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Abstract: Fetal electrocardiograms (FECGs) provide important clinical information for early diagnosis
and intervention. However, FECG signals are extremely weak and are greatly influenced by noises.
FECG signal extraction and detection are still challenging. In this work, we combined the fast
independent component analysis (FastICA) algorithm with singular value decomposition (SVD) to
extract FECG signals. The improved wavelet mode maximum method was applied to detect QRS
waves and ST segments of FECG signals. We used the abdominal and direct fetal ECG database
(ADFECGDB) and the Cardiology Challenge Database (PhysioNet2013) to verify the proposed
algorithm. The signal-to-noise ratio of the best channel signal reached 45.028 dB and the issue of
missing waveforms was addressed. The sensitivity, positive predictive value and F1 score of fetal
QRS wave detection were 96.90%, 98.23%, and 95.24%, respectively. The proposed algorithm may be
used as a new method for FECG signal extraction and detection.

Keywords: fetal ECG signal extraction; FastICA algorithm; singular value decomposition; wavelet
mode maximum method; QRS waves

1. Introduction

Fetal electrocardiograms (FECGs) record the changes of cardiac action potential in
the conduction process, offering reliable beat-by-beat information of fetal heart rates, and
providing clinicians with fetal health information such as intrauterine hypoxia [1]. FECG
signals are more sensitive than fetal heart monitor based on ultrasound Doppler with
respect to fetal heart monitoring, and can better reflect conditions such as fetal intrauterine
hypoxia [2]. However, FECG signals often see interference by maternal ECG (MECG)
signals, which have much stronger amplitudes [3]. Therefore, the extraction of clean FECG
signals is important and challenging.

Currently, FECG signals can be obtained by the invasive scalp electrode method and
non-invasive abdominal electrode methods. The former can directly measure clean FECG
signals, but only at the time of delivery. Non-invasive abdominal electrode methods collect
mixed signals by placing electrodes on the pregnant women’s abdomen, which can be
used for long-time monitoring during pregnancy. However, abdominal mixed signals of
pregnant women are complex, comprising MECG signals, FECG signals, baseline drift,
power frequency interference, and noises [4]. Blind source separation (BSS) [5] can be used
to extract FECG signals from the abdominal mixed signals, but there is a large amount of
residual noises in the extracted FECG signals.

Several FECG signal extraction methods have been explored, including empirical
mode decomposition (EMD) methods [6], least mean square (LMS) error algorithms [7,8],
singular value decomposition (SVD) methods [9], wavelet transform (WT) methods [10],
independent component analysis (ICA) methods, and in particular fast fixed-point ICA
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(FastICA) algorithms [11]. Sarafan et al. [12] proposed a method combining ICA, template
subtraction (TS), and extended Kalman filter (EKF) algorithms. They used three different
ICA algorithms to extract MECG signals and FECG signals with residual noises. They then
used EKF to filter out residual MECG signal components. Experimental results showed
that TS combined with the FastICA algorithm yielded the best performance, with a high
signal-to-noise ratio (SNR). The FastICA algorithm uses approximate negative entropy and
Newton iterative methods to reduce the amount of computation, which has the advantage
of fast convergence and is a widely used signal separation method [5]. However, its conver-
gence performance is greatly affected by the initial weight [13]. Therefore, Yuan et al. [14]
improved the conventional FastICA algorithm by introducing an overrelaxation factor to
process the initial weight in the Newton iterative algorithm, which reduced the average
iteration times from 55 to 15. However, there were residual noises in the extracted FECG
signals and some waveforms were missing. The SVD algorithm can effectively separate
each component of mixed signals. It constructs vector matrices using abdominal mixed
ECG signals, and then obtains ECG signal estimation corresponding to each singular value.
In this work, we proposed a new method combining FastICA and SVD algorithms for
FECG signal extraction. Experimental results showed that the proposed algorithm had
good performance in SNR and addressed the issue of missing waveforms.

