
Citation: Hozhabr Pour, H.; Li, F.;

Wegmeth, L.; Trense, C.; Doniec, R.;

Grzegorzek, M.; Wismüller, R. A

Machine Learning Framework for

Automated Accident Detection Based

on Multimodal Sensors in Cars.

Sensors 2022, 22, 3634. https://

doi.org/10.3390/s22103634

Academic Editor: Felipe Jiménez

Received: 14 March 2022

Accepted: 6 May 2022

Published: 10 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Machine Learning Framework for Automated Accident
Detection Based on Multimodal Sensors in Cars
Hawzhin Hozhabr Pour 1,* , Frédéric Li 2 , Lukas Wegmeth 3 , Christian Trense 2 , Rafał Doniec 4 ,
Marcin Grzegorzek 2,5 and Roland Wismüller 1

1 Research Group of Operating Systems and Distributed Systems, University of Siegen, Hölderlinstr. 3,
57076 Siegen, Germany; roland.wismueller@uni-siegen.de

2 Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany;
fr.li@uni-luebeck.de (F.L.); christian.trense@student.uni-luebeck.de (C.T.);
marcin.grzegorzek@uni-luebeck.de (M.G.)

3 Intelligent Systems Group (ISG), University of Siegen, Hölderlinstr. 3, 57076 Siegen, Germany;
lukas.wegmeth@uni-siegen.de

4 Department of Biosensors and Biomedical Signal Processing, Faculty of Biomedical Engineering,
Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland; rafal.doniec@polsl.pl

5 Department of Knowledge Engineering, University of Economics in Katowice, Bogucicka 3,
40-287 Katowice, Poland

* Correspondence: hawzhin.hozhabrpour@uni-siegen.de

Abstract: Identifying accident patterns is one of the most vital research foci of driving analysis.
Environmental or safety applications and the growing area of fleet management all benefit from
accident detection contributions by minimizing the risk vehicles and drivers are subject to, improving
their service and reducing overhead costs. Some solutions have been proposed in the past literature
for automated accident detection that are mainly based on traffic data or external sensors. However,
traffic data can be difficult to access, while external sensors can end up being difficult to set up
and unreliable, depending on how they are used. Additionally, the scarcity of accident detection
data has limited the type of approaches used in the past, leaving in particular, machine learning
(ML) relatively unexplored. Thus, in this paper, we propose a ML framework for automated car
accident detection based on mutimodal in-car sensors. Our work is a unique and innovative study on
detecting real-world driving accidents by applying state-of-the-art feature extraction methods using
basic sensors in cars . In total, five different feature extraction approaches, including techniques based
on feature engineering and feature learning with deep learning are evaluated on the strategic highway
research program (SHRP2) naturalistic driving study (NDS) crash data set. The main observations
of this study are as follows: (1) CNN features with a SVM classifier obtain very promising results,
outperforming all other tested approaches. (2) Feature engineering and feature learning approaches
were finding different best performing features. Therefore, our fusion experiment indicates that these
two feature sets can be efficiently combined. (3) Unsupervised feature extraction remarkably achieves
a notable performance score.

Keywords: automated accident detection; feature extraction; feature learning; time series processing;
deep neural networks

1. Introduction

Identifying accident patterns is one of the most vital research foci of driving analysis.
According to the global status report on road safety conducted by the World Health
Organization (WHO) [1], the number of traffic-related fatalities continues to rise steadily.

Despite considerable improvements in road safety by programs such as “Driver Assis-
tance”, “Safety Awareness Services” and “Automatic Crash Notification (ACN)” systems,
accident detection and prevention in driving studies are still of crucial significance. For
this reason, accident detection studies have drawn the attention of insurance and fleet

Sensors 2022, 22, 3634. https://doi.org/10.3390/s22103634 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22103634
https://doi.org/10.3390/s22103634
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4404-7313
https://orcid.org/0000-0003-2110-4207
https://orcid.org/0000-0001-8848-9434
https://orcid.org/0000-0003-4095-7758
https://orcid.org/0000-0002-2535-3932
https://orcid.org/0000-0003-4877-8287
https://orcid.org/0000-0002-2860-2447
https://doi.org/10.3390/s22103634
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22103634?type=check_update&version=3

Sensors 2022, 22, 3634 2 of 21

management companies [2,3]. Environmental, road safety, and commercial applications
such as insurance and loan qualifications are just a few fields where the contribution of
accident analysis could be significant [4].

