
Citation: Alessandrini, M.; Biagetti,

G.; Crippa, P.; Falaschetti, L.; Luzzi,

S.; Turchetti, C. EEG-Based

Alzheimer’s Disease Recognition

Using Robust-PCA and LSTM

Recurrent Neural Network. Sensors

2022, 22, 3696. https://doi.org/

10.3390/s22103696

Academic Editor: Ki H. Chon

Received: 14 March 2022

Accepted: 10 May 2022

Published: 12 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

EEG-Based Alzheimer’s Disease Recognition Using
Robust-PCA and LSTM Recurrent Neural Network
Michele Alessandrini 1, Giorgio Biagetti 1,∗ , Paolo Crippa 1 , Laura Falaschetti 1 , Simona Luzzi 2

and Claudio Turchetti 1

1 Department of Information Engineering, Università Politecnica delle Marche, Via Brecce Bianche 12,
I-60131 Ancona, Italy; m.alessandrini@univpm.it (M.A.); p.crippa@univpm.it (P.C.);
l.falaschetti@univpm.it (L.F.); c.turchetti@univpm.it (C.T.)

2 Clinica Neurologica, Dipartimento di Medicina Sperimentale e Clinica, Università Politecnica delle Marche,
Via Conca 71, I-60020 Ancona, Italy; s.luzzi@staff.univpm.it

* Correspondence: g.biagetti@univpm.it; Tel.: +39-071-220-4168

Abstract: The use of electroencephalography (EEG) has recently grown as a means to diagnose
neurodegenerative pathologies such as Alzheimer’s disease (AD). AD recognition can benefit from
machine learning methods that, compared with traditional manual diagnosis methods, have higher
reliability and improved recognition accuracy, being able to manage large amounts of data. Neverthe-
less, machine learning methods may exhibit lower accuracies when faced with incomplete, corrupted,
or otherwise missing data, so it is important do develop robust pre-processing techniques do deal
with incomplete data. The aim of this paper is to develop an automatic classification method that
can still work well with EEG data affected by artifacts, as can arise during the collection with, e.g., a
wireless system that can lose packets. We show that a recurrent neural network (RNN) can operate
successfully even in the case of significantly corrupted data, when it is pre-filtered by the robust
principal component analysis (RPCA) algorithm. RPCA was selected because of its stated ability to
remove outliers from the signal. To demonstrate this idea, we first develop an RNN which operates
on EEG data, properly processed through traditional PCA; then, we use corrupted data as input
and process them with RPCA to filter outlier components, showing that even with data corruption
causing up to 20% erasures, the RPCA was able to increase the detection accuracy by about 5% with
respect to the baseline PCA.

Keywords: recurrent neural network (RNN); deep neural network (DNN); electroencephalography
(EEG); Alzheimer’s disease (AD); principal component analysis (PCA); robust PCA (RPCA)

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease resulting in cognitive impair-
ments, functional deficits and loss of memory. It is one of the most widespread forms of
dementia and has severe effects on all aspects of a patient’s life. Currently no treatments
are known for AD and the average survival time is about 4.5 years [1]. The number of
subjects affected by AD has been sensibly increasing over the past years and it is expected
to reach 15 million by 2050 [2].

AD can be diagnosed at its final stage or in a preclinical, mild stage called mild
cognitive impairment (MCI), showing only isolated cognitive deficits that may later result
in AD [3–5]. Diagnosing AD, especially at early stages, is difficult because symptoms are
compatible with normal consequences of ageing or with other pathologies, and because an
exact diagnosis requires histological analysis of the brain or other complex exams such as
structural magnetic resonance imaging [6].

The use of electroencephalography (EEG) has recently grown as a means to diagnose
neurodegenerative pathologies such as AD [7–13]. EEG is a non-invasive test that records
the electrical activity of the brain measured at different sites on patient’s scalp, resulting

Sensors 2022, 22, 3696. https://doi.org/10.3390/s22103696 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22103696
https://doi.org/10.3390/s22103696
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6601-0039
https://orcid.org/0000-0003-4504-7550
https://orcid.org/0000-0003-3183-7682
https://orcid.org/0000-0001-8713-9790
https://doi.org/10.3390/s22103696
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22103696?type=check_update&version=1

Sensors 2022, 22, 3696 2 of 18

in indirect information about the physiological conditions of the brain. The resulting
waveforms can be divided in different frequency bands, which in turn can be ascribed to
different cerebral activities.

Several studies have shown that variations in frequency patterns of EEG signals can be
related to a variety of neurodegenerative diseases, including AD and MCI [14–19]. However,
analyzing EEG data can be a difficult task, because these exams typically generate large
amounts of data, which must be precisely scanned for the specific pattern one is looking
for. If done manually, this must be performed by trained medical professionals.

That is why a considerable amount of research exists in the application of machine
learning techniques to automatically detect interesting patterns in EEG signals, in order to
diagnose a specific disease. This can be treated as a pattern recognition problem and can
take advantage of the continuous improvements of deep learning techniques. Existing algo-
rithms can be categorized in two main groups: (i) statistical machine learning techniques,
(ii) deep learning-based techniques.

In the first category various machine learning methods, such as k-nearest neighbors
(k-NN) and support-vector machines (SVM), have been adopted [11,13,20–22]. The second
category, i.e., deep learning-based techniques, includes deep neural networks (DNNs) and
in particular recurrent neural networks (RNNs) [23–30]. The latter are especially suited for
time-based data series, such as EEG.

Regarding the deep learning-based techniques, in [13] authors propose two EEG fea-
tures, namely, epoch-based entropy (a measure of signal complexity) and bump modeling
(a measure of synchrony) and demonstrate that these features are sufficient for efficient
discrimination between subjective cognitive impairment (SCI) patients, MCI patients, pos-
sible AD patients, and patients with other pathologies, obtaining a classification accuracy
of 81.8% to 88.8%. In [20], a novel analytical framework combining fuzzy learning and
complex network approaches has been proposed for the identification of AD with mul-
tichannel scalp-recorded EEG signals, obtaining a highest accuracy of 97.12%. In [23,24]
authors propose a strategy to use RNN that can handle missing data, which is common
in healthcare data. Missing data are considered as arising due to various reasons, such
as the nature of data collection procedures, subjects’ dropping out of studies, or mistakes
in data collection, so that entire examination results are missing, but these papers do not
specifically handle the case of missing data segments within a signal trace as can happen if
the measurement device has a wireless link. In [23], a multiclass area under the operating
curve (mAUC) of 0.86 and a balanced class accuracy (BCA) of 0.79 was obtained, while
in [24] a prediction performance of clinical diagnosis drop from a BCA of 0.935 in year 1 to
a BCA of 0.810 in year 6 was achieved.

Special attention was also devoted to the extraction of features from the EEG signal, as
shown in [31,32], where the authors propose a framework for the accurate identification of
different motor-imagery (MI) tasks in brain-computer interface (BCI), exploring different
feature extraction methods and obtaining good results with the application of the multiscale
principal component analysis (MSPCA) method. The same aim, that is, increasing the
classification outcome of different MI signals by selection of efficient features, was pursued
in [33], applying the EEG preprocessing to several neural networks while a custom CNN
was implemented in [34].