For QRS wave detection of extracted FECG signals, current methods mainly include
neural network methods [15–18], template matching algorithms [19], and wavelet mode
maximum methods [20]. Neural network methods have a high accuracy, but they take
a long time to train the model. The template matching method requires a variety of
probability distributions and is sensitive to high frequency noises. Wavelet mode maximum
methods are simple in implementation and have a wide range of applications. Therefore,
we employed the improved wavelet mode maximum method to detect the key features
of extracted FECG signals (Figure 1), including QRS waves and ST segments. Finally, we
integrated these extraction and detection algorithms into a user-friendly graphical user
interface (GUI) to provide systematic support for the diagnosis of fetal health.

2. Materials and Methods
2.1. Datasets

The datasets used in this study were from two publicly available databases. The first
database is the abdominal and direct fetal ECG database (ADFECGDB, https://physionet.
org/physiobank/database/ADFECGDB, accessed on 6 May 2022). They were obtained by
the Department of Obstetrics of the Silesia Medical University through the KOMPOREL
system. The data were collected from five pregnant women of 38–41 weeks of gestation and
had five pieces of data recordings (R01, R04, R07, R08, and R10). Each recording contained
four signals from the maternal abdomen and one signal directly from the fetal head. The
sampling frequency was 1000 Hz, and the sampling time was 5 min. The second database is
the clinical ECG dataset for the PhysioNet/Computing in Cardiology Challenge Database
(PhysioNet2013, https://physionet.org/physiobank/database/challenge/2013/, accessed
on 6 May 2022) [21]. The Challenge 2013 Training Set A (Challenge/2013/seta) consisted of
25 recordings. Each recording contained four mixed signals from the maternal abdomen,
with a sampling frequency of 1000 Hz and collection time of 60 s.

2.2. FECG Signal Extraction Based on the FastICA and SVD Algorithm

Clinically, when one uses the abdominal electrode method to collect mixed ECG
signals, there are often many artifacts or noises due to maternal and fetal movement or
collector displacement [22]. Therefore, we used the data preprocessing method proposed by
Dessì et al. [23] to suppress baseline drift, power–frequency interference, and pulse artifacts.

The FastICA algorithm is a fast optimization iterative algorithm, including kurtosis
based, maximum likelihood based, and maximum negative entropy based methods. In this
study, we used the FastICA algorithm based on maximum negative entropy. After de-mean
and whitening of the preprocessed signals, we took the maximum negative entropy as a

https://physionet.org/physiobank/database/ADFECGDB
https://physionet.org/physiobank/database/ADFECGDB
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search direction and extracted the independent source signals. The FastICA algorithm has
a high precision, but it has a disadvantage in separation speed. Its initial weight will affect
the efficiency of iteration, making the resulting independent components slightly different.
Therefore, we incorporated the overrelaxation factor into the Newton iterative algorithm to
process the randomly generated initial weights, so that the average number of iterations
was reduced [14]. However, the experimental results showed that there were some missing
waveforms and residual noises. Therefore, we further improved our previous method [14],
and the specific steps are as follows.

Step 1: Firstly, we used the SVD algorithm to decompose maternal abdominal mixed
ECG signals and used the wavelet mode maximum method to detect R-peak of FECG
signals (Section 2.3.1). According to the R-R interval, we constructed the reconstruction
matrix A of FECG signals through equal period interpolation.

Step 2: We performed SVD operation on matrix A and reserved the largest singular
values to obtain the signal estimation matrix A’. Then, we removed the data corresponding
to the interpolated positions in matrix A’ to obtain approximate estimates of FECG signals.
However, the signals have residual noises and missing waveforms at the overlapping part
of maternal–fetal signals.

Step 3: We used the FastICA algorithm to estimate MECG signals and noises from
mixed signals as reference, and separated the noises from the FECG signals obtained by
Step 2. By using this method, the residual noises of the FECG signals were reduced, and
the issue of missing waveforms was addressed.

Step 4: Finally, we calculated the heart rate, R-R interval, and other parameters of
MECG and FECG signals.