An important contribution of the accident detection studies is the post-crash applica-
tions concerning immediate dispatch of the emergency and roadside assistance services [5–8].
However, these studies do not analyze accident patterns but rather imply factors such as
airbag deployment to detect an accident. A recent application of accident detection, which
studies accident patterns, is automated boxes installed in cars that minimize the service
and overhead inspection cost of fleet operators by detecting car damages due to minuscule
accidents, bumps, accelerations and braking manoeuvres [9].

In this regard, there are very few studies concerning accident detection using machine
learning (ML) [4]. The reasons for this are multifaceted. To begin with, in study cases
such as accident detection, providing positive labeled data is nearly impossible. Moreover,
preparing a large real-world data base containing accident events is not only expensive and
time consuming, but also hindered by competitive automobile industry and data privacy
issues. To the best of our knowledge, real-world accident data provided by the second
Strategic Highway Research Program (SHRP2) Naturalistic Driving Study (NDS) [10] is
the only large-scale data base (including vehicles time series) that has been collected so
far. Data scarcity in the field of accident detection is an obstacle to obtaining an automated
accident detection system trained using ML, since the latter requires a large data set to train
models that should be inclusive/unbiased and of good quality. There can also be times
where one must wait for new data to be generated. Finally, the complex nature of accident
events themselves present enormous challenges. Study cases like these require manually
labeled training data, where the exact conditions characterizing the definition of an accident
need to be predefined. According to Virginia Tech Transportation Institute (VTTI) [10], an
accident is defined as “any contact that the subject vehicle has with an object, either moving
or fixed, at any speed in which kinetic energy is measurably transferred or dissipated.
This also includes non-premeditated departures of the road, as well as instances where
the subject vehicle strikes another vehicle, roadside barrier, pedestrian, cyclist, animal, or
object on or off the roadway”. Based on the above definition, minor crashes where the
tire is struck with little or no risk element (e.g., clipping a curb during a tight turn) could
be considered as accidents. Such cases could only be noticed by reporting the incident or
during an inchmeal inspection. These cases often pose a major challenge for automated
accident detection as well.

Accident detection is usually translated into a binary classification problem, where
input data are used to train models representing accident and non-accident classes. ML-
based accident detection studies can be categorized depending on the type of data used to
train their model. Two large categories can be identified, one relying on traffic data, the other
on external sensors such as smartphones, acoustic sensors or cameras [4]. However, the
performance of these kinds of prediction and detection systems is greatly confined by the
availability of monitoring sensors, funds, weather, traffic flow, etc., while external sensors
can end up being difficult to set up and unreliable, depending on how they are used [11].
For the aforementioned reasons, internal car data have been investigated as the third
possibility for ML-based accident detection, which does not suffer from the abovementioned
disadvantages. As a general remark, the term car in this paper refers to a passenger vehicle.
Each modern car (manufactured starting from the mid-1990s), contains a variety of sensors
that provide reliable time-series data for the most basic driving attributes such as speed,
steering wheel angle and gas pedal position. This data can be of great advantage for accident
detection and is readily available by monitoring the in-car network. For instance, the on-
board diagnostics (OBD) adapter is the most available modality to capture driving patterns
in network (e.g., CAN-Bus) protocols inside cars. More information about classifying and
finding out the semantics of the most important signals transmitted on the in-car network
can be found in our previous study in [12].

Sensors 2022, 22, 3634 3 of 21

ML can be applied on in-car network data by following a standard framework usually
referred to as the pattern recognition chain (PRC) that consists of four steps as illustrated
in Figure 1. Firstly, during data acquisition, the chosen sensors based on the nature
of the classes and their availability are to be considered. In the second step, data pre-
processing includes operations such as sensor calibration, unit conversion, normalization
and segmentation to make the data suitable for further analysis. Next, feature extraction
is about deriving the most relevant information to the classes from each segment of data,
thus leading to an abstracted and informative representation of each data segment. In the
last step, classifiers are trained to separate different classes in the feature space, which in
our case study would be distinguishing between accident and non-accident driving events.

Data Acquisition Pre-processing Feature Extraction Classification

21

f

f

f
f

f

f

f
f

f

f

f
f

(n−1)1

n1

11 12

22

(n−1)2

n2 nm

(n−1)m

2m

1m

Figure 1. Machine learning framework for accident detection. First, time-series data is being ac-
quired from in-car network signals. After pre-processing and segmentation, different feature ex-
traction approaches are applied and compared. Finally, classifiers are trained and tested on the
extracted features.

