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Abstract: This paper proposes a new technique for the construction of a concrete-beam health in-
dicator based on the Kullback–Leibler divergence (KLD) and deep learning. Health indicator (HI)
construction is a vital part of remaining useful lifetime (RUL) approaches for monitoring the health of
concrete structures. Through the construction of a HI, the deterioration process can be processed and
portrayed so that it can be forwarded to a prediction module for RUL prognosis. The degradation
progression and failure can be identified by predicting the RUL based on the situation of the current
specimen; as a result, maintenance can be planned to reduce safety risks, reduce financial costs, and
prolong the specimen’s useful lifetime. The portrayal of deterioration through HI construction from
raw acoustic emission (AE) data is performed using a deep neural network (DNN), whose parameters
are obtained by pretraining and fine tuning using a stack autoencoder (SAE). Kullback–Leibler diver-
gence, which is calculated between a reference normal-conditioned signal and a current unknown
signal, was used to represent the deterioration process of concrete structures, which has not been
investigated for the concrete beams so far. The DNN-based constructor then learns to generate HI
from raw data with KLD values as the training label. The HI construction result was evaluated with
run-to-fail test data of concrete specimens with two measurements: fitness analysis of the construction
result and RUL prognosis. The results confirm the reliability of KLD in portraying the deterioration
process, showing a large improvement in comparison to other methods. In addition, this method
requires no adept knowledge of the nature of the AE or the system fault, which is more favorable
than model-based approaches where this level of expertise is compulsory. Furthermore, AE offers
in-service monitoring, allowing the RUL prognosis task to be performed without disrupting the
specimen’s work.

Keywords: acoustic emission; deep neural network; concrete structures; health indicator;
Kullback–Leibler divergence; remaining useful life; stacked autoencoder

1. Introduction

With the easy access and high durability, concrete structures have become a ubiquitary
sight in recent decades. Along with their presence everywhere, there is the inevitable need
for a maintenance plan in order to ensure in-service safety and to prolong the lifetime of
concrete structures. Numerous studies [1–10] have been conducted by laboratories, compa-
nies, and individuals racing to identify solutions regarding the performance amelioration
of structural health monitoring (SHM). By employing an effective monitoring scheme, it is
possible to provide the user with more insight into the in-service system/structure, avoid
near-future failures, and lessen downtime by a significant amount.

Among SHM topics, the remaining useful lifetime (RUL) prognosis is one of the most
concerned problems, in which a solution is provided to predict how long a structure can be
used until it is permanently out-of-service because of a failure(s). By predicting the future
state of the structure, a user can approximate the time when a failure might occur, thus
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adjusting the usage and preparing a maintenance plan accordingly in advance. The most
recent studies [11–16] regarding this topic focus on the development of an autonomous
system that is capable of extracting feature(s) from data and constructing indicators based
on these extracted features. A common scheme for this approach is as follows: initially,
sensors are deployed, which are then utilized to collect and send the real-time data to the
central brain where data processing and health indicator construction occur.

As nondestructive methods for SHM have become dominant in recent years, dif-
ferent methods have been investigated for concrete SHM such as ultrasonic [5,17,18],
vibration [19,20], image processing [3,21,22], and acoustic emission (AE) [4,12,23–31].
Even though ultrasonic testing can detect internal defects and their sizes, it is suscepti-
ble to complicated part geometry and certain materials, such as austenitic steel, which
can mask defects by causing attenuation. Concerning vibration techniques, they are
restricted by their limited band of frequency. In addition, although image processing
techniques offer the most facile setup among all mentioned methods, they are only
capable of detecting failures on the surface. In comparison to these nondestructive
methods, AE techniques, which study and exploit the release of internal elastic energy
by a discontinuity appearance, offer a nondirectional means of monitoring capable of
achieving in-service testing without downtime [32]. A single test of AE can allow users to
track the specimen’s deterioration process dynamically, while highlighting the severity
of the damage. The drawback of this method is that AE can only be utilized to detect
the occurrence of new discontinuities, not existing ones. However, as the purpose of the
AE test is to detect novelties to the current state of the specimen, this drawback can be
considered insignificant in comparison to the benefits that it provides. In this study, we
focus on employing a technique using AE sensors.

