i) data collec-
tion and conditioning, (ii) influential variable selection, and (iii) correlation building. The 
first step is related to the collection of data, an understanding of the problem, and as-
sessing the relevance of the variables gathered. In addition, an outlier detection strategy 
needs to be implemented to exclude observations that do not represent valuable infor-
mation about the process. It is also important to ensure that data are representative of the 
process for which the model is built. In the second step, a variable selection strategy is 
conducted to reduce the number of variables for analysis. The final step concerns the de-
velopment of the predictive model. 

In [5], several practical aspects of soft sensors are presented and organized in a five-
step procedure, including (i) the selection of historical data from the plant database, (ii) 
outlier detection and data filtering;,(iii) model structure and regression selection, (iv) 
model estimation, (v) and model validation. The first step involves a rigorous selection of 
the inputs that are to be collected. In the second step, an overview of the entire data set is 
performed for detecting and removing outliers and dealing with the presence of missing 
data. The following steps are related to the development of the model, starting with the 
selection of the model structure (linear or non-linear). Finally, the model is trained and 
validated using a new set of data. 

Another five-step methodology was proposed by [29], involving (i) data inspection, 
(ii) data selection and steady-state identification, (iii) data pre-processing, (iv) model se-
lection, training, and validation, and (v) soft sensor maintenance. This methodology starts 
with a first inspection of the structure of the data and the variability of the response vari-
ables. The second step is devoted to the selection of data (variables) and time frame (pe-
riod of time for analysis). The data pre-processing step has the objective of dealing with 
missing data, the detection of outliers, feature selection, and accommodation for the ex-
istence of different sampling rates. The next step is focused on the selection of the model 
structure, which can also benefit from past experience. Once the model is estimated, it is 
always necessary to assess its performance on an independent data set. After developing 
the inferential model, it is important to perform its maintenance and to retune its param-
eters on a regular basis to overcome potential process and instrumentation drifts. 

The different proposals for data analysis workflows presented above share some 
communalities. More specifically, it is possible to identify four stages that they have in 
common, which include gaining process insight and data collection, data cleaning, data 
pre-processing, and model estimation and validation. These stages are presented in Figure 
3 and will be followed in this work, with some adaptation. In the following subsections, 
we describe the operations conducted in each stage of the refinery case study. 

 
Figure 3. Data analysis workflow for inferential model development followed in this work. 

3.1. Data Collection 
In this stage, the different data sources are accessed, brought to a centralized reposi-

tory and integrated. All of the data were initially transferred to Microsoft® Excel using a 
Visual Basic for Applications (VBA) code. The subsequent analysis was carried out in the 
MATLAB® environment (The MathWorks, Inc., Natick, MA, USA). 

The CCR data set was obtained from the CCR unit of the GALP fuels plant at the 
Matosinhos refinery, located in Portugal. This data set contains 1,048,320 records, span-
ning an extended period of 24 months and conveying information from different process 

Figure 3. Data analysis workflow for inferential model development followed in this work.

3.1. Data Collection

In this stage, the different data sources are accessed, brought to a centralized repository
and integrated. All of the data were initially transferred to Microsoft® Excel using a
Visual Basic for Applications (VBA) code. The subsequent analysis was carried out in the
MATLAB® environment (The MathWorks, Inc., Natick, MA, USA).

The CCR data set was obtained from the CCR unit of the GALP fuels plant at the
Matosinhos refinery, located in Portugal. This data set contains 1,048,320 records, spanning
an extended period of 24 months and conveying information from different process streams
and zones (feed, reaction, separation, etc.), such as flows, temperatures, and pressures.
Information regarding the CCR data set originated from two sources: process variables
and product quality variables. The process variables are linked to the process operation
and contain sensor measurements, such as flow rates, temperatures, and pressures. The
product quality variable of interest is RON, which was obtained in the laboratory following
a standard procedure, the ASTM Method D2699. Process variables consist of easy-to-
measure variables collected every minute (temperatures, flows, pressures), whereas RON
is measured once per day (or even less). For that reason, the data set has a sparse, multirate
structure and may include outliers as well as missing data. Process engineers have informed
that there were no periods of non-operation (e.g., maintenance or shutdown periods) over
the 24 months under analysis.

3.2. Data Cleaning

The data cleaning stage is focused on detecting and removing bad data segments, as
well as single out outliers to be more carefully scrutinized during a second pass, eventually
with the support of process experts. Outliers are values that strongly deviate from the
normal range of each variable or from their local correlation patterns [29,30]. Identifying
and removing outliers is of extreme importance in industrial data analysis since they can
introduce biases in descriptive statistics and inferential methods, as well as deteriorate the
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performance of predictive models. However, one should keep in mind that sometimes such
unusual occurrences can provide useful insights into unexplored operational domains.

In this work, two categories of outliers were considered: global outliers and contextual
outliers. Global outliers are values that fall outside of the feasible range of the sensor
measurements. They are identified by applying simple variable-dependent thresholds
called operation limits. Each variable has its respective operating range, and any value
standing beyond that interval should be taken as an error and removed. This thresholding
procedure was executed by using the information provided by the plant process engineers.