Experience has shown that each of these steps has a significant impact on accident
detection performance [13]. However, data acquisition and pre-processing are mostly
dependent on the data itself, while classification relies on well-known state-of-the-art ap-
proaches whose reliability was proven in past studies. For these reasons, feature extraction
is the step where the margin of improvement is the largest and which has been the most
investigated in past ML studies. Accordingly, to provide a ML framework for accident
detection, a study on applicable feature extraction approaches is of great significance.

Past feature extraction research concentrates on two types of feature extraction tech-
niques: feature engineering and feature learning. On the one hand, feature engineering
is a traditional feature extraction approach relying on prior expert knowledge of the data
to propose manually crafted features adapted to the problem to be solved. Feature engi-
neering, for instance, includes the so-called handcrafted method that computes very simple
statistical values as features on the input data and/or designed by experts to solve a specific
problem [14–16]. However, feature engineering is not always an optimal way of extracting
features when the expert knowledge is not available, and there is no guarantee that the
chosen features would be optimal. On the other hand, feature learning is an automated
feature extraction process using artificial neural networks (ANNs) that are ML models that
were shown to be able to extract highly efficient features, provided decent pre-processing
and segmentation steps on the data [17] have been carried out. Despite the popularity of
ANNs in obtaining efficient features, finding the proper parameters and properly training
the model can be complicated. Additionally, the features learned by ANNs are usually
difficult to interpret, which can be a major obstacle to their use in many applications.
Therefore, providing a comprehensive study on applying feature engineering and feature
learning approaches and analyzing the optimal feature extraction approaches in spite of
their respective drawbacks is of tremendous importance. To summarize, the contributions
of our paper are as follows:

• This paper is the first study investigating ML-based accident detection on basic in-car
network data. Our work is a unique and innovative study on detecting real driving
accidents from the most accessible and affordable data sources inside cars.

Sensors 2022, 22, 3634 4 of 21

• This paper presents a detailed ML framework based on the PRC introduced in Figure 1
to perform accident detection using basic in-car network data. In addition, it uses
this framework to provide a comparison of state-of-the-art ML feature extraction
techniques, applicable on in-car sensor data for accident detection based on SHRP2
NDS crash data set providing gas-pedal position, speed, steering angle and accelera-
tion sensors. Using this framework, we obtain very promising results for automated
accident detection based on a naturalistic data set.

This paper is organized in the following manner: In Section 2, we present the related
work. Section 3 describes the proposed ML framework illustrated in Figure 1, with a brief
explanation of materials and the chosen techniques. Section 4 is about the implementation
details of all applied algorithms. Section 4 discusses the results. In Section 5, the inter-
pretation of results is performed. We conclude the paper in Section 6 by describing our
accomplishments, study limitations and future work.

2. Related Work

Due to the increased need for mobility, driving behavior analysis applications have be-
come an important area of research. The result of driving behavior analysis has significant
importance for the automotive and intelligent transportation industry, automobile insur-
ance and the government organizations controlling infrastructure and public transportation.
Numerous works address the importance of driving behavior analysis in relation to traffic,
safety and ecological concerns [18–21], whereas many others concern the driver’s behavior
analysis [4,22]. Due to the diversity of research goals, applications, study contributions and
data modalities, there is no specific study baseline or research categorization in the domain
of driving behavior analysis specifically for accident detection. Therefore, to review the
recent state-of-the-art on accident detection, an overview of the relevant works in the field
of driving behavior analysis is needed. It can be noted that time-series feature extraction
is a topic that is quite well explored [23,24]. However, the conclusions of such feature
extraction studies do not seem to transfer from one application field to another, and this
topic has remained relatively unexplored for accident detection. Two main categories of
studies are presented in this section. The first category summarizes the state-of-the-art
in “driving behavior analysis” in general. The second category is specific to “accident
detection” literature.

2.1. Driving Behavior Analysis

Various past studies have surveyed the field of driving behavior analysis. Zinebi et al. [22]
performed a literature review splitting driver behavior analysis work into three main sub-
applications: (i) accident prevention, (ii) driving styles assessment and (iii) driver intent
prediction. It also identifies three categories of methods used to solve the problem: 1. index
systems, 2. image processing and 3. statistical methods and ML. The principle of index
system methods is to define indices, i.e., metrics that can objectively quantify high-level
concepts linked to driver behavior such as risk of accident, degree of consciousness, etc. An
example is an index such as TTC (time to collision) defined by Mori et al. [25] to measure
the time the vehicle spends before hitting an object in its environment. They used this index
to calculate the environmental risk score at a given time. Based on the correlation between
the two vectors of driver’s attention and the environmental risk score, they observed that
the degree of awareness is generally higher for expert drivers than for non-expert drivers.