The data collected by AE sensors are then analyzed for health indicator (HI) construc-
tion. The approaches of HI construction for RUL prediction, similar to the prognosis and
health management framework in general, can be roughly classified as model-based or
data-based. The methods following the first category focus on real-life process imitation,
which is established via mathematical means. Given the drawback of being increasingly
problematic as the model becomes more complex, it is less favorable than the data-based
approach, in which the interested patterns are derived from available data even in the
absence of knowledge about the nature of the system or the fault. Therefore, the data-based
approach is the main priority of this study. Further discussion on HI construction can be
found in Section 2.

To ensure the reliability of the constructed HI, an evaluation is needed. According
to a previous survey [33], the evaluation of HI can be performed by two approaches: one
concerning the fitness analysis of the construction result and the other considering the
RUL prognosis performance. Further discussion on the HI construction framework and
evaluation is continued in Section 2.

The HI construction and evaluation is presented in Figure 1:
Initially, the raw data are collected from the specimen throughout its deterioration

process. It is then utilized for the calculation of Kullback–Leibler divergence (KLD) at each
time step of each run-to-fail signal. Afterward, the raw signal is fed to the HI constructor,
where its spectrum is computed and used to reduce computation complexity. The stacked
auto-encoder (SAE) takes the spectrum as input for the pretraining process, which is
subsequently fine-tuned into the deep neural network (DNN) to construct the HI lines with
the calculated KLD as the training label. Finally, the evaluation of HI is performed using
both intrinsic measures and RUL prediction to test the proposed method’s reliability.
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In summary, this study proposes a data-based approach for HI construction based on
KLD, for which the expertise concerning concrete material and the nature of the fracturing
process is not required. The constructed HI, through its ability to accurately describe the
deterioration process of concrete structures, can be utilized for RUL prognosis and can
allow users to plan maintenance prior to possible structural failures in the near future.
The following contributions are proposed:

1. A novel HI construction process is proposed using KLD to describe the state of the
concrete specimen during its lifetime directly from raw AE data, which has not been
previously investigated to the extent of the authors’ knowledge.

2. Evaluation of the proposed HI construction using both fitness analysis and
RUL prediction.

The arrangement of the following sections is as follows: Section 2 discusses the general
HI construction framework and evaluation; the process of HI construction is provided in
detail in Section 3; Section 4 describes the experimental setup and HI evaluation using the
two discussed methods; finally, Section 5 provides a conclusion, along with a discussion of
future research possibilities.

2. The General Health Indicator Construction Framework and Evaluation

HI construction is an essential part of the prognosis to portray the timeline of deterio-
ration. HI shows the condition in which the specimen under investigation is. By analyzing
the current HI, it is possible to predict future values and their timing, thus allowing the RUL
to be estimated. Over the years, numerous studies have proposed different approaches to
build a HI, especially in more recent studies [34–36], and in summary, this process can be
generally divided into two steps: (1) calculation of the HI-constructing factor(s) and (2) HI
construction from the calculated factor(s).

The calculation of the HI-constructing factor(s) (also known as features) is often
performed either in the time, frequency, or time–frequency domain. The time domain
approaches [27,28,37,38] generally offer a fast and simple solution that can be widely appli-
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cable to systems and fault types. They often include statistical computation and impulse
analysis. These methods, however, are susceptible to interferences, which are typically
inevitable in real-life applications. Therefore, pre-processing techniques are necessary to
minimize performance degradation. Frequency domain solutions [39,40] explore anomalies
in the system with prior information of the fault characteristic frequencies already known.
They are often adapted in model-based methods and can offer high efficiency; however,
they are not widely applicable. The approaches following a time–frequency domain solu-
tion [41] are the most powerful among these three and can be highly robust. Their downside
is that such powerful methods often require high computational capability and experience
concerning information extraction.