In the context of feature extraction, robust principal component analysis (RPCA) [35]
is a method widely applied when the data observations are subject to sensible degradation.
Thus, this method can be useful for the treatment of the EEG signal that can be affected
by artifacts that can arise during the collection with, e.g., a wireless system that can
lose packets.

The aim of this paper is primarily to validate the effectiveness of RPCA applied to
corrupted EEG signals, in order to clear the signals and then extract features through PCA.
Once the features are extracted, a custom RNN is implemented in order to classify patients
as healthy or suffering from AD, training the network with a dataset obtained from EEG
recordings of 35 hospitalized subjects belonging to both categories. In doing that we operate

Sensors 2022, 22, 3696 3 of 18

at three different levels of data elaboration, showing that performance of the network is
progressively increased:

• Untransformed EEG data (time series);
• Features extracted from EEG data through principal component analysis (PCA);
• Corrupted signals, after filtering them with different algorithms, namely, robust PCA

(RPCA) and multiscale PCA (MSPCA).

Specifically, the latter test showed that applying RPCA in a suitable way, compatible
with the data representation, leads to better results in the case of corrupted input data with
respect to other filtering algorithms, or no filtering at all.

The rest of the paper is organized as follows. In Section 2 we summarize the basic
principles of RNNs. Section 3 describes the dataset adopted in the experiments. Section 4
describes the data processing applied to improve the RNN performance, including PCA
and RPCA transformations. Section 5 reports the details of the proposed RNN architecture
and its main features, together with a description of the hardware and software that was
used. Experimental results are presented in Section 6 and discussed in Section 7. Finally,
some conclusions are drawn in Section 8.

2. Brief of RNNs

In this work, we make use of RNNs with a structure similar to that employed in our
previous work [36]; in this section, we thus only report a summary of their architecture and
operational principles for easier reference.

While standard neural networks are characterized by a complete interconnection
between adjacent layers, recurrent neural networks can map target vectors from the full
history, as represented by the previous map. The structure of an RNN network is shown in
Figure 1.

RNN
h1

RNN
h2

RNN
ht

x1

o1

V2

W1 W2 Wt

x2 xt

VtV1

o2 ot

...

Figure 1. Structure of an RNN. Reproduced under CC-BY from [36].

In this architecture, each node maintains a current hidden state ht and produces an
output ot by using the current input xt and the previous hidden state ht−1 as follows:

ht = f (Whht−1 + Vhxt + bh) (1)

ot = f (Woht + bo) (2)

where W and V are the weights of the hidden layers in recurrent connections, b is the bias
for hidden and output states and f is an activation function.

An RNN is very effective in modeling the dynamics of a continuous data sequence, but
it may suffer from the problem of gradient disappearance and explosion [37] if modeling
long sequences. In order to solve this problem, Hochreiter et al. [38] proposed a variant of
RNN, based on the long short-term memory (LSTM) cell unit, which combines learning
with model training, with no additional domain knowledge. The structure of the LSTM
unit is shown in Figure 2.

https://creativecommons.org/licenses/by/4.0/

Sensors 2022, 22, 3696 4 of 18

ct-1

σ σ tanh σ

tanh

ht-1

xt

ot

ht

ct

ft it ct

gt
~

Figure 2. LSTM cell unit. Reproduced under CC-BY from [36].

The long-term state, short-term state and the output of each layer at each time step are
described by the following equations:

ft = σ(WT
x f

xt + WT
h f

ht−1 + b f) (3)

it = σ(WT
xi

xt + WT
hi

ht−1 + bi) (4)

c̃t = tanh(WT
xc xt + WT

hc
ht−1 + bc) (5)

gt = σ(WT
xg xt + WT

hg
ht−1 + bg) (6)

ct = ft ⊗ ct−1 + it ⊗ c̃t (7)

ot = ht = gt ⊗ tanh(ct) (8)

where Wx f , Wxi , Wxc , Wxg are the weight matrices associated to the matching connected
input vector, Wh f

, Whi
, Whc , Whg are the weight matrices for the short-term state from

the previous time step, and b f , bi, bc, bg are bias terms. The symbol ⊗ means point-wise
multiplication.

3. Dataset

We used a dataset obtained from EEG recordings of 35 hospitalized subjects, 20 of
which suffered from Alzheimer’s disease, and are denoted in the following as “AD”, while
15 were healthy, indicated with “N” (Normal). The data were obtained from the subjects
as part of ordinary medical diagnostic procedures performed in a hospital environment;
all the data were collected according to the Declaration of Helsinki, had been properly
anonymised, and informed consent was obtained at the time of original data collection.

EEG data are obtained with electrodes placed in several points along the subject’s
scalp, each recording a signal from a specific brain region. The specific equipment used
to acquire the dataset is a Galileo BE Plus PRO Portable, Light version, providing 37 total
inputs, of which 22 unipolar and 8 bipolar AC/DC inputs. The electrodes were applied in
the standard 10–20 system (referring to distances between adjacent electrodes, expressed in
percentage of the total available space on the skull).

Table 1 shows a summary of the consistency of the dataset, expressed in terms of the
total duration of the recordings for the two classes of subjects. To perform our experiments,
in the following the dataset will be split in 30 subjects for training and 5 for testing (see
Section 6 for details).

Table 1. Dataset details.

Class Subjects Duration (s)

N 15 17,932
AD 20 28,586

Total 35 46,518

https://creativecommons.org/licenses/by/4.0/

Sensors 2022, 22, 3696 5 of 18

The demographic distribution of the involved subjects was chosen so to be as similar
as possible in the two groups. The AD patients‘ mean age is 74.16 years (SD 4.64), their
mean education is 7.55 years (SD 3.50) and the mean illness duration is 2.4 years (SD 0.64;
range 1–3 years). The healthy subjects’ mean age is 73.61 years (SD 5.81) and their mean
education is 8.07 years (SD 3.92). The demographic variable do not differ in the two groups:
age (t = 0.29, p = 0.77), education (t = 0.38, p = 0.70), sex (χ2 = 0.40, d. f . = 2, p = 0.48).

The dataset is composed of files in EDF format (European data format), a standard file
format typically used for exchange and storage of medical data. Each recording includes a
slightly different set of signals, all sampled at 128 Hz. All the signals for a specific subject
have been acquired synchronously, so that all traces have the same duration, but of course
the duration is different for different subjects. Data traces are organized in rows, with the
number of different signals spanning the first dimension (rows, indeed) and time samples
spanning the second dimension (columns).

4. Data Processing

A schematic diagram of the classification algorithm is shown in Figure 3. As previ-
ously mentioned, the first test has been performed with the original data, while in the
second test the data have been corrupted and an additional filtering step has been applied
using RPCA.

The individual steps of the algorithm are explained in detail in the following sections.

Pre-processing Windowing Data
augmentation

Data corruption

Filtering
RPCA

PCA
Feature extraction

RNN training RNN test

EEG data

last test
only

N

AD

Figure 3. Flow chart of the proposed algorithm for Alzheimer’s disease Recognition.