The singular value difference spectrum theory [24] shows that when two neighboring
singular values have a large difference, the difference spectrum will have a peak value. It is
indicated that the singular value has a mutation at the current position, and the maximum
mutation point is the boundary point between the target signal and noises. In Step 2,
we set the period of the one-dimensional MECG signals as n, from which m cycles were
extracted to construct an m× n signal matrix A. Then, there were two orthogonal matrices:
U = [U1, U2, . . . , Un] and V = [V1, V2, . . . , Vn], so that

A = U∑ VT (1)

where ∑=
[
diag

(
δ1, δ2, . . . , δp

)
, 0
]
; p = min{m, n}, δ1 ≥ δ2 ≥ . . . ≥ δp ≥ 0 is called the

singular value of A. Different singular values correspond to the energy concentration of
different signal components in the signal, and the importance is positively correlated with
the singular value. Each signal matrix is represented as the sum of a series of small matrices
with rank 1, while the singular value measures the importance of the small matrices. A
large singular value corresponds to the signal component with a high energy. When the
signal energy is greater than the noise energy, the large singular value is retained and the
remaining small singular value is zeroed. We used the ADFECGDB and PhysioNet2013
databases to evaluate the number of optimal singular values. When the number of singular
values was set to 2, the FECG signals extraction performance was the best.

2.3. FECG Signal Detection Based on the Wavelet Mode Maximum Method

In order to detect and classify FECG signals, we need to analyze the key characteristic
information for clinical diagnosis. Clinically, physicians generally assess the fetal health
through the following instantaneous points and intervals:

• R-R interval: When R-R interval is too long and fetal heart is too slow, we can consider
late hypoxia; when the R-R interval is unequal, e.g., the change of fetal heart rate is
more than 25–30 bpm, we can preliminarily diagnose premature beats, cardiac arrest,
irregular rhythm and other abnormalities, and we should do the next examination
immediately.
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• QRS waves: The normal duration of fetal QRS ranges from 0.02 s to 0.05 s. If it exceeds
0.05 s, it is abnormal. According to the duration and amplitude of QRS waves, fetal
weights can be estimated, such as macrosomia or fetal growth retardation. For the
fetus with hemolytic anemia, the severity of anemia can be determined [25].

• ST segment: ST segment is the potential line from the end of QRS waves to the
beginning of T-waves, and the normal ST segment is equipotent. Metabolic acidosis
should be considered when the ST segment is significantly depressed or elevated.
Changes in ST segments are also an important indicator to evaluate whether the fetus
is healthy [26]. Abnormal ST segments and T-waves of FECG signals indicate fetal
electrolyte disorder, myocardial hypoxia, and abnormal myocardial metabolism.

2.3.1. Wavelet Mode Maximum Method

According to different frequency distributions of ECG signals, the wavelet mode
maxima method can decompose ECG signals at multiple scales. Each scale represents a
different component of the ECG signals, and we identify the different waveform locations
by determining the location of the over-zero point between pairs of modal maxima at
different scales [10,27]. The principle of the wavelet mode maximum method is as follows.
We set the wavelet function ϕ(t) to be equivalent to the first derivative of the smooth
function θ(t):

ϕ(t) =
dθ(t)

dt
(2)

where ϕ(t) satisfies
∫

ϕ(t)dt = 1 and is a higher-order infinitesimal of 1
1+t2 . The transform

of θs(t) = aθ(t/s) wavelet function is

Wx(s, t) = x(t) ∗ ϕ(t) = x(t) ∗
(

s
dθs(t)

dt

)
= s

d(x(t) ∗ θs(t))
dt

(3)

Equation (3) shows that the derivative of Wx(s, t) is positively correlated with the
derivative of x(t) smoothed by θ(t). On the scale s, the modulus maximum after wavelet
transform corresponds to the inflection point of xθs(t). There is a correlation between the
modulus maximum and the mutation point.

2.3.2. QRS Wave Detection

We first detected the peak of R-waves, and then detected the starting point and ending
point of QRS waves. The steps of R-wave detection are as follows.

Step 1: Firstly, we chose the appropriate wavelet function. A quadratic spline wavelet
was used to approximate the signal by using a set of conic curves. The spline wavelet is
symmetric, tightly supported, and has linear phase, and the signal processed by it will not
be distorted. Therefore, we used orthogonal quadratic spline wavelets to decompose FECG
signals into four scale wavelets. The wavelet transformed signals will generate different
mode maximum pairs at different scales, and the zero crossings of the mode maximum
pairs will correspond to R-waves. By comparing the information on the four scales, it was
found that the R-wave energy was mainly distributed at scales 3 and 4, and the fourth scale
was stronger. Therefore, the fourth scale was used as the main signal of R-wave detection.