Afterward, the second step is to build the HI constructor. As briefed in the previous
section, the construction of a HI can be roughly divided into two categories: model-based
and data-based. Model-based methods focus on generating a mathematical representation
that mimics a real-life process. The development of a HI in these studies requires expertise,
knowledge about the system’s behavior, the nature of the faults, and the HI-constructing
factors. Following this approach, the studies in [11,26,40,41] investigated the faults with
respect to fault-related frequencies, which indicates that the comprehension of the system
and fault nature is necessary. Another study in [42] proposed an effective HI construction
method with features manually chosen based on relevance. The aforementioned research
and many others have been carried out with expertise in signal processing, and system
and fault behavior, which can be troublesome to obtain in more sophisticated scenarios.
Moreover, they cannot be adapted to a variation in systems, due to their construction
imitating certain real-life processes. Unlike model-based approaches, data-based solutions
focus on the nature of the data itself, with less concern for the system or fault nature. Due
to their lower complexity and wider application toward different systems and faults, data-
based methods have been more favorable in recent years, especially with the rise of artificial
intelligence [43]. Notable mentions in this category are statistical projection [39,44,45], deep
learning models [12,46–48], and evolutionary computation [33,49], etc. Different studies
following these methods have achieved promising results in HI construction for the RUL
prognosis task.

To verify the constructed HI, the evaluation process must be performed with suit-
able metrics. Concerning the HI construction for RUL prognosis, the evaluation can be
generally divided into two categories: the investigation of the HI’s intrinsic nature from
the construction result (fitness analysis) and the performance of HI in the RUL prognosis
tasks. Fitness analysis is often performed with the following metrics: monotonicity [12,41]
(measurement of the monotonic trend in HI), trendability [12,41] (the correlation of HI
and time), and scale similarity [12,41,48] (similarity of HI ranges), etc. The purpose of this
type of evaluation is to self-reflect the HI properties via low computational complexity
without concern of the prognosis task. Furthermore, the second category evaluates HI by
its performance in RUL prognosis. This indirect assessment can be performed through the
mean absolute error, mean square error, mean absolute deviation, etc. In comparison to the
first category, it provides more information about the prognosis task as a whole; however,
it requires more computational complexity because the whole prognosis block is added.
The proposed method is verified in both categories, with monotonicity and trendability in
the first and mean absolute error in the second evaluation.

3. The Proposed Health Indicator Construction

KLD is used to construct the HI to investigate how different an unknown signal is to a
known normal condition. As the deterioration progresses during the loading test, it can
be expected that the difference of the unknown signal to the reference one grows with the
intensity of the AE activity. For that reason, this difference is suitable for the portrayal of
the deterioration process from the run-to-failure signals. Figure 2 shows a loading test’s
stages of deterioration and highlights the difference between a reference signal to a signal
in which significant AE activities are recorded. The detailed experimental setup and data
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description are discussed in Section 4. As shown in Figure 2, the vertical displacement of
the specimen grows steadily during the deterioration stage, which indicates continuous
damage being sustained; therefore, it is also evident that significant AE activities occur
during this period.
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In this study, the signal is segmented into one-second blocks (time steps) for the
computations. The HI construction process initiates with the calculation of each run-
to-fail signal’s probability distribution. A signal’s values are divided into segments of
1 × 10−3 width ranging from its minimum value to its maxima, at each of which the
probability density function (PDF) of the signal is computed. The result of this computation
is later utilized for the KLD calculation.

The divergence of two probability measures was originally defined by Harold Jef-
freys [50] in a symmetrized form (directed divergences, also known as the relative entropies
in each direction), which is now referred to as the Jeffrey Divergence. Later in the 1950s,
Solomon Kullback and Richard Leibler [51] proposed exploring the mean information
discrimination between two hypotheses by their according probability measures using
relative entropy in an asymmetric manner. This concept later came to be known as the
Kullback–Leibler Divergence. Its first context was developed for information theory and
later widely adapted in optimization tasks of machine learning. The value of KLD falls
within the range of 0 to 1, which indicates no difference and maximum divergence, respec-
tively. Assuming two probability distributions P(xi) and Q(xi) from the reference normal
condition and unknown signal, their KLD calculation is as follows:

KLD(P, Q) = ∑N
i=1 P(xi)log

P(xi)

Q(xi)
, (1)

It is assumed that all of the run-to-fail signals start at a normal state with little to
no significant AE activity recorded during this period. Therefore, a reference normal-
conditioned signal can be arbitrarily selected from the very start of the recording.