4.1. Data Pre-Processing

Before using the dataset as input for the following steps, some preliminary pre-
processing was required. First of all, the set of signals included in every subject is slightly
different, varying from 21 to 23 signals from the following list: Fp1, Fp2, Fpz, EKG, F7, F3,
Fz, F4, F8, C3, Cz, C4, T3, T4, T5, T6, P3, Pz, P4, O1, O2, I, II, MK. Moreover, they are in
different order for every subject.

For that reason, in order to have a coherent set of input data, we isolated the subset
of common signals for all the subjects, resulting in a set of 16 signals, namely: Fp1, Fp2,
F7, F3, F4, F8, T3, C3, C4, T4, T5, P3, P4, T6, O1, O2, and extracted and reordered them. In
the process, data have been saved in “npy” format (Python NumPy numerical format) to
be more conveniently processed in the following steps. Moreover, the matrices have been

Sensors 2022, 22, 3696 6 of 18

transposed, so as to have the time variable on the first dimension, as required by the RNN
toolkit used.

It follows from the previous steps that every subject’s data result in a matrix of
dimension n× 16, where n is the number of time points. It can be seen that a maximum of
7 tracks have been discarded from every subject. The resulting matrices have no associated
information about the meaning of the specific tracks anymore, but they are used as 16-
dimensional temporal series associated to every subject.

A further cleaning of the data has been performed for the presence, in some of the
recordings, of artificial signals (square waves) at the beginning and at the end of actual
EEG data. Those artificial signals are used to test or synchronize the equipment before
starting acquiring real data from the electrodes. Leading and trailing intervals have been
removed when needed to discard such spurious data. The duration of those intervals is
indeed negligible with respect to the total duration.

Finally, since different signals exhibit significative differences in magnitude, statistical
standardization has been applied to all the signals (columns), that is, data were scaled so
that the resulting mean and standard deviation were 0 and 1, according to the formula

y[n] =
x[n]− µ

σ
(9)

with µ and σ being the original mean and standard deviation, respectively. This was
experimentally proven to largely improve the final classification accuracy, especially when
using PCA, which selects principal components based on the variance of the input data.

4.2. Data Windowing

In order to be processed by the RNN, input data are split along the time axis in
windows of fixed size, possibly overlapping by a given amount. The window length and
overlapping are important hyper-parameters in neural networks, as well as in many other
machine learning algorithms [39,40]. Being w the number of samples in a window and
o the number of overlapping samples between adjacent windows, the nth data window
corresponds to samples in the range

[n(w− o), n(w− o) + w− 1] (10)

with n >= 0.
The resulting input matrix for the RNN has therefore dimension N ×w× 16, where N

is the number of resulting data windows and w is the window length.
To find the best combination for our particular network, we did a series of tests with

various values of the two parameters (Section 6).

4.3. Data Augmentation

Since the number of inputs belonging to the two different classes are not equally
represented, the network might end up being biased towards a specific class. A simple
technique to address this problem is oversampling [41], a form of data augmentation where
the data from classes with less occurrences are duplicated as needed, so that the data used
for training are more uniformly distributed among the different classes.

Jittering with gaussian noise has been applied to the duplicated data, so not to have
identical data in the training set.

Oversampling has been applied before each training phase to the subset of subjects
used for training, leaving the test subjects unaltered. Table 2 shows an example of data
distribution before and after data augmentation, for windows of 512 samples with 25%
overlap, considering the subset of 30 training subjects.

Sensors 2022, 22, 3696 7 of 18

Table 2. Number of data windows before and after oversampling (example for windows of
512 samples with 25% overlap).

Class Original Oversampled

N 5424 8099
AD 8099 8099

Total 13,523 16,198

4.4. Principal Component Analysis

A first set of tests has been performed using the original uncorrupted data, both in
the time domain (no feature extraction, letting the RNN itself adapt to the raw input data)
and applying PCA to the input data matrix. PCA is commonly used in a vast range of
applications in order to reduce data dimensionality while simultaneously improving the
signal-to-noise ratio of the resulting data. Consequently, dimensionality reduction not only
simplifies the computation, but also generally improves the final accuracy, isolating the
most relevant features of the signal.

PCA-based data reduction of a matrix can be performed by first factorizing the original
matrix through singular value decomposition (SVD). Given a generic matrix X of size m× n
and assuming m > n, SVD can factorize it as:

X = USVT (11)

where S (n× n) is a diagonal matrix containing the singular values, and U, V have dimen-
sion m× n, n× n, respectively, and contain the singular vectors.

Dimensionality reduction can then be achieved by truncating S to the first p singular
values (p < n), provided they are sorted in descending order, and consequently truncating
V to the first p columns (let the new matrix be called Vp). This decomposition ensures the
preservation of the largest part of the variance of the original matrix for a given rank p.

A new matrix can then be substituted to X:

X∗ = XVp (m× p) (12)

which contains the principal components of X and has lower rank.
The choice of the p parameter must take into account the relative magnitude of singular

values and can be chosen according to different criteria (see below for a possible choice).
A problem arising in the case of neural networks is that the input data matrix, once

the original data are split into windows, is actually a 3-dimensional tensor, with size (in
this particular case) N × w× 16, where N is the number of data windows and w is the
window length, 16 being the number of selected EEG signals. As a concrete example, for the
case with data windows of size 512 and 25% overlapping, using data from the 30 training
subjects, the input tensor has size 16, 198× 512× 16.

Calling A the original input tensor, a strategy must therefore be devised to reshape A
into a 2-dimensional matrix, in order to apply SVD and PCA.

A first strategy might consist in converting the original data to size N × (16w), that is
flattening every data window to a single one-dimensional vector:

A ∈ RN×w×16 → A′ ∈ RN×(16w) (13)

However, experiments showed this to not be the best strategy, since the number of
input features (N) is comparable to the dimension of the features themselves, leading to a
poor statistical representation. In the previous example, indeed, the size of A′ would be
16,198 × 8192.

A strategy that proved to perform better is instead the following: first we define a new
input matrix A′ having size N× 16×w (obtained by transposing data windows); then, it is
converted to size (16N)× w (flattening the first two dimensions):

Sensors 2022, 22, 3696 8 of 18

A ∈ RN×w×16 → A′ ∈ RN×16×w → A′′ ∈ R(16N)×w (14)

This results in a matrix A′′ with the first dimension much greater than the second one,
as desired, and as assumed in (11). In the previous example, A′′ has size 259,168 × 512. At
this point we can apply SVD and PCA reduction as previously defined to A′′ and compute
Vp of size w× p. We can then compute the principal components of A′′ by multiplying it
by Vp, defining:

A′′′ = A′′Vp ((16N)× p) (15)

This new matrix can then be reverted to a 3-dimensional tensor (N × 16× p) and
finally, in order to have the 16 signal tracks correctly appearing on the last dimension, we
can transpose the second and third dimensions again, to obtain the final tensor suitable to
be used as an input the RNN application:

A′′′ ∈ R(16N)×p → A∗ ∈ RN×p×16 (16)

The previous steps of reducing the input data to a 2-dimensional matrix for application
of the PCA and converting it back to a 3-dimensional tensor are shown schematically in
Figure 4.

