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Abstract: In the field of biometric recognition, finger vein recognition has received widespread
attention by virtue of its advantages, such as biopsy, which is not easy to be stolen. However, due to
the limitation of acquisition conditions such as noise and illumination, as well as the limitation of
computational resources, the discriminative features are not comprehensive enough when performing
finger vein image feature extraction. It will lead to such a result that the accuracy of image recognition
cannot meet the needs of large numbers of users and high security. Therefore, this paper proposes a
novel feature extraction method called principal component local preservation projections (PCLPP).
It organically combines principal component analysis (PCA) and locality preserving projections (LPP)
and constructs a projection matrix that preserves both the global and local features of the image,
which will meet the urgent needs of large numbers of users and high security. In this paper, we apply
the Shandong University homologous multi-modal traits (SDUMLA-HMT) finger vein database to
evaluate PCLPP and add “Salt and pepper” noise to the dataset to verify the robustness of PCLPP.
The experimental results show that the image recognition rate after applying PCLPP is much better
than the other two methods, PCA and LPP, for feature extraction.

Keywords: finger vein recognition; biometric recognition; feature extraction method; algorithm

1. Introduction
1.1. Motivation

With the development of the digital economy and network security systems, the
authentication of identity information is ubiquitous. Identity verification is required in
daily life scenarios such as unlocking cell phones, logging into personal electronic accounts,
using ATMs, and e-commerce. Traditional authentication technologies such as passwords
and PINs [1] have some disadvantages, for instance, low security and being easy to forget
and lose, making it difficult to meet the security needs in many application scenarios.
Biometric identification technology [2] has received more and more attention in recent
years because of its advantages, such as living identification, being difficult to steal, and
having unique characteristics.

Biometric identification is a technology that allows personal identification by com-
puter processing inherent physiological characteristics or behavioral traits of the human
body. These characteristics are usually obtained by biological sensors, for example, optical
sensors, acoustic sensors, etc. Table 1 compares the features of some mainstream biometric
technologies in terms of accuracy, stability, recognition speed, etc.
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Table 1. Overview of mainstream biometric technologies.

Technology Accuracy Stability Recognition
Speed Convenience Main Application

Drawbacks

Fingerprint High Easy to wear
and tear Quick Low threshold, low cost,

easy to use
Small number of users,

low accuracy

Face Average Average Slow Non-contact, easy
to collect

Privacy abuse problem,
anti-cracking problem

Iris Extremely
high Very stable Quick

Non-contact, distance
limitation, not easy

to collect

High price, high technical
difficulty, inconvenient to use

Voice Average Unstable Slow Easy to acquire, easy
to use

Easy to be affected by
physical condition and age
change, not high in security

Finger vein Extremely
high Very stable Quick Non-contact, easy

to acquire
Immature technology, low
degree of industrialization

Finger vein recognition is a bioassay technology, and the finger vein characteristics of
different finger individuals are unique, which enables the high-accuracy identification of a
large number of users [3]. In addition, as a non-contact biometric identification method,
finger vein recognition is clean and hygienic. It means that the breakage and dirt of the
epidermis will not affect the accuracy of recognition [4]. It is due to these advantages
that research and development regarding finger vein recognition technology has received
wide attention.

Although finger vein recognition has advantages over other biometric technologies,
the fact is that it is not yet mature. Finger vein recognition techniques based on traditional
methods, such as SIFT [5], Gabor [6], and maximum curvature [7], are not suitable for
a large number of users and have been gradually phased out. Corresponding to these
traditional methods are the image processing methods based on machine learning [8–10].
Among them, the deep learning image processing method [11] can obtain higher accuracy,
but it often requires a large number of training samples, so it is not widely used at present.
However, the widely used finger vein datasets are all small sample datasets. Therefore, it is
urgent to find a method that can obtain accurate finger vein features even in small samples
of finger vein datasets.

1.2. Contribution

The contributions of this work are threefold:

(1) We proposed a finger vein feature extraction algorithm, which combines principal
component analysis and local preservation projection. It can effectively obtain global
key features and local key features of finger vein images for feature classification.

(2) The algorithm we proposed has good recognition accuracy in ROI images that have
not been pre-processed with image enhancement.

(3) The algorithm is robust for “Salt and pepper” noise and Gaussian noise.

The rest of this paper is organized as follows. Previous studies are described in
Section 2. In Section 3, the proposed method is described. Comparative experiments and
experimental results with analysis are described in Section 4. Finally, the conclusions of
this paper are provided in Section 5.