Contextual outliers are more difficult to identify since they comply with the technical
range of the sensors but significantly deviate from the local pattern of dispersion. There
are several techniques proposed to identify this type of outlier, such as the 3σ rule [31],
the Hampel identifier [5,8,32], and the modified Hampel identifier with a moving window
technique [32]. We started by applying the 3σ rule and the Hampel identifier but concluded
that neither of them was able to detect most of the existing outliers since the thresholds
selected by these methods are contaminated by the outliers they are aimed to remove. On
the other hand, the modified Hampel identifier with a moving window technique was
found to be a more robust option. It reduces the influence of the outliers since it does not
consider the data set as a whole but only the local variability. The selection of the window
size was determined variable by variable, alongside expert input from plant engineers,
who also confirmed that the points removed were indeed outliers and not representative of
real process operations.

In addition to outliers, excessive noise can also present a problem. Noise can be filtered
out in order to improve the quality of the information collected [33]. Alternatively, the
noise characteristics can be taken into account in the models by using uncertainty-based
approaches [14,34,35].

3.3. Pre-Processing

In the pre-processing stage, some structural aspects of the cleaned data set are fixed
to prepare it for further data analysis. The main aspect that needs to be resolved is the
multirate nature of the data set. Another relevant topic of interest is related to missing
measurements caused by transmission problems and other sensor/process malfunctions,
which also contribute to the sparsity of the data set. Both aspects are covered in the pre-
processing stage, which includes two sub-tasks: (i) the selection of the time resolution
(granularity) for conducting data analysis and (ii) missing data imputation.

3.3.1. Selecting the Resolution for Data Analysis

As stated above, the data set is composed of process variables (collected every minute)
and the target response variable (collected, at best, once per day). This mismatch in
acquisition rates limits the amount of dynamic information that is possible to infer from the
data (according to the Nyquist theorem) and generates a sparse data structure that raises
many problems for model building, as the observations where regressors are available do
not match those where the response is known. These two sets of variables carry information
with different levels of detail about the process, and therefore it is necessary to first establish
a common resolution level for both process and quality variables.

The time resolution, or granularity, of a given data representation, is defined as the
length of the non-overlapping time windows over which measurements are aggregated and
summarized in some suitable way (e.g., using the mean, median, etc.). The resolution level
should be selected by taking into account the goal of the data analysis and the structure of
the data; see [4]. In this work, the objective was to develop an accurate predictive model for
the estimation of RON. Therefore, it was first necessary to select a common resolution level
that matches the available information (namely, the lower acquisition rate of RON). This
procedure will not only bring all variables to a common resolution level but also reduce
the size of the data to be analyzed and align the different data sources while minimizing
the multirate sparsity present in the raw data. The mathematical operator used for the
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aggregation was the median of the values in the aggregation windows. The median was
used instead of the mean, given its superior properties of robustness under the presence of
atypical observations, which is a useful feature when quickly analyzing large amounts of
industrial data.

Another important aspect of industrial data analysis is synchronization. As variables
are collected from different units, the time delays between them need to be addressed.
In this work, we have developed a methodology where the influence of data resolution
and synchronization on the prediction performance of the inferential models are analyzed
together. Five different synchronized single resolution scenarios were considered, each
one of them with a different time support, ts, referred to as S-SR[ts]). The aggregation was
based on the time of occurrence of the output variable and then considering a time window
of size ts towards the past. Therefore, if a sample for a RON measurement was collected at
time tRON, the aggregation of the data is performed between (tRON − ts) and tRON (i.e., it
is synchronized with the response). The aggregation operation is the median of the value
for each variable during the time period in question. The time supports (or window sizes)
considered were the following: 24 h (S-SR24), 4 h (S-SR4), 3 h (S-SR3), 2 h (S-SR2), and 1 h
(S-SR1). Figure 4 schematically depicts scenario S-SR3; since the time support is equal to
three, with all the aggregation windows between (tRON − 3) and tRON. Taking the example
illustrated in Figure 4 into consideration, the pre-processed data set resulting from the
S-SR3 methodology has only two observations (only two values for Y are available), and
they are then synchronized with the response. The first aggregation period takes place
between t2 and t5, and the second one between t7 and t10. Independently of the size of the
time support, the resulting data set always had the same number of observations because it
was constructed based on the number of RON’s observations.
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Figure 4. Representation of the S-SR[ts] methodology with a time support of three hours (S-SR3). It is
assumed that each black circle contains a data value, whereas a white circle does not. The sampling
time in this schematic illustration is 1 h.

3.3.2. Missing Data Imputation

There are several reasons for the existence of missing values in a data set. The most
common are related to (i) maintenance and shutdown periods, (ii) sporadic failures and
physical malfunctions of the sensors (since the sensors are physical devices, they may expe-
rience periodic failure conditions), and (iii) errors related to transmission issues between
the sensors and the data server. While the periods of type (i) can be removed from the
analysis, the periods of type (ii) and (iii) need to be handled through suitable imputation
schemes. These are random sources of missing data patterns that may occur during process
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operation (note the difference with the deterministic nature of blanks caused by multirate
collection systems).