N

w (time)
16

N

16
w

16N

w

1 2

3

16N

p

N

p
16

4

Figure 4. Steps to apply PCA reduction to 3-D input tensor: Ê transposing second and third
dimension, Ë flattening first two dimensions, Ì dimension reduction through PCA, Í converting
back to original form.

As mentioned, one must choose the parameter p for the truncation of the number of
principal components, as an hyper-parameter of the resulting system. An empirical value
of 50 has been chosen for all the input matrices, after inspecting some of the results of the
PCA decomposition for several input cases. Figure 5 shows, for example, the magnitude
of the first 150 singular values for the input matrix used in the previous examples. In the
previous example, therefore, the final input tensor A∗ has size 16,198 × 50 × 16.

Sensors 2022, 22, 3696 9 of 18

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120 140

m
a

g
n

it
u

d
e

singular value

singular values

Figure 5. Singular value magnitude of an example input matrix, limited to the first 150 values.

4.5. Robust PCA

Robust PCA is an enhancement to the traditional PCA decomposition, that can be
applied when the matrix contains corrupted observations, even for sensible levels of
corruption [35].

Given a (possibly large) data matrix M and assuming that it can be decomposed as

M = L0 + S0 (17)

where L0 is a low-rank matrix and S0 is sparse, RPCA offers a method to recover L0
and S0 accurately and efficiently, even without prior information on their dimension and
magnitude.

RPCA is widely used when the data observations are subject to sensible degradation;
in many cases the low-rank L0 component models the original data, distributed in a low-
dimensional subspace, while the sparse S0 matrix represents the corruption components
(outliers). Typical applications are image recognition and classification, signal filtering,
user ranking and many others [35,42–45].

The RPCA decomposition is performed with an iterative algorithm, estimating L0 and
S0 within a desired tolerance. Details are shown in Algorithm 1. In the algorithm, M is the
input matrix, Lk and Sk are the results as computed at the kth iteration;

Sτ : R→ R is a shrinkage operator such that

Sτ(x) = sign(x)max(|x| − τ, 0) (18)

extended to matrices by applying it to each element;

Dτ is a threshold operator such that

Dτ(X) = USτ(Σ)VT (19)

where X = UΣVT (singular value decomposition);
µ and λ, finally, are parameters that must be chosen according to the nature of

the data.
In this work, we apply the RPCA to compensate for degradation in the original EEG

signals, and show that it can improve the RNN performance in those cases. Operatively,
we apply RPCA to the matrix obtained in (14), that is the matrix obtained by reducing the
dimension of the original 3-dimensional tensor input; subsequently, dimensional reduction
by PCA is applied to the L0 matrix as computed by the RPCA.

Sensors 2022, 22, 3696 10 of 18

Algorithm 1 RPCA algorithm

Input: M
1: procedure COMPUTE RPCA
2: S0 = Y0 = 0
3: repeat
4: Compute Lk = D1/µ(M− Sk−1 + µ−1Yk−1)

5: Compute Sk = Sλ/µ(M− Lk + µ−1Yk−1)
6: Compute Yk = Yk−1 + µ(M− Lk − Sk)
7: until ‖M− Lk − Sk‖ < tolerance
8: end procedure

Output: Lk, Sk . k = last computed step

5. RNN Architecture

The RNN used in this paper is depicted in Figure 6, for the case of PCA applied and 50
principal components retained. It is based on architectures commonly used with time-based
sensor data [36,40,41,46] and consisting of a mix of LSTM cells and fully connected layers.

input: InputLayer
input:

output:

[(None, 50, 16)]

[(None, 50, 16)]

lstm1: LSTM
input:

output:

(None, 50, 16)

(None, 50, 8)

drop2: Dropout
input:

output:

(None, 50, 8)

(None, 50, 8)

lstm2: LSTM
input:

output:

(None, 50, 8)

(None, 8)

drop3: Dropout
input:

output:

(None, 8)

(None, 8)

dense2: Dense
input:

output:

(None, 8)

(None, 2)

Figure 6. RNN architecture.

Input data consist in a series of m× n matrices, depending on whether PCA reduction
is used or not. When using original data with no PCA, input data are time series of size
w× 16, with w being the size of data windows as described in Section 4.2. When using
PCA or RPCA, input data are the principal components extracted from the original data, of
size p× 16 as in (16).

The core of the recurrent neural network consists of two cascaded LSTM layers, whose
internal architecture was briefly explained in Section 2. Each LSTM layer is followed by a
dropout layer that randomly discards some of the input data. All the intermediate layers
have size 8; this hyper-parameter has been chosen experimentally, starting with a larger
value and decreasing it until the network accuracy varied significantly.

Sensors 2022, 22, 3696 11 of 18

Finally, there is a fully-connected layer (dense) of size 2. In this layer the generic nth

neuron produces an output yn depending on the x1, . . . xm inputs to the layer and the wnj
neuron weights associated to every input, specifically:

yn = φ

(
m

∑
j=1

wnjxj + bn

)
(20)

where φ is an activation function and bn is a bias value.
The fully-connected layer performs the classification in one of the 2 classes, according

to the sparse categorical crossentropy loss function assigned to the network. The loss
function, or cost function in general terms of an optimization problem, represents the error
to be minimized by the training process. The specific formula for the error according to the
categorical crossentropy function is

J(w) = − 1
N

N

∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (21)

where w is the set of model parameters, e.g. the weights of the RNN, N is the number of
input test features, yi and ŷi are the actual and predicted classes, respectively, expressed
numerically.

One of the problems to be aware of when designing a neural network is overfitting, that
is, the generated model might be performing well on the training dataset, but poorly on new,
unseen data. We employed a combination of several techniques to reduce overfitting: use of
dropout layers, as just mentioned, to discard random portions of data; data augmentation
with random noise applied (Section 4.3); randomly mixing input data from training and
validation subjects (Section 6) so to have representative samples from all the subjects for
both training and validation.

As an example, Table 3 shows the details of the individual layers in the case where
PCA has been performed and 50 principal components retained (p = 50→ m, n = 50, 16),
matching the configuration of Figure 6. The RNN in this configuration has 1394 trainable
parameters.

Table 3. Details of RNN layers.

Layer Input Size Output Size Parameters

LSTM 1 (-, 50, 16) (-, 50, 8) 832
Dropout 1 (-, 50, 8) (-, 50, 8) 0
LSTM 2 (-, 50, 8) (-, 8) 544
Dropout 2 (-, 8) (-, 8) 0
Dense (-, 8) (-, 2) 18

Hardware and Software

The RNN was developed with TensorFlow 2.6.1 and Keras 2.6.0; the rest of the compu-
tations were performed using Python NumPy and SciPy suites, unless otherwise specified
in Section 6. For the purpose of design and hyper-parameter optimization, the network
and the related algorithms were initially developed on the Google Colaboratory platform;
the final computations were then performed on a computer with an Intel Core i7-6800K
CPU, 32 GiB of RAM and an NVIDIA GeForce GTX 1080 GPU.

All the software developed for this article is publicly available at https://github.com/
MAlessandrini-Univpm/rnn-eeg-ad, published 14 April 2022.