2. Literature Review

Traditional finger vein recognition methods require image preprocessing and feature
extraction first. To reduce the computational cost, many researchers perform dimensionality
reduction on the images by PCA before feature extraction. Wu and Liu [12] applied PCA
for a feature dimension reduction on finger vein images. After comparing the adaptive
neuro-fuzzy inference system (ANFIS) classification with the back-propagation (BP) neural
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network classification, they found that the former was better than the latter. Later, they [13]
performed a feature extraction on images by combining PCA and linear discriminant anal-
ysis (LDA). After applying the ANFIS and support vector machine (SVM) for classification,
respectively, they finally concluded that SVM was more effective. Yang et al. [14] applied
(2D)2PCA to finger vein feature extraction and combined it with a KNN classifier based
on metric learning for classification, which improved the recognition between different
classes of samples. To detect finger vein images more accurately, Qiu et al. [15] proposed a
dual-sliding window model and a pseudo-elliptical sampling model to pre-process finger
vein images and then used (2D)2PCA to extract features from the processed images. Finally,
the effectiveness of the method was verified on three datasets. He et al. [16] used PCA for
feature dimension reductions and then constructed a multilayer neural network classifier
based on the BP neural network. Comparing their results with the literature [13], they noted
that the BP neural network classifier took a longer time without significantly improving the
recognition accuracy. Ye et al. [17] designed a variable curvature Gabor filter for finger vein
orientation feature extraction and then carried out dimensionality reduction by PCA. Hu
et al. [18] proposed a block multi-scale uniform local binary pattern (MULBP) method to ex-
tract local texture features from the finger vein images, then applied the Two-Dimensional
Principal Component Analysis ((2D)2PCA) based on block to preserve local features. The
average recognition rate of the (2D)2PCA tested on different finger vein datasets was over
99%. Ei Wei et al. [19] found that useful local information might be discarded when using
PCA for dimensionality reduction. To solve it, they considered that feature extraction using
Discrete Wavelet Transform (DWT) with LBP could be used to generate feature vectors
before dimensionality reduction using PCA.

According to the results of related literature, it can be found that PCA is a feature
extraction method based on the global information of the image. It may regard part of the
local key information as noise during the finger vein recognition, which affects the accuracy
of finger vein recognition.

LPP is a local feature-based, classical dimensionality reduction algorithm in manifold
learning. The method has been used in pattern recognition, face image recognition, and
mechanical fault diagnosis but has not yet been applied to finger vein recognition. Due
to the similarity in the principle of feature extraction between finger vein recognition and
face recognition, LPP is applied to finger vein feature extraction in this paper. He and
Niyogi [20] proposed the LPP method in 2004, and later, they applied this method to the
study of face recognition in [21]. Gui et al. [22] proposed locality preserving discriminant
projections (LPDP) by a adding maximum margin criterion (MMC) to the objective function
of LPP and obtained good results in experiments on both the face dataset and palmprint
dataset. To alleviate the impact of intra-class variations and improve the performance of gait
recognition, Rida et al. [23] proposed a novel method combining the statistical dependency
(SD) feature selection with globality-locality preserving projections (GLPP). LPP is sensitive
to outliers and noise. Hence, Zhang et al. [24] proposed the sparse locality preserving
discriminative projections (SLPDP) method, which combines sparse representation into
LPP and verifies the effectiveness of the method on several face datasets. Aminu and
Ahmad [25] proposed a locality preserving partial least squares discriminant analysis
(LPPLSDA) algorithm that is more suitable for capturing the local structure of faces by
adding LPP to partial least squares discriminant analysis (PLSDA) and obtained good
performance on several benchmark face databases. However, since features of finger vein
pictures are not as rich as fingerprints or palm prints, etc., the success rate of finger vein
recognition cannot be effectively improved by simply using LPP.