Step 2: We took all positive and negative modulus maxima of the fourth scale, cal-
culated the mean values, and set appropriate thresholds according to the mean values.
The positive mode maxima greater than the threshold were reserved, and the negative
mode maxima less than the threshold were reserved, and the thresholds were set to 1 and
−1, respectively. The positive mode maxima and negative mode maxima satisfying the
conditions were denoted as WP4(i) (i = 1, 2, . . . ) and WN4(i) (i = 1, 2, . . . ), respectively.
They were combined as Peak(i) (i = 1, 2, . . . ). Finally, we found the points on scale 4 with
modulus maximal value pairs Peak(n) = −1 and Peak(n + k) = 1.

Step 3: The peaks and valleys of FECG signals correspond to a pair of positive and
negative mode maximum pairs on the scale. If there was an unmatched point, it would be
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wrongly detected and should be deleted. The FECG signal periods are generally 0.02 s to
0.05 s, so it could be found among 12 sampling sites. The R-wave peaks detection process
is shown in Figure 1.

Step 4: False detection and missed waveform detection. Before searching, we cycled
through the whole interval to filter out some useless elements. We found the maximum
difference between adjacent elements, MD, and if there existed a known M and M ≥MD,
we filtered it out and adjusted the search interval.

Step 5: We calculated the mean R-R interval of the signal,

1 
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The improved dichotomy method was used to adjust the threshold, and 
steps 2 to 4 were repeated. On the contrary, if the R-R interval was 
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Figure 1. R-wave detection of ECG signals.



Sensors 2022, 22, 3705 6 of 17

Q-waves and S-waves are high-frequency and low-amplitude waveforms in ECG
signals. The peak of Q-waves is the starting point on the left side of R-waves, and the peak
of S-waves is the ending point on the right side of R-waves. The first over-zero point was
searched within 20 ms of the left side of the R-wave mode polar pair, which corresponded
to the crest of the Q-wave; the first over-zero point was searched within 30 ms of the right
side of the R-wave tail mode polar pair, which corresponded to the crest of the S-wave.

False detection occurs when the fetal heart has a lesion that causes the ECG waveform
to shift, or when the Q-waves and S-waves are not present. Clinically, it was found that the
amplitude of Q-waves and S-waves were generally 0.05 times higher than that of R-waves
under concentric beats. If the amplitude was less than 0.05 times, the detection was judged
as a false detection. Figure 2 shows the detection of Q-waves and S-waves.

Figure 2. Q-waves and S-waves detection of ECG signals.

The starting point and ending point of QRS waves correspond to the starting point of
Q-waves and ending point of S-waves. The morphologies of starting and ending points are
variable, which increases the difficulty of detection. Theoretically, the starting point and
ending point of QRS waves correspond to the extreme point of the first mode of Q-waves
and the extreme point of the tail mode of S-waves, respectively.

Therefore, a time window of 30 ms and 40 ms was used on the left and right sides of
the detected Q-waves and S-waves, respectively, and the left and right mode poles were
searched within the time window. The first mode poles searched to the left were the first
mode poles corresponding to the Q-waves, and the first mode poles searched to the right
were the tail mode poles of the S-waves. The first mode poles of the Q-waves and the last
mode poles of the S-waves detected were the starting and ending points of the QRS waves,
which were QRS wave duration.

2.3.3. Detection of P-waves, T-waves, and ST Segments

The amplitude of T-waves in the FECG signals is much smaller than that of R-waves
in the QRS waves, and their morphologies are diversified. The correct detection of QRS
waves can reduce the difficulty of T-wave detection. The T-waves were mainly located on
two scales after wavelet transform decomposition, and we calculated its mode polar pair
on these two scales.