6. Experimental Results

As mentioned, the first set of tests has been performed using both original temporal
data and principal components extracted through PCA. Every test has been repeated for
different combinations of window length and overlapping, to find the best results.

https://github.com/MAlessandrini-Univpm/rnn-eeg-ad
https://github.com/MAlessandrini-Univpm/rnn-eeg-ad

Sensors 2022, 22, 3696 12 of 18

It is common practice, when training a neural network, to split the dataset in subjects
used for training and subjects for independent test, and to further split the training data in
two sets: data actually used to fit the network weights, and validation data to monitor the
performance of the network during the various training epochs.

Since the number of different subjects in the dataset is not large, and different subjects
inevitably have substantial differences in their data, the statistical distribution of the data
might not be uniform enough, and so choosing a single partition for training and validation
might not lead to representative results.

So we decided to split the training input data in two sets for training and validation,
respectively, with a ratio of 75%/25%, after shuffling the input data windows, so to better
statistically integrate data from different training subjects. The subjects used for test are
isolated from the beginning and not participating in the training/validation phase. The
exact procedure is showed in Algorithm 2.

Algorithm 2 Testing algorithm

1: procedure COMPUTE TESTING ACCURACIES
2: S1 = set of training subjects
3: S2 = set of testing subjects
4: for all cases No-PCA / PCA do
5: for all combinations of window and overlap do
6: Train RNN with subjects S1, splitting in training + validation
7: Test trained network on subjects S2
8: end for
9: end for

10: end procedure

The RNNs were trained with the following parameters:

• 5 different window sizes ranging from 1 to 5 s;
• window overlapping of 0, 25% and 50%;
• data augmentation (Section 4.3);
• 50 principal components (when PCA is used);
• 30 subjects used from training and validation, 5 for testing;
• 20 training epochs.

Tables 4 and 5 show the test results when using original temporal data and when
applying PCA, respectively. It can be seen that using PCA results in sensibly higher
accuracy (97.9% versus 79.3% for the best cases), as it is expected for the benefits of PCA on
this class of data.

Figure 7 shows the progress of accuracy and loss (computed on the validation subset)
with respect to the training epochs, for the case with a window of size 512 and 25% overlap.

Table 4. Experimental results for original temporal data, best result is displayed in bold.

window samples 128 256 384 512 640
window duration (s) 1 2 3 4 5
window overlap (%) 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50

input features 36,493 48,642 72,961 18,240 24,310 36,468 12,157 16,198 24,294 9115 12,148 18,214 7290 9711 14,562
training time (s) 399.3 527.7 787.5 288.5 402.8 603.4 270.7 359.7 539.9 250.3 334.3 500.6 236.7 315.7 472.3

test time (s) 1.3 1.9 2.8 1.6 1.4 2.1 1.0 1.2 1.9 0.9 1.2 1.8 0.9 1.2 1.7
test accuracy (%) 56.7 77.5 79.3 51.9 45.2 42.3 50.7 68.6 57.3 56.9 51.3 48.1 59.5 67.5 52.4

Sensors 2022, 22, 3696 13 of 18

Table 5. Experimental results for PCA data using 50 principal components, best result is displayed
in bold.

window samples 128 256 384 512 640
window duration (s) 1 2 3 4 5
window overlap (%) 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50

input features 36,493 48,642 72,961 18,240 24,310 36,468 12,157 16,198 24,294 9115 12,148 18,214 7290 9711 14,562
training time (s) 267.5 354.4 531.1 124.8 179.3 279.5 91.7 120.3 179.4 69.3 90.9 135.1 55.6 73.5 109.2

test time (s) 0.5 1.2 1.7 1.0 0.3 0.7 0.2 0.2 0.4 0.2 0.2 0.6 0.1 0.2 0.2
test accuracy (%) 62.4 73.6 87.0 92.8 96.0 97.9 96.9 90.5 90.1 94.6 88.4 95.6 93.4 96.3 93.2

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 0 2 4 6 8 10 12 14 16 18 20
 0.08

 0.12

 0.16

 0.2

 0.24

 0.28

 0.32

 0.36

 0.4

 0.44

 0.48

a
c
c
u
ra

c
y
 (

%
)

lo
s
s

epoch

accuracy
loss

Figure 7. Accuracy and loss progress for validation data with respect to training epochs.

It is interesting to analyze the difference in accuracy for the two classes. Figure 8
shows the confusion matrix for the mentioned example. It can be seen that the accuracy for
the “Normal” class is sensibly worse. This is likely due to the smaller number of subjects
in that category, and also for the choice of subjects in the dataset: subjects in the “Normal”
category come from hospitalized patients, too, who either were treated for other diseases
or belong to risk groups.

N AD
Predicted label

N
AD

Tr
ue

 la
be

l

0.78 0.22

0.04 0.96

0.2

0.4

0.6

0.8

Figure 8. Confusion matrix for a sample case.

Test of Robustness with RPCA

To test the robustness of the RNN with respect to corruption of original signals, we
simulated a situation where some of the data are lost, for example due to bad connections
of the electrodes, limited capacity of the elaboration system with respect to the data
bandwidth, or packets lost in a hypothetical wireless connection between the electrodes
and the acquisition system.

To this end, we artificially corrupted the data at several increasing levels by creating
“holes” in the original signals, before any other elaborations; such holes are sequences of
zeros, applied simultaneously to all the 16 tracks. Holes are applied at random times with

Sensors 2022, 22, 3696 14 of 18

a probability p chosen in the set 1/1000, 1/500, 1/200, 1/100. Single holes have a random
length, too, with a normal distribution of mean length 20, resulting in average erasure rates
of 2%, 4%, 10%, and 20%, respectively. Figure 9 shows an example of a hole created in one
of the signals.

−80

−60

−40

−20

 0

 20

 40

 7 7.5 8 8.5 9

a
m

p
lit

u
d
e
 (

µ
V

)

time (s)

EEG signal

Figure 9. Example of data corrupted with a hole (red).

The corrupted signals are filtered with RPCA, as explained in Section 4.5, before the
actual PCA and dimension reduction. As a matter of comparison, another test has been
done using MSPCA as a filtering technique.

MSPCA [47] combines the ability of PCA to extract the crosscorrelation or relationship
between the variables, with that of orthonormal wavelets to separate deterministic features
from stochastic processes, and approximately decorrelate the autocorrelation among the
measurements. In MSPCA, several PCA decompositions are performed at different res-
olution levels, keeping a different number of components at every level, according to a
suitable algorithm. Every decomposition level can highlight different signal components,
such as noise.

MSPCA has shown to be an effective method for noise removal in automated detection
systems, possibly combined with other dimension reduction techniques, such as empirical
wavelet transform or multivariate variational mode decomposition [31–34].

In this article, we used the Matlab MSPCA implementation [48], running on Matlab
R2022a. As in the RPCA, we apply MSPCA to the matrix obtained in (14), then dimensional
reduction by PCA is applied to the matrix obtained by the MSPCA.

For RPCA, a fundamental aspect is choosing the right parameters, especially the µ
parameter (Section 4.5). For every value of p (probability of data corruption) several tests
have been performed to find the optimal value of µ. In real applications, this parameter
must be evaluated according to the statistical properties of the analyzed signal and noise.