This paper attempts to combine PCA and LPP more effectively, thus proposing a new
finger vein recognition method, namely PCLPP. When using PCLPP for feature extraction of
finger vein images, the best projection matrix that preserves both global and local features
can be found. The matrix is then used as the input of the SVM classifier, and finally, the
recognition rate of finger vein images is improved.
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3. PCLPP-Based Finger Vein Recognition Framework

The framework of the PCLPP method proposed in this paper contains two parts, that
is, the training part and the testing part, as shown in Figure 1. In the training part, the
acquired images are first subjected to a region of interest (ROI) extraction, and then feature
extraction is performed by the PCLPP model. The user information is then registered and
fed to the SVM classifier for model fitting to obtain an optimal classification hyperplane. In
the testing part, the tested images are directly mapped to the low-dimensional space after
ROI processing and then fed to the trained SVM model to derive the classification results.
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3.1. ROI Extraction

Figure 2 shows a finger vein image in SDUMLA-HMT [26]. The irrelevant information
such as finger edges and background will interfere with the extraction of finger vein
features, which, in turn, affect the finger vein recognition rate [27]. Therefore, to obtain the
region containing only finger vein, the ROI extraction for finger vein images is necessary,
which is a critical step to enhance the accuracy [28].
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Figure 2. SDUMLA-HMT finger vein imaging map.

3.2. PCLPP-Based Feature Extraction Method

Both PCA and LPP can map high-dimensional data to low-dimensional space, but they
do so in different ways. PCA aims to preserve the global structure of the image space. It



Sensors 2022, 22, 3691 5 of 13

maps high-dimensional data to low-dimensional space by maximizing the global variance.
However, it may destroy the internal geometrical structure of the sample dataset because
it ignores the correlation between sample points. LPP restores the inherent nonlinear
manifold structure of the original map by preserving the local structure, but it does not
guarantee the effective preservation of global information, which may lead to the loss of
variance information between data points and the destruction of the global structure. To
reduce the limitations of both methods, this paper proposed PCLPP, which can retain both
the local and the global structure mapping of images, thus achieving the richness and
effectiveness of finger vein image feature extraction information.

3.2.1. Notation and Definition

Assume that there is a sample matrix of high-dimensional space X = [x1, x2, . . . , xn] ∈
Rn×D, where xi ∈ RD, and D is the dimensionality of X. Consider a linear transfor-
mation mapping the original D-dimensional space into a D-dimensional feature space
Y = [y1, y2, . . . , yn] ∈ Rn×d, where yi ∈ Rd and D � d. The new feature vectors yi are
defined by following linear transformation as Equation (1):

yi = PTxi, i = 1, 2, . . . , n (1)

where P ∈ Rn×d is a transformation matrix.

3.2.2. PCA

PCA is one of the most widely used algorithms for data dimensionality reduction. Its
main idea is to map data samples from a high-dimensional space to a low-dimensional
space using orthogonal matrices. Its objective function JPCA can be formally stated as
Equation (2):

JPCA(Y) = max
P

n
∑

i=1
‖ yi − y ‖2

s.t. PT P = I
(2)

If Equation (1) is used as the conversion equation, Equation (2) can be simplified to
the following trace form after a simple algebraic transformation, i.e., Equation (3).

JPCA(P)= max
P

n

∑
i=1
‖ PT(xi − x) ‖2

= max
P

tr
{

PT(xi − x)(xi − x)T P
}

= max
P

tr
{

PTCP
}

s.t. PT P= I

(3)

where C = ∑n
i=1(xi − x)(xi − x)T is the covariance matrix, x = 1

n ∑n
i=1 xi, and tr(*) denotes

the trace of matrix *, i.e., the sum of the main diagonal elements of matrix *.

3.2.3. LPP

LPP is a general method for manifold learning and can be considered a linear approxi-
mation of the nonlinear Laplacian eigenmaps. LPP keeps the local manifold structure of
the data as similar as possible during the transformation of the data projection space. The
objective function JLPP of LPP can be formally stated as Equation (4):

JLPP(P) = min
P

1
2

n

∑
i,j=1
‖ yi − yj ‖

2sij (4)

where P is the transformation matrix.
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With a simple algebraic reconstruction via Equation (1), the above objective function
can be rewritten as follows:

JLPP(P)= min
P

N

∑
i,j=1

(
PTxi − Pxj

)
(PTxi − Pxj)

T
sij

= min
P

tr
{

PTXDXT P− PTXSXT P
}

= min
P

tr
{

PTX(D− S)XT P
}

= min
P

tr
{

PTXLXT P
}

s.t. PTXDPXT= I

(5)

where D = diag{D11, D22, . . . , Dnn} is the diagonal matrix, L = D − S is the Laplacian
matrix, and S = [sij]n×n is the weight matrix obtained with the heat kernel method.

The LPP objective function can therefore be changed to Equation (6).