Missing data imputation strategies estimate sequences of missing data by exploiting
the existence of associations: either between variables (cross-correlation) or over time
(autocorrelation). Various methods can be found in the literature that take advantage
of the existence of cross-correlations under both missing at random (MAR) and missing
completely at random (MCAR) scenarios, which are frequently based on expectation-
maximization (EM) approaches [36–39]. In the present case study, the CCR unit is composed
of several large pieces of equipment that constitute massive inertial elements characterized
by large dynamic time constants. At the same time, the data are collected at very fast
acquisition rates (every minute). In combination, these two conditions generate strong
autocorrelation patterns. This is, therefore, the dominating association pattern, and it
was the one explored in this work to estimate the scattered missing data. Autocorrelation
represents the degree of correlation between a given time series and a lagged (i.e., delayed
in time) version of itself. Given measurements, Y1, Y2, . . . , YN at times t1, t2, . . . , tN , the
autocorrelation function, for lag k, is defined by Equation (1).

rk =

N−k
∑

i=1

(
Yi −Y

)(
Yi+k −Y

)
N
∑

i=1

(
Yi −Y

)2
(1)

For the sake of illustration, Figure 5 presents the autocorrelation for a given (real)
process variable of the CCR unit, say X1, over the first 41 time lags, pointing out the strong
autocorrelation pattern of this process variable (that is also present in others).
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Since the dominant association structure present in our dataset corresponds to the
variables’ autocorrelation, we have used interpolative schemes to estimate the missing
data. The imputation was performed by a moving window technique, where missing data
at the center were replaced by the median of the data points falling within the moving
window [30]. This process was repeated for each variable. As happened in the stage
of outlier detection, the validity of the final result from the imputation operations was
confirmed by process engineers. EM methods could also be used to exploit correlation
and autocorrelation. However, the interpolative method is simpler, computationally more
scalable, and showed satisfactory accuracy.
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3.4. Model Comparison Framework

During the design of an inferential model, it is important to select the most appropriate
modelling strategy. However, it is not possible to make such a selection a priori; neither
is it recommended to simply adopt the methods the user is most familiar with or that
were successfully applied in other unrelated problems. The strategy followed in this work
consists of comprehensively analyze the prediction ability of a carefully selected variety of
methodologies and systematically compare their performances. This section describes how
the pool of methods were compared. References are also made to additional insights that
can be extracted from the models estimated.

In the proposed analytical pipeline, the set of predictive models (see Section 4) are com-
pared through a protocol that combines: (i) Monte Carlo Double Cross-Validation [40–45]
for robust estimation of the methods’ hyperparameter(s) and robust prediction assessment,
(ii) statistical hypothesis to rigorously assess the methods’ relative performances, and
finally (iii) a scoring operation, to summarize the results of the pairwise comparison tests in
an easily interpretable ranking of performances. It is important to mention that no method
from the classes referred above is expected to always perform better than the others and
claim overall predictive superiority. Therefore, the final decision about which method to
use should be based on a rigorous consideration of all the options available, conducted
case-by-case, which further justifies the adoption of a comparison approach such as the one
followed in this work. Even when the choice is not obvious, the decision process can only
benefit from the outcomes of such a comparative analysis. Thus, a state-of-the-art com-
parison methodology based on Monte Carlo Double Cross-Validation was implemented
in order to establish rankings of the best methods to adopt for addressing a particular
problem, such as the one described in this work.

The methodology, described in Table 1, starts by defining the number of Monte Carlo
runs to be conducted (nMC) in the outer cycle of the framework, i.e., the number of times
the internal operations will be repeated (in this work, we adopted nMC = 25). The internal
operations consist of randomly splitting the data set into a training and testing set (step
1.a). The training set is then used to select hyperparameter(s) using 10-fold cross-validation
(step 1.b), and a model is built using the training set (step 1.c) to predict the test set, after
which the prediction errors are saved (step 1.d). The hyperparameter(s) for each method
and more details on how they were optimized in step 1.c can be found in in Appendix B,
Table A1.

Table 1. Pseudo-code for the comparison framework adopted in this work.

1. For i = 1: nMC (Number of Outer Cycles) perform:

a. Randomly split the complete data set into a training (80%) and testing set (20%)
b. The training set is used to tune the hyperparameter(s) using 10-fold cross-validation (Inner

Cycle).
c. Estimate the model with the training set and the selected hyper-parameter(s)
d. Predict the observation in test set and compute the Root Mean Squared Error (RMSEtest

i,m ,
where m is the index of the method).

2. Apply a paired t-test to assess the statistical significance of the difference between the
RMSEtest

1:NMC,m for all pairs of methods.
3. Using the p-values for paired statistical tests, compute the overall performance criteria:

a. Compute KPIm using Equation (4)
b. Compute Rankm using Equation (5)

Concerning the pseudo-code presented in Table 1, some decisions need to be made
regarding the splitting (step 1.a) and the tuning of the hyperparameter(s) (step 1.b). For the
splitting of the data, described in step 1.a, an 80/20 ratio was established. The splitting of
data can occur in three ways: (i) order split, (ii) random split, (iii) and random stratified
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sampling split. In the case of order split, the first 80% of the samples go to the training
set, while the remaining ones go to the testing set. The problem with this strategy is that it
does not always provide a balanced representation of all of the conditions where the model
should be trained. Therefore, in this work, we have adopted a random stratified sampling
split approach, which consists of splitting the response variable into a pre-selected number
of intervals based on its percentiles (e.g., 0–25, 25–50, 50–75, and 75–100 percentiles). Then,
from each group, 80% of the data were randomly selected to form the training set, and the
rest went to the testing set.

The training set in each run is used to optimize the selection of the hyperparameter(s) of
each model (see Appendix B for the ranges considered for tuning the hyperparameters of the
different methods). Since, in some industrial processes, it may be difficult to obtain sufficient
historical data to develop a model, it is advantageous to use K-fold cross-validation (K-F
CV) for this task. By default, 10-fold cross-validation was used (step 1.b). From the existing
ten folds, nine are retained to train a model, and the remaining fold is used to perform the
cross-validation. This process is repeated ten times, ensuring that each fold is used once as
a validation set. This 10-fold cross-validation represents the inner cycle of (step 1.b). The
RMSE on the left-out folds, obtained for each possible value of the hyperparameter(s), is
saved, and the one leading to the lowest RMSE value is adopted for establishing the model
hyperparameter(s).