For MSPCA, the best results were obtained experimentally as follows. Decompo-
sition is performed at 5 levels, using the Daubechies least-asymmetric wavelet with 4
vanishing moments (sym4). A first run is performed to compute the retained principal
components according to the Kaiser’s rule. Then a second run is performed after removing
the principal components of level 1, in order to filter out the signal noise. See [48] for
implementation details.

Table 6 and Figure 10 show the results of these tests, where all the other parameters
and procedures are the same as in the previous experiments, comparing the three cases: no
filtering applied before PCA, filtering through MSPCA, filtering through RPCA.

It can be seen that applying RPCA always results in better final accuracies, holding
good performances for the RNN even with severely corrupted input data.

Sensors 2022, 22, 3696 15 of 18

Table 6. Test accuracy for corrupted signals with different filtering techniques (p is the corruption
probability, data loss represent the average number of missing samples).

p (‰) Data Loss (%) No Filter (%) MSPCA (%) RPCA (%)

1 2 89.0 90.8 94.5
2 4 91.1 92.6 94.6
5 10 80.0 81.6 85.7

10 20 76.9 72.1 81.5

 70

 75

 80

 85

 90

 95

 100

n
o
n
e

M
S

P
C

A

R
P

C
A

p=1/1000

 70

 75

 80

 85

 90

 95

 100

n
o
n
e

M
S

P
C

A

R
P

C
A

p=1/500

 70

 75

 80

 85

 90

 95

 100

n
o
n
e

M
S

P
C

A

R
P

C
A

p=1/200

 70

 75

 80

 85

 90

 95

 100

n
o
n
e

M
S

P
C

A

R
P

C
A

p=1/100

te
s
t
a
c
c
u
ra

c
y
 (

%
)

Figure 10. Test accuracy for corrupted signals with different filtering techniques (p is the corrup-
tion probability).

7. Discussion

The performed experiments have shown that the designed RNN can recognize subjects
with AD, from the dataset used for the tests, with a good accuracy (97.9%), under optimal
choice of hyper-parameters and after computing the principal components of input data
with PCA (as opposed to untransformed time-based data). These results confirm the effec-
tiveness of DNNs, and specifically RNNs, for time-based data series, in finding significant
patterns in classes of data with no previous knowledge of the underlying system.

Moreover, the last experiment has shown that for corrupted data, specifically with
bursts of missing information, applying RPCA as a filtering stage can maintain a good
accuracy, even in the case of high corruption rate. This is due to the property of RPCA of
removing outlier components from the main signals, filtering out noise and other artifacts
with a different statistical distribution with respect to the relevant information.

It is interesting to compare the results with the other studies mentioned in the in-
troduction (Section 1). Starting with methods based on RNNs, Refs. [23,24] address the
problem of missing data, even if not in the form of whole data segments as we do, and
reach a classification accuracy of 79% and 93.5%, respectively, the latter decreasing to 81%
on a longer timescale. Refs. [27,28] combine RNNs with wavelet preprocessing, obtaining
an accuracy under 90%. Even if the data were processed in different ways, such as explicitly
adding noise in our case, it can be seen that our results are consistent with the cited ones,
while also addressing the possible problem of signal degradation.

The same considerations hold when comparing to methods based on strictly statistical
machine learning, such as k-NN and SVM, especially with regard to the added robustness
to corrupted data. Ref. [11] analyzes data in the frequency domain, using the fast Fourier
transform (FFT), in order to link variations in spectral components to AD; three alternative
classification algorithms are then compared, namely, SVM, decision trees and rule-based
classifiers, in the end obtaining a prediction accuracy up to 90%. Ref. [13] extracts two
specific features from EEG data— epoch-based entropy (a measure of signal complexity)
and bump modeling (a measure of synchrony)—and, together with orthogonal forward
regression (OFR) and SVM algorithms, shows an accuracy of 91.6%. In our previous
work [22] we also used RPCA at the feature extraction phase, before applying several

Sensors 2022, 22, 3696 16 of 18

machine learning algorithms, like k-NN, decision tree, SVM, naïve Bayes, and obtained
a maximum accuracy of 93.18% with SVM. This proves that RPCA is useful as a pre-
processing stage for EEG signals since it improves recognition rates in both traditional
machine learning algorithm and, as the current paper shows, with deep learning methods.

Finally, the accuracy obtained by our algorithm is comparable to more expensive and
complex techniques, such as magnetic resonance imaging (MRI), of which a comprehensive
review of its application to machine learning for AD diagnosis can be found in [49].

8. Conclusions

In this paper, an RNN is built to classify medical subjects as healthy or suffering from
Alzheimer’s disease, using EEG data obtained by a sample of subjects from both categories.
Several elaborations are applied to the original data to obtain a better accuracy, in particular
principal component analysis, that results in an accuracy of more than 97% on the test data,
using optimal hyper-parameters. Most importantly, it is shown that using corrupted input
data and applying RPCA to them, a good accuracy can be maintained, and a consistent
improvement of around 5% with respect to baseline PCA, can be achieved even when the
corruption rate is sensibly high, with up to 20% erasures in the input samples.

As a possible future evolution of the proposed algorithms, their application could be
extended to the classification of multiple neurodegenerative pathologies besides AD, for
which data collection is already in progress, or to the identification of contributions of the
different brain regions to the various patologies.

Author Contributions: Conceptualization, M.A., G.B., P.C., L.F., S.L. and C.T.; investigation, M.A.,
L.F. and C.T.; methodology, M.A., G.B., L.F., S.L. and C.T.; project administration, P.C. and C.T.;
software, M.A., G.B. and L.F.; supervision, P.C. and C.T.; validation, M.A. and G.B.; visualization,
M.A. and L.F.; writing—original draft, M.A., L.F. and C.T.; writing—review and editing, M.A., G.B.,
P.C., L.F., S.L. and C.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: The dataset was obtained from subjects as part of ordinary medical
diagnosis in hospital environment; data were collected according to the Declaration of Helsinki, were
properly anonymised and informed consent was obtained at the time of original data collection.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xie, J.; Brayne, C.; Matthews, F.E. Survival times in people with dementia: Analysis from population based cohort study with 14

year follow-up. BMJ 2008, 336, 258–262. [CrossRef] [PubMed]
2. Jeong, J. EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 2004, 115, 1490–1505. [CrossRef] [PubMed]
3. Petersen, R.C. Early diagnosis of Alzheimer’s disease: Is MCI too late? Curr. Alzheimer Res. 2009, 6, 324–330. [CrossRef] [PubMed]
4. Petersen, R.C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 2004, 256, 183–194. [CrossRef]
5. Gauthier, S.; Reisberg, B.; Zaudig, M.; Petersen, R.C.; Ritchie, K.; Broich, K.; Belleville, S.; Brodaty, H.; Bennett, D.; Chertkow, H.;

et al. Mild cognitive impairment. Lancet 2006, 367, 1262–1270. [CrossRef]
6. Biagetti, G.; Crippa, P.; Falaschetti, L.; Luzzi, S.; Santarelli, R.; Turchetti, C. Classification of Alzheimer’s disease from structural

magnetic resonance imaging using particle-Bernstein polynomials algorithm. Smart Innov. Syst. Technol. 2019, 143, 49–62.
7. Tsolaki, A.; Kazis, D.; Kompatsiaris, I.; Kosmidou, V.; Tsolaki, M. Electroencephalogram and Alzheimer’s disease: Clinical and

research approaches. Int. J. Alzheimer’s Dis. 2014, 2014, 349249. [CrossRef]
8. Kulkarni, N.N.; Bairagi, V.K. Electroencephalogram based diagnosis of Alzheimer Disease. In Proceedings of the 2015 IEEE 9th