We detected the mode polar pair generated by the P-waves in the left 1/3 of the
R-wave first mode polar pair, and detected the mode polar pair generated by the T-waves
in the right 1/2 of the R-wave tail mode polar pair; then we can find the positions of the
P-waves and T-waves.
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According to the waveform characteristics, the first and last mode polarization points
of the T-waves were generated from the starting and ending points of the T-waves, and
there was a certain correspondence between the mode polarization pair and the waveform
starting point. However, there was actually a certain shift phenomenon. Therefore, the
extreme points of the T-waves modes could be moved by three sampling points to the right,
which were the starting point of the T-waves. According to the principle of approximate
symmetry, we used the obtained starting points and peak points to detect the termination
points. In addition, P-waves and T-waves have similar symmetry in morphology, so the
starting points and ending points of P-waves could be detected by the same method.

2.4. Evaluation Methods

To evaluate the performance of FECG signal extraction, we applied the SNR based on
eigenvalues (SNREig) and the SNR based on cross-relation numbers (SNRRMS) [14]:

SNREig =

√
γmax

sum(γ)− γmax
, (4)

where γ is the M eigenvalues of the matrix UTU, and γmax is the maximum eigenvalues of
the matrix UTU; and

SNRRMS =

√
σ

1− σ
, (5)

where σ = 2
M(M−1)∑ M−2

i=0 ∑ M−1
k=i+1 f (i)T f (k), and f is FECG signals containing QRS waves

number [14]. When the SNR is larger, the extracted signal quality is higher and the
extraction performance is better.

For evaluating the detection of FECG signals of the ADFECGDB database, fetal head
signals were used as a reference standard to calculate sensitivity (Se), positive predictive
value (PPV), and the F1 score:

Se =
TP

TP + FN
, (6)

PPV =
TP

TP + FP
, (7)

F1 =
TP

TP + FP + FN
, (8)

where TP (true positive) indicates the number of FECG R-peak positions correctly detected,
FP (false positive) indicates the number of FECG R-peak positions incorrectly detected, and
FN (false negative) indicates the number of FECG R-peak positions missed [6].

3. Results
3.1. Extraction of FECG Signals

We compared the FECG signal extraction performance of the proposed method with
that of the FastICA algorithm and the SVD algorithm alone. The SNRs using the AD-
FECGDB database are shown in Table 1. The extraction performance of the proposed
algorithm was better than that of the FastICA algorithm and the SVD algorithm alone. The
SNRRMS of the best channel signals reached 45.028 dB.
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Table 1. Performance comparison of FECG signal extraction algorithms using the ADFECGDB
database.

Data
FastICA SVD FastICA + SVD

SNREig SNRRMS SNREig SNRRMS SNREig SNRRMS

R01 1.158 0.369 2.982 6.956 3.194 7.759
R04 1.549 0.184 2.494 5.265 2.749 6.637
R07 2.305 5.125 1.872 3.391 5.349 26.632
R08 1.072 0.142 1.186 9.682 3.125 45.028
R10 2.927 7.797 2.873 5.118 3.258 10.362

A visualized comparison is shown in Figure 3. The signal quality of Figure 3e was
significantly better than that of Figure 3b, as the noise in Figure 3e was significantly
improved. In addition, when maternal–fetal signals overlapped (indicated by the black
box), a single algorithm led to FECG signal missing waveforms (indicated by the red box),
which were addressed by using the proposed method (indicated by the yellow box).

Figure 3. A total of 7000 sampling points of R01 data in the ADFECGDB database were applied to the
extraction algorithm: (a) The second channel of maternal abdominal mixed signals; (b) FECG signals
estimated by the SVD algorithm; (c) MECG signals extracted by the FastICA algorithm; (d) Residual
noises assessed by the FastICA algorithm; and FECG signals extracted by the proposed algorithm.

Figure 4 compares FECG signal extraction between the proposed method and the
SVD algorithm. The quality of the FECG signals extracted by the proposed method was
obviously better than that extracted by the SVD algorithm.
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Figure 4. A total of 7000 sampling points of R04, R07, and R08 data in the ADFECGDB database were
applied to the extraction algorithm: (a) Maternal abdominal mixed signals (R04, R07, and R08 signals
were, respectively, used as the maternal abdominal mixed signals of the third, third and second
channels); (b) FECG signals estimated by the SVD algorithm; and (c) FECG signals extracted by the
proposed algorithm.