With the KLD values, the process continues with the establishment of the DNN-
based constructor, which outputs HI lines from the inputted signal spectrum. Initially, the
signal spectrum is calculated using the fast Fourier transform and then equally separated
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into 2 × 103 size bands, whose energy can be approximated using the root mean square.
By doing such an action, the computation capacity can be reduced for the following
operations. Afterward, the pre-training of DNN commences as SAE is fed with the obtained
vector of size 2 × 103. The SAE consists of an encoder and a decoder, both comprising
three dense layers. The encoder processes the data through layers of diminishing sizes
(1000-200-10) in the encoder and then layers of increasing size (200-1000-2000) in the
decoder. Xavier initialization and an exponential linear unit activation are harnessed for
the encoder. In addition, dropout layers of rate 0.1 are appended before the dense layers
for the amelioration of the SAE’s regularization. The training of SAE is executed with the
gradient-descent parameter update, Adam optimization, and a 0.1 fraction of masked zeros,
along with an unlabeled signal spectrum as both the input and output. Noise is added to
the training data, which forces the reconstruction of the noisy input, thus improving the
learnt features’ robustness.

Once the SAE’s training concludes, fine-tuning of the DNN follows as the encoder’s
layers are utilized as the DNN’s hidden layers, on top of which a logistic regression layer is
placed. The calculated KLD value, which falls between the range of [0, 1], is utilized as the
output for the DNN training, along with the input of the signal spectrum. In addition to
freezing the reused layers for learning ability preservation, early stopping and checkpoint
are also used to achieve better parameters. Similar to the KLD, the constructed HI is also
within [0, 1], which indicates the damage the specimen has sustained from the least to the
most in the severity scale.

4. Experimental Setup and Evaluation
4.1. Experimental Setup

To evaluate the reliability of the proposed method, data were collected from rein-
forced concrete beams, which were constructed and installed for the four-point bending
test scenario. Each specimen was identically produced with concrete material having a
compressive strength of 24 MPa, D16 (SD400) steel rebar, and gridded in 50 × 50 mm2

squares for better visualization of deterioration monitoring. The AE data were acquired at
5 MHz from eight R3I-AST sensors placed around both ends of a specimen. The detailed
four-point bending test setup and sensor placement are shown in Figure 3.
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Figure 3. Experimental setup of the four-point bending test on reinforced concrete beam: (a) pictorial
of the specimen under test, (b) schematic of the four-point bending arrangement, and (c) placement
of sensors on the specimen.
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Each specimen was subject to two-point concentrated loading. The loading points
were placed 400 mm from the left and right of the specimen’s median, and the stress was
applied at a speed of 1 mm/s. In addition, a linear variable differential transformer (LDVT)
was set underneath the specimen at its center for vertical displacement measurement. This
is an alternate way to track the damage sustained other than the visual monitoring of the
specimen’s surface fractures. During the test, the specimens were loaded until the damage
was high enough that maintenance was not efficient anymore; however, total collapse was
prohibited from happening for the safety of the observers that included our team members
and construction field specialists. Figure 4 shows the damage sustained by a specimen
during the test:
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Data from three tests, α, β, and γ, were harnessed for this study. Each test was
recorded with eight AE sensors with a total of 24 run-to-fail signals. For each test, signals
from one side (recorded from four out of eight sensors) were used for the training processes,
and the rest for testing. The durations of the tests were 600, 650, and 620 s, respectively.

4.2. Evaluation and Discussion

As aforementioned, the reliability of our proposed method was verified by two evalua-
tions: fitness analysis of the construction result and RUL prognosis performance. In this sec-
tion, these evaluations are demonstrated in comparison with other methods. The proposed
and other HI-constructing factors are visualized in Figure 5.
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In order to analyze the HI construction result, trendability and monotonicity were
utilized as the evaluation metrics. In the prognosis tasks, trendability can be perceived as the
indicator of a feature’s variation with regard to time. High trendability can be witnessed
in linear functions, whereas a constant function represents the minimum trendability.
The resulting line of reliable HI construction is expected to be trendable, especially as the
specimen progresses closer to its failure. In our study, this metric is computed as:

Trendability =
N ∑ xt − ∑ xt√

[N ∑ x2 − (∑ x)2][N ∑ t2 − (∑ t)2]
, (2)

where N is the observation number, and x and t are the feature and time index, respectively.
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In addition, monotonicity characterizes the underlying decreasing or increasing trend.
Its value is in the range of [0, 1], which indicates a higher level of monotonicity as it rises.
A good HI result is expected to not possess a low level of monotonicity. The computation
of this metric can be performed as follows:

Monotonicity = absolute(
nd/dx>0 − nd/dx<0

N − 1
), (3)

where N is the observation number.
To verify the fitness of the KLD-based HI, a comparison was made with various

HI-constructing factors. The results based on the two metrics are shown in Table 1.