International Conference on Intelligent Systems and Control (ISCO), Coimbatore, India, 9–10 January 2015; pp. 1–5.
9. Falk, T.H.; Fraga, F.J.; Trambaiolli, L.; Anghinah, R. EEG amplitude modulation analysis for semi-automated diagnosis of

Alzheimer’s disease. EURASIP J. Adv. Signal Process. 2012, 2012, 192. [CrossRef]
10. Dauwels, J.; Vialatte, F.; Cichocki, A. Diagnosis of Alzheimer’s disease from EEG signals: Where are we standing? Curr. Alzheimer

Res. 2010, 7, 487–505. [CrossRef]

http://doi.org/10.1136/bmj.39433.616678.25
http://www.ncbi.nlm.nih.gov/pubmed/18187696
http://dx.doi.org/10.1016/j.clinph.2004.01.001
http://www.ncbi.nlm.nih.gov/pubmed/15203050
http://dx.doi.org/10.2174/156720509788929237
http://www.ncbi.nlm.nih.gov/pubmed/19689230
http://dx.doi.org/10.1111/j.1365-2796.2004.01388.x
http://dx.doi.org/10.1016/S0140-6736(06)68542-5
http://dx.doi.org/10.1155/2014/349249
http://dx.doi.org/10.1186/1687-6180-2012-192
http://dx.doi.org/10.2174/156720510792231720

Sensors 2022, 22, 3696 17 of 18

11. Fiscon, G.; Weitschek, E.; Felici, G.; Bertolazzi, P.; De Salvo, S.; Bramanti, P.; De Cola, M.C. Alzheimer’s disease patients
classification through EEG signals processing. In Proceedings of the 2014 IEEE Symposium on Computational Intelligence and
Data Mining (CIDM), Orlando, FL, USA, 9–12 December 2014; pp. 105–112.

12. Lehmann, C.; Koenig, T.; Jelic, V.; Prichep, L.; John, R.E.; Wahlund, L.O.; Dodge, Y.; Dierks, T. Application and comparison
of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG). J. Neurosci. Methods 2007,
161, 342–350. [CrossRef]

13. Houmani, N.; Vialatte, F.; Gallego-Jutglà, E.; Dreyfus, G.; Nguyen-Michel, V.H.; Mariani, J.; Kinugawa, K. Diagnosis of
Alzheimer’s disease with Electroencephalography in a differential framework. PLoS ONE 2018, 13, e0193607. [CrossRef]
[PubMed]

14. Coben, L.A.; Danziger, W.L.; Berg, L. Frequency analysis of the resting awake EEG in mild senile dementia of Alzheimer type.
Electroencephalogr. Clin. Neurophysiol. 1983, 55, 372–380. [CrossRef]

15. Arenas, A.M.; Brenner, R.P.; Reynolds, C.F. Temporal slowing in the elderly revisited. Am. J. EEG Technol. 1986, 26, 105–114.
[CrossRef]

16. Cibils, D. Dementia and qEEG (Alzheimer’s disease). In Supplements to Clinical Neurophysiology; Elsevier: Amsterdam,
The Netherlands, 2002; Volume 54, pp. 289–294.

17. Kowalski, J.W.; Gawel, M.; Pfeffer, A.; Barcikowska, M. The diagnostic value of EEG in Alzheimer disease: Correlation with the
severity of mental impairment. J. Clin. Neurophysiol. 2001, 18, 570–575. [CrossRef]

18. Besthorn, C.; Förstl, H.; Geiger-Kabisch, C.; Sattel, H.; Gasser, T.; Schreiter-Gasser, U. EEG coherence in Alzheimer disease.
Electroencephalogr. Clin. Neurophysiol. 1994, 90, 242–245. [CrossRef]

19. Locatelli, T.; Cursi, M.; Liberati, D.; Franceschi, M.; Comi, G. EEG coherence in Alzheimer’s disease. Electroencephalogr. Clin.
Neurophysiol. 1998, 106, 229–237. [CrossRef]

20. Yu, H.; Zhu, L.; Cai, L.; Wang, J.; Liu, J.; Wang, R.; Zhang, Z. Identification of Alzheimer’s EEG With a WVG Network-Based
Fuzzy Learning Approach. Front. Neurosci. 2020, 14, 641. [CrossRef]

21. Tanveer, M.; Richhariya, B.; Khan, R.; Rashid, A.; Khanna, P.; Prasad, M.; Lin, C. Machine learning techniques for the diagnosis of
Alzheimer’s disease: A review. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2020, 16, 1–35. [CrossRef]

22. Biagetti, G.; Crippa, P.; Falaschetti, L.; Luzzi, S.; Turchetti, C. Classification of Alzheimer’s disease from EEG signal using
robust-PCA feature extraction. Procedia Comput. Sci. 2021, 192, 3114–3122. [CrossRef]

23. Nguyen, M.; Sun, N.; Alexander, D.C.; Feng, J.; Yeo, B.T. Modeling Alzheimer’s disease progression using deep recurrent neural
networks. In Proceedings of the 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI), Singapore, 12–14
June 2018; pp. 1–4.

24. Nguyen, M.; He, T.; An, L.; Alexander, D.C.; Feng, J.; Yeo, B.T.; Initiative, A.D.N. Predicting Alzheimer’s disease progression
using deep recurrent neural networks. NeuroImage 2020, 222, 117203. [CrossRef]

25. Gong, S.; Xing, K.; Cichocki, A.; Li, J. Deep Learning in EEG: Advance of the Last Ten-Year Critical Period. arXiv 2020,
arXiv:2011.11128.

26. Li, G.; Lee, C.H.; Jung, J.J.; Youn, Y.C.; Camacho, D. Deep learning for EEG data analytics: A survey. Concurr. Comput. Pract. Exp.
2020, 32, e5199. [CrossRef]

27. Petrosian, A.; Prokhorov, D.; Lajara-Nanson, W.; Schiffer, R. Recurrent neural network-based approach for early recognition of
Alzheimer’s disease in EEG. Clin. Neurophysiol. 2001, 112, 1378–1387. [CrossRef]

28. Petrosian, A.A.; Prokhorov, D.; Schiffer, R.B. Early recognition of Alzheimer’s disease in EEG using recurrent neural network and
wavelet transform. In Proceedings of the Wavelet Applications in Signal and Image Processing VIII, San Diego, CA, USA, 30
July–4 August 2000; Volume 4119, pp. 870–877.