Figure 5 shows that the quality of the extracted FECG signals are significantly enhanced
by the proposed method, and the issue of missing waveforms is solved when maternal–fetal
signals overlap (indicated by the black box).

In order to further validate the proposed algorithm, we used 10 datasets from the
PhysioNet2013 database. The SNRs are shown in Table 2. The SNRs of the signals extracted
by the proposed algorithm were higher.
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Figure 5. A total of 7000 sampling points of R10 data in the ADFECGDB database were applied
to the extraction algorithm: (a) The second channel of maternal abdominal mixed signals in R10
data; (b) FECG signals estimated by the SVD algorithm; (c) MECG signals extracted by the FastICA
algorithm; and (d) FECG signals extracted by the proposed algorithm.

Table 2. Performance comparison of FECG signal extraction algorithms using the PhysioNet2013
database.

Data
FastICA SVD FastICA + SVD

SNREig SNRRMS SNREig SNRRMS SNREig SNRRMS

a01 0.739 0.051 0.732 0.342 2.296 4.073
a03 1.281 1.394 1.787 2.177 1.796 2.183
a04 0.992 0.112 1.122 1.081 2.018 3.185
a06 0.538 −0.644 0.747 0.220 3.197 7.529
a08 1.071 0.142 1.185 0.681 3.120 7.767
a10 0.793 0.093 1.261 0.557 4.357 11.178
a12 1.067 0.900 1.492 1.138 14.556 11.202
a13 7.146 1.007 5.773 0.668 9.461 5.916
a17 6.324 1.188 6.242 0.982 9.159 2.734
a21 1.058 0.749 0.648 0.088 4.046 15.640

3.2. Detection of FECG Signals

For the detection of FECG signals, we used the ADFECGDB database to verify the
detection algorithm. The results of correct detection, missed detection, and incorrect
detection of R-waves are shown in Table 3. The average value of Se, PPV, and F1 were
96.90%, 98.23%, and 95.24%, respectively.

Table 3. FECG signal detection performance evaluated by five datasets from the ADFECGDB
database.

Data Correct
Detection

Missing
Detection

Incorrect
Detection Se/% * PPV/% F1/%

R01 627 17 2 97.36 99.68 97.06
R04 620 12 19 98.10 97.02 95.24
R07 613 14 21 97.77 96.69 94.60
R08 623 19 5 97.04 99.20 96.29
R10 620 37 9 95.65 98.57 93.09

average 3103 99 56 96.90 98.23 95.24
* Se is sensitivity, PPV is positive predictive value, and F1 score is the harmonic average of accuracy and recall.
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In addition, we used the MATLAB GUI development environment to develop a
user-friendly GUI (Figure 6) for FECG signal extraction, including data import, signal
preprocessing, FECG signal extraction, and key characteristic parameter detection and
marking. Signal preprocessing included removing noises such as baseline drift, power
frequency interference, and pulse trace from the initial mixed ECG signals. Calculation
of characteristic parameters included real-time calculation of maternal heart rates, R-R
intervals, fetal R-R intervals, QRS durations, fetal heart rates, and other parameters.

Figure 6. The FECG signal analysis GUI mainly consisted of six parts: (a) Data import; (b) Basic infor-
mation; (c) Original signal browser; (d) Results viewer; (e) Analysis of key characteristic parameters;
and (f) Characteristic reference values.

The R-R intervals, heart rates, and other values calculated from five datasets in the
ADFECGDB database are shown in Table 4. The parameters calculated were all within the
normal range, and the variance was less than 0.1 when compared with the real heart rate.
A more intuitive line chart is shown in Figure 7.

Table 4. Calculation of key characteristic parameters.