Finally, the prediction errors on the left out test set are calculated and the root mean
squared error

(
RMSEtest), given by Equation (2), is saved, as well as the coefficient of

determination for the test set
(

R2
test

)
, given by Equation (3).

RMSE =

√√√√√ n
∑

i=1
(yi − ŷi)

2

n
(2)

R2 =

n
∑

i=1
(ŷi − y)2

n
∑

i=1
(yi − y)2

=

n
∑

i=1
(yi − y)2 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

= 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

(3)

where, yi is the ith observed response, ŷi is the corresponding estimate, and n stands for the

number of observations in the testing set. y is the mean of y,
n
∑

i=1
(yi − y)2 is the observed

variability,
n
∑

i=1
(ŷi − y)2 is the variability explained by the estimated model and

n
∑

i=1
(yi − ŷi)

2

is the variability not explained by the model (residual variation). Since the outer cycle
can be performed multiple times, it is possible to characterize the individual performance
of the methods through their distributions of RMSEtest (lower values suggest improved
predictive performances).

An important aspect to ensure in this comparison framework is the following: in each
run, the training and testing data sets are exactly the same for all of the methods under
comparison. Therefore, the results are naturally organized in a pairwise fashion, making it
possible to compare the different methods using statistical hypothesis tests with improved
statistical power (as certain variation sources are blocked, in this case, the resampling
variation). This comparison is performed through paired t-tests (given the high number
of runs, the Central Limit Theorem assures the convergence of the mean to a Gaussian
distribution, justifying the adoption of this test). The null hypothesis states that the mean
difference between the two methods under comparison is zero (i.e., the means of RMSEtest

for the two methods are equal). The null hypothesis is rejected whenever the p-value
obtained is lower than the adopted significance level (in this case, the significance level
was set to α = 0.05). To facilitate the analysis of the relative performance of the methods
resulting from the battery of pairwise statistical tests, a scoring system was implemented.
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For each pair of methods under comparison, a score of 1 (“wins”) is given to the method
with statistically significant lower RMSEtest (e.g., better prediction performance). A score of
0 (“loss”) is given to the method with statistically significant higher RMSEtest (e.g., worse
prediction performance). In case the prediction performance of the two methods is not
statistically distinct, a “draw” has occurred.

If a “draw” occurs, it is not clear which score should be attributed, and any value in
the interval ]0, 1[ could be arbitrarily chosen. By specifying a value in this interval, the
performance of each method is obtained from the sum of the scores obtained in all pairwise
comparisons, which would be a reasonable Key Performance Indicator (KPI).

However, as this sum depends on the actual score attributed to the “draws”, and any
specific value would be debatable, we have computed the average KPI for all possible
weights on the interval ]0, 1[. More specifically, we have calculated two KPIs for the relative
performance of each method: the mean KPI and the mean RANK, defined as follows:

Mean KPI—the average of the sum of scores when the “draw” scores span the inter-
val ]0, 1[

KPIm =
1

1− 0

∫ 1

0
KPIm(s)ds =

∫ 1

0
KPIm(s)ds (4)

Mean RANK—the average rank (in the descending ordering of performance) obtained
when the “draw” scores span the interval ]0, 1[

RANKm =
1

1− 0

∫ 1

0
RANKm(s)ds =

∫ 1

0
RANKm(s)ds (5)

In the implementation of this methodology, autoscaling (or z-score transformation,
using the mean and standard deviation of the training set) was applied to all variables in
each run of the outer cycle, to avoid any bias in the estimation of the testing set.

4. Predictive Modelling Methodologies

There are many regression methodologies currently available to perform predictive
modelling. They can be just variants of the same base approaches but can also present great
differences in their assumptions (e.g., regarding collinearity, sparsity, non-linearity, etc.)
or estimation procedures which, consequently, lead to differences in the final outcomes.
In this work, we adopted a selection of 20 regression methods that represent the main
classes currently adopted for industrial data analysis; see also [42], guaranteeing in this
way that the analytical landscape is covered in a balanced fashion. The following linear
and non-linear regression methods were considered (a brief overview of each method is
presented in Appendix A):

Multiple Linear Regression (MLR): [16,46] with and without variable selection (for-
ward stepwise regression, FSR) [47–49].

Penalized Regression Methods: ridge regression (RR) [16,17], least absolute shrink-
age and selection operator (LASSO) [15] and the elastic net (EN) [19–21].

Latent Variable Methods: principal component regression (PCR) [50–53], principal
component regression with a forward stepwise selection strategy (PCR-FS) and partial least
squares (PLS) [54–62].

Tree-Based Ensemble Methods: bagging of regression trees, random forests and
boosting of regression trees [63–67].

Artificial Neural Networks: several backpropagation algorithms were considered [68,69]:
Levenberg–Marquardt backpropagation (LM) and resilient backpropagation (RP); see
also [68,70–73]; for applications in chemical engineering see [74–77].

Kernel Latent Variable Methods: Kernel PLS (KPLS) [78,79] and Kernel PCR [64,80,81],
using the following kernel functions: Gaussian radial basis function and the polynomial
kernel [82].