Table 1. Fitness analysis of the proposed HI-constructing factor and other factors.

HI-Constructing Factor Minimum Value Maximum Value Trendability Monotonicity

RMS 0.0005 0.1529 0.347 ± 0.064 0.037 ± 0.022

Kurtosis 2.7496 5629.1 0.458 ± 0.050 0.004 ± 0.021

Crest Factor 3.0803 145.91 0.7416 ± 0.024 0.0013 ± 0.183

Skewness −19.279 10.855 0.1077 ± 0.1020 0.0102 ± 0.0215

Entropy 0.0883 4.8324 0.1886 ± 0.1740 0.00196 ± 0.0234

AE-hit 0.0125 1 0.6801 ± 0.0489 0.6788 ± 0.079

KLD 0.0205 1 0.6807 ± 0.0873 0.6953 ± 0.0653

From what can be witnessed in the table, the AE-hit-based HI and KLD-based HI
are comparably outstanding from others in terms of the two concerned metrics. Most
of the other HI-constructing factors can show a middle to high trendability (especially
Crest Factor with trendability value of 0.7416, which is more than both AE-hit and KLD);
however, they are lacking in terms of monotonicity. Such a behavior indicates a poor
characterization of the underlying increasing trend toward the end of the specimen’s HI.
The KLD HI presents a high level of monotonicity and trendability, especially toward the
end of its useful lifetime, as shown in Figure 5. This is an implication that the use of KLD is
suitable for the portrayal of a concrete structure’s deterioration process.

In addition to the fitness analysis of the construction result, the HI was also evaluated
by its performance concerning RUL prognosis. A long short-term memory recurrent neural
network (LSTM-RNN) [28] was chosen for this purpose. Because each run-to-fail signal
is a sequence of values at the time steps, it can be deemed as a univariate time series.
The LSTM-RNN takes in the signals in form of a 50-sample sliding window, which moves
one sample at a time, and predicts the 51st sample. By performing such an action, the model
is forced to predict not just the final value, but at each window of the signal. In addition, it
also enhances the training speed and stabilization by enabling more error gradient. This
model contains an input layer, two hidden size-of-20 LSTM layers, and a dense output layer
using a linear activation function. Similar to DNN training, early stopping and checkpoint
techniques are also used here.

The importance of RUL prognosis increases with time. During the normal working
stage with no damage sustained yet, it is inessential to make a prediction. From the
moment the specimen enters its deterioration stage, the importance of RUL prognosis
grows significantly due to the need of maintenance planning. As a result, we chose two
major time steps at 350 and 450 to perform the prediction, which are the first appearance of
minor and major fractures, respectively. Figure 6 displays the HI prediction from the three
tests at these time steps.
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Figure 6. Prediction of future HI from the three tests at two major time steps. (a) Reinforced concrete
beam α at the 350th time step. (b) Reinforced concrete beam β at the 350th time step. (c) Reinforced
concrete beam γ tests at the 350th time step. (d) Reinforced concrete beam α at the 450th time step.
(e) Reinforced concrete beam β at the 450th time step. (f) Reinforced concrete beam γ at the 450th
time step.

In our study, the useful lifetime expiration is marked at the first occurrence of 0.95
along the HI line; therefore, the RUL can be calculated as follows:

RUL = T0.95 − T, (4)

where T0.95 is the time step when the HI reaches 0.95 and T is the time step at which RUL
prognosis is being performed. Afterward, an error computation is needed to determine
how much the RUL prediction differs from the actual RUL:

Absolute error = absolute (RULpredicted − RULactual ), (5)

where RULpredicted is the predicted RUL and RULactual is the actual RUL. While this mea-
surement is capable of demonstrating the distance between the predicted and actual RUL,
it cannot show which of the predicted and the actual useful life expiration comes first.