Data

Maternal Characteristic Parameters Fetal Characteristic Parameters

MECG QRS
Numbers

Mean R-R
Intervals (s)

Heart Rates
(bpm)

FECG QRS
Numbers

Mean R-R
Intervals (s)

Fetal Heart
Rates (bpm)

Baseline
Fetal Heart
Rates (bpm)

R01 413 0.728 82.40 644 0.490 122.45 122
R04 433 0.690 86.96 632 0.490 122.45 122
R07 401 0.747 80.32 627 0.478 125.52 126
R08 411 0.729 82.30 642 0.460 130.43 130
R10 480 0.642 93.46 657 0.456 131.58 132
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Figure 7. Evaluation of the accuracy of maternal and fetal heart rate calculations using variances.
The blue curves in (a) and (b) were maternal and fetal heart rates calculated, respectively. The orange
curves in (a) and (b) represented the difference between the heart rate and the real heart rate of each
channel. The yellow dotted lines represented, respectively, the reference range of normal heart rates
of the mother and the fetus.

We used the wavelet mode maximum method to detect QRS waves and ST segments
of FECG signals. The results of QRS wave detection are shown in Figure 8.

Figure 8. Detection of QRS waves (using R01 data from the ADFECGDB database): (a) is the detection
results of QRS waves; (b) is the amplification marker of (a).

Changes in the ST segments are an important indicator to assess whether the fetus is
healthy [26]. The results of T-wave detection are shown in Figure 9. The T-wave morphology
was diverse and the amplitudes were smaller compared to that of the QRS waves. There
was variability in the detection and identification of the ST segments.
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Figure 9. Detection of ST segments (using R01 data from the ADFECGDB database): (a) is the
detection results of ST segments; (b) is the amplification marker of (a).

4. Discussion
4.1. Significance of This Study

In this work, we proposed a method for the extraction of FECG signals by combining
FastICA and SVD algorithms. Singular values in SVD correspond to important information
implied in the matrix, and the sum of the top 1% singular values may account for more
than 99% of the total singular values. We chose the two largest singular values and the
corresponding left and right singular vectors to approximate the characteristic matrix of
FECG signals. Then, the SVD algorithm was combined with the FastICA algorithm to
extract FECG signals. Using the ADFECGDB and PhysioNet2013 databases for validation,
the SNR of the best channel signal reached 45.028 dB and the R-peak amplitude was almost
unattenuated. In addition, the issue of missing waveforms was addressed.

We employed the wavelet mode maxima method to detect QRS waves and ST segments
of FECG signals. We used the orthogonal quadratic spline wavelet to decompose FECG
signals into four scales to obtain detailed information. The energy of R-waves, Q-waves,
and S-waves was the strongest at the fourth scale, and that of T-waves was the strongest
at the second scale. Therefore, we searched the maximum pair of modes at the fourth
scale and the second scale. Then, the zeroes and peak point positions were obtained. we
compared the detected R-peak positions with the reference positions, and the Se, PPV, and
F1 score were 96.90%, 98.23%, and 95.24%, respectively. Finally, we designed a GUI that
integrated the proposed extraction and detection algorithms to provide systematic support
for fetal health evaluation.

4.2. Comparison with Related Work

Compared with previous work [14], under the same number of iterations, the SNRs
based on eigenvalues and cross-relation numbers have been improved. Table 5 shows the
performance comparison between the proposed algorithm and state-of-the-art methods.
The proposed algorithm is similar to Refs. [12,28]. Sarafan et al. [12] proposed a method
combining ICA, TS, and EKF. They used three different ICA algorithms to obtain MECG
and FECG estimates, and then used EKF to filter out residual MECG components, with an
F1 score of 92.61%. Similarly, Panigrahy and Sahu [28] used EKS to estimate MECG signals.
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As the relationship between FECG signals and MECG components in the mixed signals
was nonlinear, they used an adaptive neuro fuzzy inference system (ANFIS) to estimate
the actual MECG component. Experimental results showed that our proposed algorithm
combining FastICA and SVD had a higher accuracy. The FastICA algorithm uses negative
entropy to measure the non-Gaussian properties of the signal, which effectively combines
the algorithm characteristics of fixed point iteration and the statistical characteristics of
negative entropy, making the algorithm simple and fast for convergence.