Support Vector Machines Regression (SVR): several kernels were tested: linear, poly-
nomial, and Gaussian kernels [83–87].
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5. Results

In this section, we report a summary of the results obtained, with a special focus on
the comparison of performances for the different predictive methodologies used to estimate
the industrial RON values for a major petrochemical facility.

As mentioned in Section 3, the CCR data set is composed of 1,048,320 samples from
41 process variables, such as the temperatures, flows, and pressures that originated in
different locations (feed, reaction, separation, and utility zones) and streams of the CCR
unit. These samples cover an extended period of 24 months. Table 2 provides the number
of samples collected of RON values for the CCR data set, as well as the corresponding
range of values.

Table 2. Number of RON samples and the corresponding range, mean and standard deviation.

Property Number of
Samples

Property Values

Min. Max. Mean SD

RON 243 96.80 102.50 100.38 0.97

5.1. Data Acquisition and Inspection

There is a well-defined multirate structure in the CCR data set, with two different
types of variables having distinct sampling rates: process variables were collected every
minute while the target quality variable (RON measurements) are available, at best, once
per day. Each recorded value regards an “instantaneous” observation (high resolution).
Figure 6 depicts the time series plot of RON and process variable X1 (process variables are
anonymized to protect critical industrial information).
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during the data collection period.

Analyzing Figure 6a, it is possible to verify that there are no observations below the
limit value of the product quality (RON = 95). From Figure 6b, we can confirm that there
are no non-operation periods due to plant shutdown or maintenance (this conclusion was
validated by process engineers). From Figure 6b, it is also possible to verify the existence of
outliers in the data set for this variable. The following section provides the results for the
data cleaning step, where outliers are detected and handled.

5.2. Data Cleaning

As described before, several data cleaning filters were conducted over the data set with
the objective of identifying and removing bad data segments and non-operation periods
(e.g., shutdown or maintenance). For illustration purposes, Figure 7 presents the results
obtained in the cleaning stage of the data analysis workflow for variable X1 (the black line
in this plot represents the collected data).
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window. The black lines for (c–e) are the same as the blue line from (b), i.e., the output of the
operational filter.

Global outliers were detected by applying an operation filter for each process variable.
Each process variable has its own operating limits, and Figure 7b presents the data for
variable X1, after this stage was completed (blue line). From Figure 7b, it is possible to
confirm that there are still several outlying observations that were detected. These points
correspond to contextual outliers. To remove the contextual outliers, three strategies were
studied, namely the 3σ rule, the Hampel identifier, and the modified Hampel identifier with
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a moving window technique. From Figure 7c,d, it is possible to verify that neither of the
former two approaches was able to detect a large fraction of the existing outliers since their
thresholds are influenced by the existence of outliers, leading to inflated “normal” intervals.

On the other hand, the moving window technique was found to be a better alternative
in this case since it does not take into consideration the data set as a whole but only
considers the variability in a local neighborhood for defining the threshold. Once again, a
window size was chosen for each variable from a list of possible sizes {50, 500, 1000, 2000,
3000, and 5000}. The selection of an adequate window size was defined case by case and
confirmed with plant engineers to reassure that the points removed were, in fact, abnormal.
From Figure 7e, it is possible to validate the effectiveness of the moving window technique,
which identified and removed most contextual outliers. The adaptive Hampel algorithm
was therefore applied to all process variables.

5.3. Data Pre-Processing

Table 3 provides information about the number of samples, number of predictors, and
levels of missing data for the different scenarios of resolution/synchronization considered
in this study (see Section 3.3).

Table 3. Number of samples and percentages of missing data in each scenario tested.

Resolution Scenario Number of Samples Number of
Predictors Missing Data X1 (%)

Raw Data 1,048,320 41 0.02

After Cleaning 1,048,320 41 3.56

S-SR24 243 41 0.00

S-SR4 243 41 0.00

S-SR3 243 41 0.00

S-SR2 243 41 0.00

S-SR1 243 41 0.00

Since there were no non-operation periods to remove after the data cleaning stage, the
number of samples remains the same as in the raw collected data. However, the amount of
missing data has increased since the global and contextual outliers were replaced by blanks
instead of removing the entire multivariate observation from the data set.

In all synchronized scenarios, the pre-processed data set has 243 new observations
because, in these scenarios, the aggregation only takes place when there is a record of RON.
Since there are 243 samples of RON, the data set after the synchronized resolution will have
the same number of observations. Variable X1 does not have missing records, but other
variables may have, and this issue needs to be taken into consideration.

As mentioned before, some predictive methodologies do not handle missing data.
Therefore, a robust interpolative method was adopted to estimate missing records for each
scenario. The imputation was carried out via a moving window median approach.

5.4. Prediction Accuracy Assessment and Comparison

As described previously, RMSEtest and R2
test were employed to evaluate the prediction

capabilities of the different methods tested. The RMSE is the commonly adopted accuracy
measure for estimating the standard error of prediction obtained for the different methods.
The RMSEtest obtained are presented in Table 4. The corresponding results for the R2

test are
presented in Appendix C.
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Table 4. Average RMSEtest (in test conditions) over all cross-validation trials for each regression
method tested and in each scenario of resolution/synchronization.