Image processing is another popular method for driving behavior analysis due to how
easily available vision sensors have become. Detecting driver’s drowsiness using computer
vision techniques from an iPhone and the GPS to track the position of the car is an example
of an image processing application for driving analysis [2]. The last category of methods
used in the reviewed literature in Zinebi et al. [22] is statistical and uses ML methods.
Bachoo et al. [26] utilized multiple linear regression to explore the role of personality traits
such as anger, impulsivity, etc., on reported actions of risky driving behavior using a cross-
sectional questionnaire. A random forest (RF) classifier was used by Jahangiri et al. [27]

Sensors 2022, 22, 3634 5 of 21

to classify driver behavior into two categories: violation and compliance at signalized
intersections. They utilized the distance to the intersection, velocity, acceleration, time
to the intersection, required deceleration parameter and velocity-based handcrafted (HC)
features acquired from radar, video cameras and signal phase sniffers at intersections. In
their work, they predict driving violations at the signalized intersection with accuracies of
97.9% and 93.6% for the SVM and RF models, respectively. Ohn et al. [28] adopted support
vector machine (SVM) to classify the driver’s activities based on his/her hand positions
using cameras placed in the car. In their study, they used hand motions in terms of activity
classification and prediction from naturalistic driving images. Image-based features were
used to track hand motions and detect six classes of hand patterns among the four regions
of wheel, instrument cluster, gear shift and side rest, and the SVM with a linear kernel
achieved over 80% normalized accuracy.

All mentioned ML-based driving behavior analysis studies reviewed in [22] detect
different types of driving behaviors or activities and driving styles, and none concern
accident detection. Another comprehensive study provided by Meiring et al. [4], reviews
driver style analysis systems, the application of these systems and the underlying artificial
intelligence algorithms applied to these applications. In this review, two major categories
of driving study researches (i.e., driving style and applications assessing driver behavior
studies) are presented. In the papers reviewed in [4], the most popular AI, ML and
statistical algorithms are used on different driving research topics such as driver assistance,
drowsiness detection, driver distraction detection, Eco driving, road and vehicle condition
monitoring, fleet management, accident detection and insurance applications. Most of the
mentioned literature in [4] focuses on detecting various driving styles such as normal and
safe, aggressive, inattentive and drunk driving utilizing various data modalities such as
multiple sensors (e.g., car networks, smartphone, telematics, video, etc.), but very few exist
on accident detection. For instance, Lee et al. [29] proposed a log–linear model to predict
crashes based on crash precursors (i.e., traffic flow conditions prior to the crash) using
traffic flow data extracted from traffic loop detectors.

Bagdadi et al. [30] proposed the recognition of critical jerk on the naturalistic Virginia
Tech Transportation Institute (VTTI) near-crash data with a detection rate of 86% on iden-
tifying safety critical braking events during car driving. Critical jerks [31] are defined as
sudden changes in acceleration magnitude. Events involving an abrupt braking response,
which creates a critical jerk, are classified as safety critical braking events.

2.2. Accident Detection

To more easily compare our study to past ones, we divide the related works from the
literature into two categories: rule-based and ML-based accident detection studies.

2.2.1. Rule-Based Accident Detection

Rule-based approaches are simple problem-solving techniques that are usually heuris-
tic rules based on experts’ knowledge. These approaches are chosen to fit the given
problem, and they work well only on specific data modalities and problems for which they
are intended. Many research studies are carried out in the domain of rule-based accident
detection systems based on traffic-monitoring data [32–35].

Traditional traffic accident prediction uses annual average traffic volume. Real-time
traffic accident detection, on the other hand, uses monitoring devices such as induction
loops, infrared detectors and cameras. Nevertheless, the usability of these specific devices
is greatly limited by important installation and maintenance costs and their poor road
network coverage which is typically restricted to well-known congestion zones, e.g., on
highways, tunnels or bridges [11]. Conventional built-in automatic accident detection
systems utilize impact sensors or the car airbag sensors to detect an accident and GPS to
locate the accident location [36]. Sheu et al. [37] proposed a new methodology for real-time
detection and characterization of freeway incidents. In this system, incident symptoms are
identified from raw traffic data (the segment-wide inter-lane, intra-lane traffic dynamics,

Sensors 2022, 22, 3634 6 of 21

lane-changing fractions and queue lengths) utilizing the signal processing techniques,
extended Kalman filtering and the modified sequential probability ratio test (MSPRT).