29. Wang, T.; Qiu, R.G.; Yu, M. Predictive modeling of the progression of Alzheimer’s disease with recurrent neural networks. Sci.
Rep. 2018, 8, 1–12. [CrossRef] [PubMed]

30. Yang, S.; Chen, H.C.; Wu, C.H.; Wu, M.N.; Yang, C.H. Forecasting of the prevalence of dementia using the lstm neural network in
Taiwan. Mathematics 2021, 9, 488. [CrossRef]

31. Sadiq, M.T.; Yu, X.; Yuan, Z.; Aziz, M.Z. Motor imagery BCI classification based on novel two-dimensional modelling in empirical
wavelet transform. Electron. Lett 2020, 56, 1367–1369. [CrossRef]

32. Sadiq, M.T.; Yu, X.; Yuan, Z.; Aziz, M.Z.; ur Rehman, N.; Ding, W.; Xiao, G. Motor Imagery BCI Classification Based on
Multivariate Variational Mode Decomposition. IEEE Trans. Emerg. Top. Comput. Intell. 2022. [CrossRef]

33. Sadiq, M.T.; Yu, X.; Yuan, Z. Exploiting dimensionality reduction and neural network techniques for the development of expert
brain–computer interfaces. Expert Syst. Appl. 2021, 164, 114031. [CrossRef]

34. Sadiq, M.T.; Aziz, M.Z.; Almogren, A.; Yousaf, A.; Siuly, S.; Rehman, A.U. Exploiting pretrained CNN models for the development
of an EEG-based robust BCI framework. Comput. Biol. Med. 2022, 143, 105242. [CrossRef]

35. Candès, E.J.; Li, X.; Ma, Y.; Wright, J. Robust principal component analysis? J. ACM (JACM) 2011, 58, 1–37. [CrossRef]
36. Alessandrini, M.; Biagetti, G.; Crippa, P.; Falaschetti, L.; Turchetti, C. Recurrent Neural Network for Human Activity Recognition

in Embedded Systems Using PPG and Accelerometer Data. Electronics 2021, 10, 1715. [CrossRef]
37. Hochreiter, S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertain.

Fuzziness Knowl. Based Syst. 1998, 6, 107–116. [CrossRef]
38. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jneumeth.2006.10.023
http://dx.doi.org/10.1371/journal.pone.0193607
http://www.ncbi.nlm.nih.gov/pubmed/29558517
http://dx.doi.org/10.1016/0013-4694(83)90124-4
http://dx.doi.org/10.1080/00029238.1986.11080192
http://dx.doi.org/10.1097/00004691-200111000-00008
http://dx.doi.org/10.1016/0013-4694(94)90095-7
http://dx.doi.org/10.1016/S0013-4694(97)00129-6
http://dx.doi.org/10.3389/fnins.2020.00641
http://dx.doi.org/10.1145/3344998
http://dx.doi.org/10.1016/j.procs.2021.09.084
http://dx.doi.org/10.1016/j.neuroimage.2020.117203
http://dx.doi.org/10.1002/cpe.5199
http://dx.doi.org/10.1016/S1388-2457(01)00579-X
http://dx.doi.org/10.1038/s41598-018-27337-w
http://www.ncbi.nlm.nih.gov/pubmed/29907747
http://dx.doi.org/10.3390/math9050488
http://dx.doi.org/10.1049/el.2020.2509
http://dx.doi.org/10.1109/TETCI.2022.3147030
http://dx.doi.org/10.1016/j.eswa.2020.114031
http://dx.doi.org/10.1016/j.compbiomed.2022.105242
http://dx.doi.org/10.1145/1970392.1970395
http://dx.doi.org/10.3390/electronics10141715
http://dx.doi.org/10.1142/S0218488598000094
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276

Sensors 2022, 22, 3696 18 of 18

39. Biagetti, G.; Crippa, P.; Falaschetti, L.; Focante, E.; Martínez Madrid, N.; Seepold, R. Machine Learning and Data Fusion
Techniques Applied to Physical Activity Classification Using Photoplethysmographic and Accelerometric Signals. Procedia
Comput. Sci. 2020, 176, 3103–3111. [CrossRef]

40. Musci, M.; De Martini, D.; Blago, N.; Facchinetti, T.; Piastra, M. Online Fall Detection using Recurrent Neural Networks on Smart
Wearable Devices. IEEE Trans. Emerg. Top. Comput. 2020. [CrossRef]

41. Eddins, S. Classify ECG Signals Using LSTM Networks. 2018. Available online: https://blogs.mathworks.com/deep-learning/
2018/08/06/classify-ecg-signals-using-lstm-networks/ (accessed on 16 April 2021).

42. Hubert, M.; Engelen, S. Robust PCA and classification in biosciences. Bioinformatics 2004, 20, 1728–1736. [CrossRef] [PubMed]
43. Rahmani, M.; Li, P. Outlier detection and robust PCA using a convex measure of innovation. In Proceedings of the Advances in

Neural Information Processing Systems 32 (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019.
44. Su, J.; Tao, H.; Tao, M.; Wang, L.; Xie, J. Narrow-band interference suppression via RPCA-based signal separation in time–

frequency domain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5016–5025. [CrossRef]
45. Xu, H.; Caramanis, C.; Mannor, S. Outlier-robust PCA: The high-dimensional case. IEEE Trans. Inf. Theory 2012, 59, 546–572.

[CrossRef]
46. Chevalier, G. LSTMs for Human Activity Recognition. 2016. Available online: https://github.com/guillaume-chevalier/LSTM-

Human-Activity-Recognition (accessed on 16 April 2021).
47. Bakshi, B.R. Multiscale PCA with application to multivariate statistical process monitoring. AIChE J. 1998, 44, 1596–1610.

[CrossRef]
48. MathWorks. wmspca—Multiscale Principal Component Analysis. 2022. Available online: https://it.mathworks.com/help/

wavelet/ref/wmspca.html (accessed on 7 April 2022).
49. Lazli, L.; Boukadoum, M.; Mohamed, O.A. A Survey on Computer-Aided Diagnosis of Brain Disorders through MRI Based on

Machine Learning and Data Mining Methodologies with an Emphasis on Alzheimer Disease Diagnosis and the Contribution of
the Multimodal Fusion. Appl. Sci. 2020, 10, 1894. [CrossRef]

http://dx.doi.org/10.1016/j.procs.2020.09.178
http://dx.doi.org/10.1109/TETC.2020.3027454
https://blogs.mathworks.com/deep-learning/2018/08/06/classify-ecg-signals-using-lstm-networks/
https://blogs.mathworks.com/deep-learning/2018/08/06/classify-ecg-signals-using-lstm-networks/
http://dx.doi.org/10.1093/bioinformatics/bth158
http://www.ncbi.nlm.nih.gov/pubmed/14988110
http://dx.doi.org/10.1109/JSTARS.2017.2727520
http://dx.doi.org/10.1109/TIT.2012.2212415
https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition
https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition
http://dx.doi.org/10.1002/aic.690440712
https://it.mathworks.com/help/wavelet/ref/wmspca.html
https://it.mathworks.com/help/wavelet/ref/wmspca.html
http://dx.doi.org/10.3390/app10051894

	Introduction
	Brief of RNNs
	Dataset
	Data Processing
	Data Pre-Processing
	Data Windowing
	Data Augmentation
	Principal Component Analysis
	Robust PCA

	RNN Architecture
	Experimental Results
	Discussion
	Conclusions
	References