Method S-SR24 S-SR4 S-SR3 S-SR2 S-SR1

MLR 0.607 0.529 0.637 0.666 0.624

FSR 0.500 0.538 0.548 0.571 0.571

RR 0.494 0.513 0.560 0.578 0.464

LASSO 0.493 0.508 0.502 0.511 0.493

EN 0.486 0.510 0.490 0.500 0.477

SVR-poly 0.533 0.510 0.531 0.558 0.506

SVR-rbf 0.531 0.510 0.530 0.552 0.502

SVR-linear 0.586 0.600 0.561 0.551 0.585

PCR 0.537 0.548 0.530 0.544 0.533

PCR-FS 0.597 0.612 0.606 0.627 0.633

PLS 0.494 0.530 0.502 0.508 0.471

Bagging 0.545 0.595 0.550 0.574 0.599

RF 0.546 0.595 0.561 0.566 0.581

Boosting 0.520 0.559 0.535 0.539 0.539

K-PCR-poly 0.752 0.766 0.731 0.752 0.745

K-PCR-rbf 0.509 0.540 0.517 0.507 0.489

K-PLS-poly 0.918 0.896 0.856 0.880 0.851

K-PLS-rbf 0.510 0.547 0.532 0.544 0.504

ANN-LM 0.852 0.860 0.782 0.725 0.811

ANN-RP 0.690 0.732 0.690 0.692 0.718

Analyzing the results obtained and summarized in Tables 4 and A2 (Appendix C), it is
possible to verify that some methods present an adequate performance regarding prediction
accuracy. Most of the regression methods present RMSEtest values near 0.5, being quite
accurate for most practical purposes. The results also point to a certain advantage of using
penalized regression methods, partial least squares, and kernel partial least squares with
radial basis function, over the remaining linear and non-linear modelling approaches. This
may be due to the existence of significant correlations between some process variables, such
as temperatures in the reaction zone, which may lead to rather unstable models unless they
are stabilized with some suitable technique, such as regularization or projection to latent
spaces. This characteristic of the data overshadows the potential presence of non-linearity
in the system and leads to the selection of methods that are able to cope with it rather than
being capable of describing some mild curvature. This trend is reinforced by the stability of
the process, which reduces the manifestation of non-linearity. Upon a closer inspection of
the models, we could also verify that the variables found to be most important originated
at the reaction and feed zones, which is consistent with existing Chemical Engineering
background knowledge about phenomena taking place in this unit.

The pairwise statistical hypothesis tests led to the KPIm scores presented in Figure 8
for the different resolution/synchronization scenarios.
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These results confirm the superior performance achieved with the penalized regression
methods over all the others in the prediction of RON in this unit, and in particular, the
good performance of Elastic Net and LASSO.

Regarding the scenarios of resolution/synchronization, it is possible to observe that
there are no major trends, but some resolution levels tend to show better performance than
others. In particular, some of the lowest RMSEs are obtained for the synchronized scenario
with a granularity of 1 h, S-SR1 (namely for PLS, RR and EN; see Figure 9 for RMSEtest and
Appendix C for R2

test), and this may be due to the fact that the CCR plant has residence
times that range between two and three hours. In general, several reasons may interfere
with the definition of the best granularity to adopt, such as the level of unstructured
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variability present, the dynamic characteristics of the process, the delays between units, and
the availability of data for certain variables, among others. For instance, a stable process
with large unstructured variation and noise sources may favor the use of longer averaging
windows (coarser granularity), whereas processes exhibiting clear, dynamic patterns in the
process variables with lower levels of noise can be better described using a less granular
representation of the data (finer granularity). The best compromise must be found case
by case as if it was an additional tuning parameter of the models. Multi-granularity (or
multiresolution) models could also be developed, where the granularity is defined for each
variable under analysis [23,88].
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6. Conclusions

In this work, a detailed data analytics workflow was presented and applied to address
the challenging problem of predicting RON in the Catalytic Reforming Unit of an oil refinery,
using only process data, and identifying the most relevant sources of RON variability. This
workflow was implemented as a generic data analysis platform and includes data cleaning,
data synchronization, and data resolution definition stages, together with extensive model
testing and comparison.

A rich variety of predictive methods, representative of different classes of regres-
sion methodologies, was studied (twenty methods overall) and compared for the task
of RON prediction. This comparison methodology was based on a Monte Carlo Double
Cross-Validation approach to ensure an accurate and robust assessment of their relative
predictive merits.

For the CCR data set, the best results were obtained for methods arising from the
linear spectrum of predictive analytics, namely with ridge regression, elastic net and partial
least squares. From the non-linear methods, kernel partial least squares with a radial basis
function also presented interesting results, considering the several resolutions studied. The
good process control of the CCR unit may be the reason why non-linearity is not so relevant
here (as the process is not significantly perturbed) and, therefore, linear approaches that
are able to cope with collinearity and can be applied with good accuracy and stability, were
the selected solutions.

This result is important not only for the specific application under analysis but in a
more general setting, as it underlines the importance of considering representatives from
the full spectrum of predictive solutions when addressing complex industrial processes.
In particular, it is not advised to assume that the most complex non-linear approaches,
such as deep neural networks and others, despite the very good results achieved in many
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data-intensive applications, will necessarily translate such outstanding performance for
industrial systems as well. Moreover, the same applies to any technique, as postulated
(but often forgotten) in the celebrated NFL (“no free lunch theorem”) by David Wolpert
published in 1996.