The summarized prediction result at two time steps is shown in Table 2. In addition
to the plots shown in Figure 6, it can be seen that the prediction closely follows the
underlying trend of the actual HI, especially with the first two tests. The KLD based
HI offers better prediction of the RUL in comparison to AE-hit based methods, with or
without anomalous hits removal (AHR), by a significant margin. From the prediction
performed at the 350th time step, the average errors are 28, 28, and 36, respectively, in
the three tests. On the second prediction, the result is remarkably closer because the
test errors are, on average, 11, 18, and 16. It is also worth noting that the KLD based
approach does not require adept knowledge of AE phenomena analysis as it does in
the AE-hit based approach. The better results using KLD as the HI-constructing factor
in comparison to AE hits can be explained by the fact that even though the AE hits
have a better description of the AE activities’ nature, it is very difficult to extract the
exact number because multiple events are happening at the same time, which leads
to overlapping hits in the time domain signal. Through this process of hit detection,
useful information can still be neglected, whereas KLD still allows extraction whilst
retaining most of the useful information. In addition, the computational complexity
is significantly less using KLD because it does not require extensive analysis for the
detection threshold, which is of paramount importance in the AE-hit approach. From
this test of RUL prognosis and the fitness evaluation, it can be concluded that KLD is
reliable as a HI-constructing factor. There is still one problem, which is that, in a few
cases, unlike the AE-hit based HI, the prognosis using KLD based HI outputs a result in
which the expected useful life expiration comes after the actual date. Even though this is
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undesirable in the context of prediction, the error is small and will be investigated in
future studies.

Table 2. RUL prognosis performance assessment of the proposed HI with AE-hit and AE-hit
AHR HIs.

Test HI-Constructing Factor RUL Error Predicted at the 350th Time Step RUL Error Predicted at the 450th Time Step

α

KLD 28 ± 7 11 ± 7

AE-hit AHR 31 ± 5 19 ± 4

AE-hit 32 ± 3 21 ± 4

β

KLD 28 ± 11 18 ± 7

AE-hit AHR 37 ± 10 31 ± 7

AE-hit 41 ± 7 34 ± 5

γ

KLD 36 ± 6 16 ± 5

AE-hit AHR 38 ± 9 24 ± 3

AE-hit 36 ± 3 24 ± 3

5. Conclusions

This paper presented an autonomous health indicator (HI) constructor for remaining
useful lifetime (RUL) prognosis on concrete structures using Kullback–Leibler Divergence
(KLD) with in-service acoustic emission (AE) monitoring. By using a reliable HI for the
prognosis task, the user can be warned of future failure and, thus, maintenance can be
performed accordingly to minimize safety risks and financial concerns. The process of
HI construction was initialized from raw data, which was processed by the Fast Fourier
Transform and fed to a constructor to generate the HI. The constructor was a deep neural
network (DNN) structure, whose parameters were obtained through pretraining and fine-
tuning with a stacked autoencoder (SAE). KLD values of the data were calculated between
a reference normal condition and unknown condition in a one-second window, which
were then utilized as the training label for the DNN. The KLD was chosen to portray the
deterioration of concrete specimens because of its ability to describe how much a signal
is different from another. As the deterioration of the concrete specimens worsens, more
significant activities can be expected in the AE signal.

Afterward, evaluation of the constructed HI was presented to verify its reliability in
the prognosis task for concrete specimens. The evaluation was divided into two categories:
fitness analysis of the construction result and RUL prognosis using the constructed HI.
Trendability and monotonicity were utilized as the metrics for fitness analysis, which
showed a result of 0.68 and 0.69, respectively, comparable to the AE-hit based HI (at
0.68 and 0.68) and significantly better than other compared factors. A comparison was
also performed in the RUL prognosis on the proposed HI and AE-hit based HI at two
major time steps (350th and 450th) that vaguely marked the initialization of the micro and
major fractures on the specimens. In the first prediction, the RUL predictions using three
tests’ data were 28, 28, and 36, while in the second, they were 11, 18, and 16, respectively.
The result of this comparison presented an outperformance of the proposed HI, especially
on the second prediction. Through this evaluation, KLD was concluded as a reliable factor
for HI construction.

In future research, the proposed HI construction can be expanded to not just reinforced
concrete beams, but also possibly bridges, walls, and buildings, etc. Pre-processing is
also expected to provide a better representation of the specimen’s health state. Other
optimization techniques and structures will also be investigated in future work to create
a better construction model. We will also aim to approach the HI construction from the
system- and fault-specific aspect, to which the finite element method (FEM) simulation
shall be implemented along with Failure Mode, Effects and Criticality Analysis (FMECA).
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