JLPP(P) = min
P

tr
{

PTXLXT P
}

s.t. PTXDPXT = I
(6)

3.2.4. PCLPP

Considering that PCA is to find the projection matrix by constructing the global
maximized variance, LPP is to obtain the projection matrix by preserving the local features.
Therefore, an intuitive motivation is to seek a common projection that minimizes the local
scatter JLPP while maximizing the global scatter JLPP. In fact, the optimal projection matrix
can be obtained by solving a multi-objective optimization problem, i.e., Equation (7). max

P
tr
{

PTCP
}

min
P

tr
{

PTXLXT P
}

s.t. PTXDXT P = I

(7)

PCLPP is seeking the difference between global scattering maximization and local
minimization embedding. Therefore, according to the MMC proposed in the literature [29],
Equation (7) can be transformed from a multi-objective function to a single objective
function, as shown in Equation (8).

JPCLPP = max
P

tr
{

PT(αC− (1− α)XLXT)P}
s.t. PTXDXT P = I

(8)

where α ∈ [0, 1) is the balance parameter.
To deal with the constraints, we introduced the Lagrange multiplier method to trans-

form Equation (8) into an unconstrained problem, which results in Equation (9).

L(P) = tr
{

PT
(
αC− (1− α)XLXT

)
P
}
− λi

(
PTXDXT P− I

)
(9)

Let ∂L(P)
∂P = 0, we can get[

αC− (1− α)XLXT]pi = λiXDXTpi (10)

where pi is the generalized eigenvector corresponding to eigenvalue λi.
The steps of the PCLPP algorithm are as follows:
Step 1: Compute JPCA and JLPP, respectively.
Step 2: Construct the overall objective function according to Equation (8) and calculate

the eigenvalues and eigenvectors.
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Step 3: Select the first d feature vectors to form the best feature matrix P.
After obtaining the best feature matrix for each finger vein image, the matrices need to

be divided into a training set and a test set. Then, the training set is fed into the classifier for
training, and the test set is fed into the trained classifier for testing, so that the performance
of finger vein image recognition can be evaluated based on the test results. In this paper,
the SVM classifier is used for classification and identification.

3.3. SVM-Based Image Classification Method

SVM is a commonly used and robust classifier in the field of biometric recognition.
Its basic idea is to gain the separation hyperplane that can correctly partition the training
data set and maximize the geometric interval. The input of the SVM algorithm should be a
set of labeled samples, where yi ∈ {+1,−1} is the label: +1 for positive cases, and −1 for
negative cases.

Then, the mathematical expression of the optimal hyperplane is

wTx + b = 0 (11)

where x is the vector on the hyperplane; w = (w1, w2, . . . , wd) is the normal vector, which
determines the direction of the hyperplane; and b is the bias, which determines the distance
between the hyperplane and the origin.

The maximum interval is obtained by maximizing the sum of the distance D of the
two dissimilar support vectors to the hyperplane.

D = max
w,b

2
||w||

s.t. yi(w
Txi + b) ≥ 1, i = 1, 2, . . . , N

(12)

Combining the Lagrange multiplier method, the convex quadratic programming
problem can be transformed into its dual.

D′ = max
α

m
∑

i=1
αi − 1

2

N
∑

i=1

N
∑

j=1
αiαjyiyjx

T
i xj

s.t.
m
∑

i=1
αiyi = 0, αi ≥ 0, i = 1, 2, . . . , N

(13)

where αi, αj are collectively referred to as the dual variables or Lagrange multipliers.
The final decision function of SVM is determined by only a small number of support

vectors, so its computational complexity depends on the number of support vectors rather
than the dimensionality of the sample space. Therefore, the model can be more robust by
adding or deleting non-support vectors. In this paper, the training set images are processed
by PCLPP to obtain the optimal training feature matrixes, which are then fed into the SVM
classifier to determine the classification criteria. Finally, the low-dimensional matrixes
obtained from the test images are fed into the SVM classifier to obtain the classification
results according to the classification criteria.