Regarding the different resolution/synchronization scenarios studied, the results point
to the use of the synchronized scenario with a granularity of 1 h, S-SR1. Most of the data-
driven methods tested with real plant data collected from the refinery led to predictions of
RON values with reasonable accuracy. These results deserve particular consideration, given
the existence of numerous unmeasured sources of variation in a large-scaled industrial
process such as in a refinery, which introduces non-predictive components into the data, as
well as possibly some missing elements and noise. From the refinery operation perspective,
as transmitted by its plant engineers, the results obtained are promising, considering that
only process variables are used to estimate RON, as well as the order of magnitude for what
is considered from a practical industrial point of view as being an acceptable prediction
error (equal or below 0.5). Therefore, the results achieved open good perspectives for future
industrial applications, as RON is a critical process outcome, and the current methods to
estimate its values are rather complex, expensive, and involve a long-time delay until the
measurement becomes available.

In this work, it was shown that using a workflow composed of statistical and machine
learning tools can indeed efficiently lead to quite good results in a relatively short time
frame, even for rather complex problems, such as the prediction of RON values from
process variables. These data-driven models can be instrumental in supporting process
improvement efforts, namely regarding energy consumption, for instance, by avoiding
excessive heating in the furnaces and heat exchangers at the inlet of the reactors, thus also
reducing emissions levels and increasing the refinery’s bottom-line results.
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Appendix A. A Brief Overview of Regression Methods Studied in This Work

In this work, we have explored 20 regression methods arising from different classes
of predictive methods. Each class shares affinities in the estimation algorithms used and
assumptions about the data structure or functional relationships. Next, we provide a short
introduction to each method, together with references where more complete descriptions
can be found. In addition to the more advanced methods, the classical Multiple Linear
Regression (MLR) approach was included in this study for completeness since it is a well-
known technique, widely used and implemented together with several variable selection

methods considered in this work [16,46]. The MLR model, Y = b0 +
p
∑

j=1
bjXj + ε, assumes

that only the response variable carries a sizeable error, which is additive and homoscedas-
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tic (constant variance). The regression coefficients are found by least squares fitting, as
described in Equation (A1):

b̂MLR = argmin
b=[b0 ...bP ]

T

{
n

∑
i=1

(yi − ŷi)
2

}
(A1)

where, b̂MLR is a vector containing the regression coefficients, n is the number of obser-
vations, yi is the ith observed response value and ŷi is the respective estimated response.
MLR faces problems when predictors present moderate-high levels of collinearity because
the estimation of the regression coefficients becomes unstable (high variance). In that case,
other approaches are available that lead to more stable predictions. Next, we present the
other classes of methods considered and tested in this work.

Variable Selection Methods. In variable selection methods, a subset of the predictor’s
variables is selected according to a given criterion and is then used for estimating the model,
while all the others are discarded. Forward stepwise regression (FSR) successively includes
and excludes variables according to the p-value of a partial F-test [47–49], even though
other information-theoretic measures can also be employed (e.g., AICc, BIC).

Penalized Regression Methods. In the class of penalized regression methods, the
regression coefficients are obtained by minimizing the sum of squared residuals while
penalizing for the magnitude of the regression vectors (regularization). The penaliza-
tion/regularization term is used to stabilize the estimation of the coefficients at the expense
of introducing some bias in the estimation (the well-known bias-variance trade-off: a de-
crease in variance compensates for the higher bias of the predictions). This class of methods
includes ridge regression (RR) [16,17], least absolute shrinkage and selection operator
(LASSO) [15], and the elastic net (EN) [19,20]

Latent Variable Methods. Variable selection methods assume that only some observed
variables may influence the observed response (predictors sparsity) while others should be
discarded. On the other hand, in the latent variable methods, it is assumed that the observed
variability in both X and Y arises from a few underlying variables (latent variables), which
are unobservable but can be inferred from linear combinations of the original variables.
From this group of methods, three methodologies were analyzed: principal component
regression (PCR) [50–53], principal component regression with a forward stepwise selection
strategy (PCR-FS), and partial least squares (PLS) [54–62].

Tree-Based Ensemble Methods. A regression tree approximates the relationship be-
tween the inputs and outputs by a piece-wise constant function, forming the building
blocks for constructing the ensembles of predictors. In this class, three methods were used:
Bagging of regression trees, Random Forests and Boosting of regression trees [19,63–67].

Artificial Neural Networks. Artificial neural networks (ANNs), such as feed-forward
neural networks, form a class of biologically inspired non-linear regression methodologies
that mimic the learning processes taking place in the human brain [68,70–73]. ANNs are
popular due to their ability to model complex non-linear functions. Usually, one hidden
layer is enough to approximate continuous functions. However, as the complexity of the
problems grows, it may be necessary to increase the number of hidden layers.

The most common training method for the ANN methodology is the backpropagation
algorithm, and it will be adopted in this work. The choice for this algorithm is not arbitrary
since it has been extensively studied and is a common choice in many practical applications,
including in Chemical Engineering [74–77]. This algorithm consists of two phases: the
forward propagation phase followed by the backward propagation phase [68,69]. We have
considered several backpropagation algorithms to estimate the neural network parameters,
including Levenberg–Marquardt backpropagation (LM) and resilient backpropagation (RP).

Kernel PLS. Partial least squares (PLS) regression introduces the concept of latent
variables to describe the linear multivariate relationship between the predictors’ matrix,
X, and the response matrix, Y. However, it may be of interest to consider the presence of
non-linear behaviour [78,79]. One way to bring non-linear modelling to the PLS scope is
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through kernelization. The basic idea is to map the data X into a high dimensional feature
space

1 

 

  via a non-linear mappingϕ and then perform a regression in this new space feature.
This is the principle of Kernel PLS (KPLS) to estimate the relationship between X and Y.
The selection of kernel function to adopt for the mapping is relevant, and in this work, we
have considered two representatives: the Gaussian radial basis function, Equation (A2) and
the polynomial, Equation (A3) [82].