In recent years, many researchers have applied deep learning algorithms to ECG
signals processing [29,30]. In the analysis of FECG signals, signal features were identified by
constructing neural networks in Refs. [3,16,17,31]. As shown in Table 5, when detecting R-
waves, the performance of these algorithms were similar to that of the proposed algorithm.
However, for the extraction of low-amplitude signal features, such as P, S, and T waves,
deep learning algorithms may be more efficient and perform better in identifying detailed
features. In addition, deep learning algorithms do not need to manually select specific signal
features, and can automatically learn appropriate features. In Ref. [3], Fotiadou et al. used
convolutional neural network blocks as feature extractors to automatically extract signal
features and directly determine fetal heart rate. Compared with the proposed algorithm,
the disadvantage of these network models may lie in the fact that the generalization ability
could not be increased simply by adding more training samples. On the other hand,
when the training data contain samples from different databases, the accuracy of the deep
learning methods may be improved.

Table 5. Comparison with published state-of-the-art methods for FECG signals extraction.

Authors Methods Year Database Se/% * PPV/% F1/%

Gurve et al. [32] ICA 2020 ADFECGD and
PhysioNet2013 93.30 94.00 93.60

Gurve et al. [32] NNMF + ICA 2020 ADFECGD and
PhysioNet2013 95.30 94.60 94.80

Taha et al. [5] FastICA 2020 PhysioNet2013 97.30 93.30 95.70

Barnova et al. [6] EEMD 2021 ADFECGD and
PhysioNet2013 81.79 87.16 84.08

Barnova et al.[6] EEMD + RLS + ICA 2021 ADFECGD and
PhysioNet2013 95.09 96.36 95.69

Sarafan et al. [12] FastICA + TS + EKF 2020 PhysioNet2013 - - 92.61
Zhang et al.[33] K-means + PCA 2019 PhysioNet2013 96.23 95.35 95.78

Panigrahy et al.[28] EKS + DE + ANFIS 2017 PhysioNet2013 91.47 92.18 -

Jaba et al. [34] PSF + ANC 2021 DaISy and
PhysioNet2013 97.92 94.66 96.12

Liu et al. [35] SQA + FTM 2014 PhysioNet2013 94.13 93.74 93.90
Mollakazemi et al. [36] PCA + WT 2021 PhysioNet2013 - - 98.77

Jallouli et al. [27] Clifford Wavelet
Entropy 2021 PhysioNet2013 99.76 99.2 99.47

Rasti-Meymandi et al. [37] AECG-DecompNet 2021 PhysioNet2013 97.40 93.52 95.42
Fotiadou et al. [3] DNN+ LSTM 2020 PhysioNet2013 98.10 - -

Vo et al. [16] 1-D Octave convolution 2020 PhysioNet2013 - - 90.70
Ting et al. [17] 2-D-CNN 2021 PhysioNet2013 95.20 - -

Mohebian et al. [31] Conv1D + CycleGAN 2021 ADFECGDand
NI-FECG - - 99.70

Our method FastICA + SVD + WT 2022 ADFECGD and
PhysioNet2013 96.90 98.23 95.24

* Se is sensitivity, PPV is positive predictive value, and F1 score is the harmonic average of accuracy and recall.

4.3. Limitations and Future Work

This study has limitations. Firstly, we only used public data to verify the accuracy of
the algorithm. In future work, we will use the abdominal electrode method to collect real
data to verify the algorithm. Secondly, deep learning methods can extract deep features
and identify the details of signals effectively. In future work, we can apply these algorithms
to analyze the FECG signals. For instance, a lightweight network model can be designed
to extract FECG signals efficiently. Lastly, infant physical conditions and signal sampling
locations may affect the intensity and characteristics of FECG signals and noises. Multi-
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channel MECG signals at different sampling locations contain different FECG information.
Therefore, we plan to integrate multi-dimensional signals into the system and analyze
multi-channel signals simultaneously. As such, the fetus health can be evaluated more
comprehensively.

5. Conclusions

FECG has become an important means of recognizing fetal heart activity and fetal
diseases. However, the FECG signal is extremely weak and easily interfered by noises, so
the extraction of clean FECG signals is important and challenging in clinical practice. In
this paper, we proposed an improved FastICA and SVD algorithm to extract FECG signals
and a wavelet mode maximum method to detect QRS waves and ST segments of FECG
signals. These algorithms were integrated into a GUI. The proposed method may be used
as a new method for FECG signals extraction and detection. In future work, deep learning
methods and multi-channel signals may be considered.
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