4. Experimental Analysis

The SDUMLA-HMT dataset, which is one of the most commonly used datasets in
the field of finger vein research, is selected for the experiments in this paper. PCLPP, PCA
and LPP, are, respectively, combined with an SVM classifier to perform image recognition
experiments on the SDUMLA-HMT dataset, and their performances are compared by
recognition accuracy. All the experimental codes were implemented using the Python
programming language and were run in a python 3.7 environment. PCA, LPP and PCLPP
were implemented by us, while SVM was implemented using the SVM module from the
sklearn library. In addition, all experiments were conducted on a desktop computer with
an Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz-1.99 GHz and 8 GB RAM.
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4.1. SDUMLA-HMT Dataset

The SDUMLA-HMT finger vein dataset consisted of 106 subjects, each providing
a total of 6 images of the index, middle, and ring fingers of both left and right hands.
Thus, 3816 finger images were generated from the SDMULA-HMT dataset, each with
320 × 240 pixels, in ‘bmp’ format. Figure 3 shows the image obtained after ROI ex-
traction, which is 320 × 128 pixels. None of the images were distorted and enhanced
during processing.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 13 
 

 

pixels, in ‘bmp’ format. Figure 3 shows the image obtained after ROI extraction, which is 
320 × 128 pixels. None of the images were distorted and enhanced during processing. 

 
Figure 3. Image after ROI processing. 

4.2. Finger Vein Recognition Experiments with Different Descending Numbers 
This paper selected 600 classes of finger vein data from the SDUMLA-HMT dataset 

and divided each class of fingers into training and test sets in the ratio of 5:1. Figure 4 
shows the finger vein recognition accuracy in different dimensions by combining the three 
feature extraction methods (PCA, LPP, and PCLPP) with the SVM classifier, respectively. 
As can be seen from the figure, the recognition accuracies of the images after feature ex-
traction using PCLPP and LPP both show a trend of increasing and then decreasing with 
the increase in dimensionality. After using PCLPP for feature extraction, the highest im-
age recognition rate is 0.9233 at dimensions 3. The highest image recognition rate is 0.8833 
at dimensions 27 after using LPP. After using PCA for feature extraction, the image recog-
nition rate fluctuates with the increase in dimensionality at first and then stabilizes at 
0.8033 after dimensionality reaches 8. Altogether, the recognition accuracy obtained after 
feature extraction using PCLPP is significantly better than the other two methods under 
the SDUMLA-HMT dataset. According to the above results, the best dimensionality re-
duction dimension for each of these three methods can be obtained, and the following 
experiments are conducted. 

 
Figure 4. Finger vein recognition rates for PCA, LPP, and PCLPP in different dimensions. 

  

Figure 3. Image after ROI processing.

4.2. Finger Vein Recognition Experiments with Different Descending Numbers

This paper selected 600 classes of finger vein data from the SDUMLA-HMT dataset
and divided each class of fingers into training and test sets in the ratio of 5:1. Figure 4 shows
the finger vein recognition accuracy in different dimensions by combining the three feature
extraction methods (PCA, LPP, and PCLPP) with the SVM classifier, respectively. As can be
seen from the figure, the recognition accuracies of the images after feature extraction using
PCLPP and LPP both show a trend of increasing and then decreasing with the increase in
dimensionality. After using PCLPP for feature extraction, the highest image recognition
rate is 0.9233 at dimensions 3. The highest image recognition rate is 0.8833 at dimensions 27
after using LPP. After using PCA for feature extraction, the image recognition rate fluctuates
with the increase in dimensionality at first and then stabilizes at 0.8033 after dimensionality
reaches 8. Altogether, the recognition accuracy obtained after feature extraction using
PCLPP is significantly better than the other two methods under the SDUMLA-HMT dataset.
According to the above results, the best dimensionality reduction dimension for each of
these three methods can be obtained, and the following experiments are conducted.
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4.3. Finger Vein Recognition Experiment with Different Category Numbers

Although the topology of finger vein vasculum differs for each category, the similarity
of finger vein patterns increases as the number of categories increases. To investigate
the relationship between the number of finger vein categories and the three methods,
the best dimension reduction for each of these three methods is selected in this paper.
The recognition accuracy of 600 categories of fingers in SDUMLA-HMT dataset is tested
experimentally once every 100 categories. The experimental results are compiled into
Figure 5.
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As seen in Figure 5, the finger vein image recognition rate of all three methods
after dimensionality reduction to the best dimension tends to decrease as the number of
categories increases. PCA, LPP, and PCLPP achieved the best recognition accuracy (0.95,
0.97, 0.98, respectively) for 100 categories of finger vein images and achieved the worst
recognition accuracy (0.8033, 0.8817, 0.9233, respectively) for 600 categories of finger vein
images. However, PCLPP is significantly better than the other two methods, and its image
recognition rate still reaches 0.9233 in 600 categories of fingers. More comprehensively, the
recognition rate of the PCLPP method proposed in this paper is significantly better than the
other two methods in all categories, and the recognition rate decreases much more slowly
than the other two methods as the number of categories increases.