In addition to traffic data, smartphones are the next most used sensors in rule-based
accident detection research. Zaldivar et al. [5] presented an application that ,automatically
informs emergency services about an accident by SMS based on the vehicle diagnostics
interface (OBD-II). In this study, an accident is detected with airbag triggers on the basis
of the force overload experienced in the event of a frontal collision. A slightly different
approach proposed in [38] measures the tilt angle change using an accelerometer sensor
and speed using GPS to detect the moment of collision and send an alert on detection
of an accident. Another method proposed in [39] focuses on the use of the smartphone
accelerometer to monitor vehicle speed and report an accident if it falls below a certain
threshold. It can be noted however that smartphones may be unreliable for accident
detection. The main issue with these systems is that the smartphone may tilt or fall any
time inside the vehicle without a real accident, and thus, the probability of a false positive
will increase and a false alarm will be reported. Past literature ubiquitous computing has
shown that there are also significant differences between smartphone brands: a machine
learning model trained for a smartphone might see a strong degradation in its performances
when used with another smartphone of a different brand, even if the latter contains the
same sensors [40].

2.2.2. ML-Based Accident Detection

ML techniques notably differ from an algorithmic point of view depending on what
type of input data is used to apply them. Due to the large data requirements of ML and
relative scarcity of labeled car accident data sets, only a few related studies can be found.
Among them, three main sensor modalities can mostly be seen combined with ML in the
literature: traffic data, sensor data and car internal signals.

Studies that propose accident detection based on ML approaches are mostly based on
traffic monitoring data. For instance, Ozbayoglu et al. [41] used Istanbul City traffic-flow
data for the year 2015 from located RTMS (real-time monitoring system) sensors. Specific
handcrafted features characterizing lane velocity, occupancy and capacity usage were
manually crafted and computed for each sensor. The extracted features were then fed into
a nearest neighbor model, a regression tree and a feed–forward neural network model to
predict the possibility of an accident. The overall accuracy of their models are mostly over
99%, but with a considerable number of false alarms.

A review of the literature related to IoT (Internet of Things)-based accident detection,
prevention and reporting systems is provided by Alvi et al. [13]. In this review various
applications of IoT are introduced and referenced. Accident detection papers in the study
are grouped into two categories: (1) conventional- and (2) ML/AI-based accident detection
techniques. For the second category of the reviewed accident detection papers in [13], three
key ML/AI-based accident detection approaches are discussed: (a) fuzzy logic, (b) SVM
and (c) artificial neural network (ANN). Pan et al. [42] used vehicle speed, acceleration
and lane changing factor from a microscopic traffic simulator and classified incident vs.
non-incident with a SVM. With their proposed methodology, the SVM accuracy based
on speed data was almost 100%. In their work, they imply the assumption that every
vehicle collects its own traffic data and sends them through an OBU (on-board unit). Then
the traffic data is collected via RSU (roadside units) and uploaded to the central service
for processing. The simulated scenarios they tested only consider accidents on three-lane
urban roads at traffic lights.

Harlow et al. [32] proposed a system that involves a method for processing and recog-
nizing accidents from recorded vehicle acoustic signals at intersections and construction
sites. A database of vehicle sounds, car braking sounds, construction sounds and traffic
sounds was created. The mel-frequency cepstral coefficients were computed as a feature
vector given as input in a neural network classifying between crash and non-crash events.
In their study the classification testing results achieved 99% accuracy. Although their

Sensors 2022, 22, 3634 7 of 21

proposed methodology is highly efficient, this system is bound to specific locations e.g.,
intersections and construction sites.

Other works have attempted to leverage data coming from external sensors (video,
audio, movement) for accident detection. An accident detection approach based on a
convolutional neural network (CNN) was proposed by Ghosh et al. [43] using video
footage obtained from the CCTV cameras installed on highways. By placing CCTV cameras
and a Raspberry Pi 3, using a pre-trained CNN model from 10,000 accident frames and
10,000 non-accident frames, their model can detect accidents to an accuracy of about 95%.
The main disadvantage of such models is that accidents outside the area covered by cameras
are overlooked. Monitoring all roads and highways with Pi cameras and Raspberry Pi
is a costly approach for accident detection. Maintaining privacy and security is another
disadvantage of the proposed system. Finally, weather can affect the cameras viewability.