Kij = K
(
xi, xj

)
= exp

(
−
‖xi − xj‖2

2σ2

)
(A2)

Kij = K
(
xi, xj

)
=
(〈

xi, xj
〉
+ 1
)p (A3)

Kernel PCR. Kernel PCR (KPCR) is similar to KPLS, but instead of using the NIPALS
algorithm to select the latent variables, the method uses principal component analysis for
obtaining the scores (principal components). The general idea for kernel PCR is again to
map the original dataset into a higher-dimensional feature space, where it is possible to use
PCA to create a linear relationship between the features, which are non-linearly related to
the original input space [19,80,81,89]. For KPCR, we have used the same type of kernels as
for KPLS: polynomial and Gaussian radial basis functions.

Support Vector Machines Regression. Support Vector Machines Regression (SVR) is
another machine learning method with the ability to handle non-linear relationships [83–87].
This methodology also projects data into a high dimensional feature space (by transforming
the original variables with different kernel functions), penalizing the resulting complexity
with a specific term added to the loss function, which also contains an ε–sensitive loss term.

Appendix B. Details on Hyperparameters Selection for All Regression Methods

This appendix presents the range of the hyperparameter(s) used in the regression
methods, as well as their selection strategy.

Table A1. Hyperparameter(s) range(s) for each method considered during the model training stage.

Method Hyperparameter(s) Possible Value(s) Selection Strategy

MLR - - -

FSR pin
pout

0.05
0.10 -

PCR aPCR 1 : min(20, n, p) 10-fold cv

PCR-FS pin
pout

0.05
0.10 10-fold cv

PLS aPLS 1 : min(20, n, p) 10-fold cv

RR α
γ

0
0.001; 0.01; 0.1; 1; 10 10-fold cv

LASSO α
γ

1
0.001; 0.01; 0.1; 1; 10 10-fold cv

EN α
γ

0; 0.167; 0.333; 0.500;
0.667; 0.833; 1

0.001; 0.01; 0.1; 1; 10
10-fold cv

BRT TBRT 50; 100; 500; 1000; 5000 10-fold cv

RF TRF 50; 100; 500; 1000; 5000 10-fold cv

BT TBT 50; 100; 500; 1000; 5000 10-fold cv
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Table A1. Cont.

Method Hyperparameter(s) Possible Value(s) Selection Strategy

SVR-linear εlinear 0.001; 0.005; 0.01; 0.05; 0.1 10-fold cv

SVR-poly εrbf 0.001; 0.005; 0.01; 0.05; 0.1 10-fold cv

SVR-rbf εpoly 0.001; 0.005; 0.01; 0.05; 0.1 10-fold cv

K-PCR-poly aPCR
ppoly

1 : 30
2; 4; 6; 8; 10 10-fold cv

K-PCR-rbf aPCR
prbf

1:30
0.1; 1; 10; 50; 100; 300;

1000
10-fold cv

K-PLS-poly aPLS
ppoly

1 : 30
2; 4; 6; 8; 10 10-fold cv

K-PLS-rbf aPCR
prbf

1:30
0.1; 1; 10; 50; 100; 300;

1000
10-fold cv

ANN-LM layer
nLM

1
5; 10; 15 10-fold cv

ANN-RP layer
nRP

1
5; 10; 15 10-fold cv

Appendix C. Additional Results for the Comparison Study

The coefficient of determination R2 between predicted and observed responses, ob-
tained over a large number of cross-validation trails, assesses the methods’ prediction
accuracy in terms of a normalized parameter. The results obtained for the different meth-
ods studied are summarized in Table A2 and Figure A1.
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Table A2. Average R2
test (in test conditions) over all cross-validation trials for each regression method

tested and in each scenario of resolution/synchronization.

Method S-SR24 S-SR4 S-SR3 S-SR2 S-SR1

MLR 0.555 0.705 0.505 0.366 0.410

FSR 0.722 0.697 0.660 0.607 0.577

RR 0.730 0.727 0.622 0.549 0.745

LASSO 0.730 0.732 0.719 0.708 0.713

EN 0.738 0.729 0.732 0.717 0.728

SVR-poly 0.681 0.728 0.680 0.630 0.683

SVR-rbf 0.683 0.729 0.681 0.641 0.689

SVR-linear 0.622 0.627 0.649 0.661 0.606

PCR 0.680 0.687 0.686 0.670 0.666

PCR-FS 0.605 0.612 0.586 0.553 0.531

PLS 0.729 0.709 0.717 0.709 0.738

Bagging 0.672 0.636 0.663 0.635 0.583

RF 0.674 0.637 0.652 0.644 0.610

Boosting 0.701 0.676 0.681 0.674 0.661

K-PCR-poly 0.376 0.392 0.403 0.353 0.351

K-PCR-rbf 0.714 0.696 0.702 0.711 0.718

K-PLS-poly 0.073 0.166 0.185 0.138 0.163

K-PLS-rbf 0.713 0.687 0.681 0.662 0.695

ANN-LM 0.238 0.287 0.353 0.436 0.269

ANN-RP 0.488 0.485 0.486 0.474 0.413
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