4.4. Finger Vein Recognition Experiments after Adding Noise

In the process of finger vein image acquisition, due to the image sensor, transmission
channel, decoding processing, etc., bright and dark dot noise will inevitably be generated.
These noises will affect the stability and effectiveness of finger vein feature extraction and
thus affect the recognition accuracy of finger vein images. In order to verify the robustness
of PCLPP to noise, this paper compares the ROI images in the SDUMLA-HMT dataset by
adding “Salt and pepper” noise and Gaussian noise.

4.4.1. Adding “Salt and Pepper” Noise

“Salt and pepper” noise is one of the common noises in digital images. Figure 6 shows
the ROI image after setting the “Salt and pepper” noise density to 0.1.
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Figure 6. Example of ROI image after setting (0.1) the “Salt and pepper” noise density.

Figure 7 shows the image recognition rates of the three methods after adding “Salt and
pepper” noise for feature extraction and classification by SVM. As the figure shows, the
recognition rate of PCA, LPP, and PCLPP all decrease after adding the “Salt and pepper”
noise, but the performance of PCLPP is still significantly better than the other two methods.
The recognition rate using PCLPP can still reach 0.870 even in the case of large-capacity
(600 classes) finger veins, while the recognition rates of the remaining two methods are
lower than 0.800 at this time. The effect of noise on PCA reduction and LPP reduction
becomes more and more obvious as the category increases, while the effect on the PCLPP
method is relatively small.
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4.4.2. Adding Gaussian Noise

Gaussian noise is also one of the common noises in digital images, and its probability
density function obeys the Gaussian distribution. Figure 8 shows the ROI image after
setting the Gaussian noise variance to 0.05.
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Figure 9 shows the image recognition rates of the three methods after adding Gaussian
noise for feature extraction and classification by SVM. As can be seen, the recognition rates
of PCA, LPP, and PCLPP all decrease after adding the “Gaussian noise”, but the perfor-
mance of PCLPP is still significantly better than the other two methods. The recognition
rate using PCLPP can reach 0.907 even in the case of large-capacity (600 classes) finger
veins, while the recognition rates of the remaining two methods are lower than 0.830. The
effect of noise on PCA reduction and LPP reduction becomes more and more obvious as
the category increases, while the effect on the PCLPP method is relatively small.
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According to the experimental results in Sections 4.4.1 and 4.4.2, it can be easily seen
that the robustness of PCLPP is better than the other two methods, either by adding “Salt
and pepper” noise or Gaussian noise.

We compared the proposed PCLPP with two other methods used in the literature, [1,19],
using SDMULA-HMT as the input image set. The identification rates of each method are
shown in Table 2. When 600 images were used for the experiments, the recognition accuracy
of PCLPP reached 0.99, which was significantly better than that of the literature [19]; when
3600 images were used for the experiments, our method was also better than that of the
literature [1].

Table 2. Identification rate by different methods in SDMULA-HMT.

Feature Extraction
Method

Classification
Method

Numbers of
Images Accuracy

[1] coupled LPQ and LDP SVM 2860 0.898
[19] Wavelet + LBP+ PCA SVM 600 0.9583

Proposed method PCLPP SVM 600 0.99
Proposed method PCLPP SVM 3600 0.9233

5. Conclusions

In order to solve the problem that traditional finger vein recognition methods cannot
obtain discriminative features from finger vein images comprehensively and effectively,
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this paper proposes a PCLPP algorithm, which organically integrates PCA and LPP and
considers both global information and key local information of the image in feature ex-
traction. The image feature extraction by PCLPP can obtain the best projection matrix that
preserves both global and local features of the image. Experiments are conducted using the
SDUMLA-HMT dataset, and the results show that: (1) the overall finger vein recognition
accuracy of classification using the feature matrixes obtained by PCLPP is better than both
PCA and LPP methods. (2) After feature extraction by PCLPP, the recognition rate is better
than both PCA and LPP methods in a different number of categories. (3) The effect of noise
on PCA and LPP is obvious, while the effect on PCLPP is relatively small.

In future research, we will further consider the effects of different image sizes and dif-
ferent classification methods on recognition rates, with the ultimate goal of integrating the
finger vein recognition algorithm PCLPP proposed in this paper into a low-cost hardware
product (e.g., an access control system with a large number of users).
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