The abovementioned works present approaches utilizing systems that are limited
by challenges such as maintaining the privacy and security of users, huge expenses of a
large-scale network, many manufacturers, industries, power consumption, architecture
challenges, heterogeneity, mobility and interoperability problems. A similar solution to ours
using internal car data to bypass the drawbacks of other monitoring devices was proposed
by Osman et al. [44]. This study introduces a ML model to predict collisions on the SHRP2
NDS vehicle kinematic data (speed, longitudinal acceleration, lateral acceleration, yaw rate
and pedal position). They hypothesize that vehicles experience micro-level turbulence in
their kinematic patterns over a period of time known as the turbulence horizon prior to
a crash. They use the input feature as the standard deviation of the vehicle kinematics
parameters in the period starting at the beginning of the turbulence horizon and ending at
the beginning of the prediction horizon (the time interval between the predicted hazard
time and the impact time) as features in their study. To classify near crash data and normal
driving data, several classification algorithms are trained and compared. Although this
model achieved a substantially high 99% F1 score, the feature extraction approach used in
this study was based on label re-computation, which might not guarantee features generic
enough to be successfully re-applied on data other than SHRP2 NDS.

Two major points distinguish our study from [44]: First, our work focuses on accident
detection rather than prevention. Therefore, we do not include near-crash scenarios in our
data set. Second, and more importantly, our work is also testing feature-learning approaches
based on deep neural networks that learn features in an automated way without the need
of any prior knowledge.

3. Materials and Methods

This section introduces the proposed ML framework (Figure 1) and describes in details
how to use it for car accident detection based on internal car data. Since the largest im-
provements in classification performances can usually be obtained at the feature extraction
stage, we use our proposed framework to analyze and compare the respective perfor-
mances of state-of-the-art feature extraction techniques. To do so, we fix the acquisition,
pre-processing and classification steps as described in the following subsections.

3.1. Data Acquisition

Data acquisition is the process of defining an experimental protocol to properly set up
sensors, defining a strategy to properly annotate the data with labels, sampling relevant
sensor signals, converting the resulting samples into digital numeric values and acquiring
and merging the data from appropriate sources. Access to a suitable data set and the
quality of the data are the basic prerequisites for the successful establishment of ML-
based studies. Since our study focuses on accident detection based on real data, finding a
suitable labeled database was necessary in advance. In the frame of our experiments, it was
decided to use the SHRP2 NDS [45] database acquired from Virginia Tech Transportation
Institute (VTTI) [10]. In the following section, a brief description of the SHRP2 data set
is presented.

Sensors 2022, 22, 3634 8 of 21

SHRP2 Data Set

The SHRP2 research project in the study of naturalistic driving behavior, monitored
around 3400 apprentice drivers from over 277 unique car makes/models from six locations
across the United States. The participants’ vehicles were equipped with a data acquisition
system (DAS) that included a forward radar, four video cameras, a front-facing wide-angle
camera, accelerometers, vehicle network information, a geographic positioning system,
on-board computer lane tracking, various computer vision algorithms and additional data
storage capabilities. An accident data set (mostly from cars, followed by SUV-crossovers,
pickup trucks and van–minivans) was created from 5,512,900 trip log files extracted from
the SHRP2 naturalistic driving study (NDS). To identify accidents, a team of data analysts
and data quality coordinators manually validated and analyzed the log files to annotate the
data. An accident was defined as any contact a vehicle has with an object, either moving or
stationary, at any speed in which kinetic energy is measurably transferred or dissipated.
The definition also includes non-premeditated departures from the road where at least
one tire leaves the paved or intended route road surface. The acquired data set consists
of 546 synchronized accident events containing the time-series data channels shown in
Table 1.

Table 1. SHRP2 data set sensor channels.

Variable Name Unit Description

Time stamp millisecond Time since beginning of trip, in milliseconds

Gas pedal position none Position of the accelerator pedal
collected from the vehicle network
and normalized using manufacturer specs

Speed network km/h Vehicle speed indicated on
speedometer collected from network

Steering wheel position degree Angular position and direction of
the steering wheel from neutral position

3.2. Data Pre-Processing and Segmentation

Data pre-processing refers to operations applied to clean the data of flaws usually
caused by data transmission errors or sensor failures. They include, in particular, operations
such as eliminating any duplicates, irregularities in the data, normalizing the data to
compare, filling out missing data values, which is a commonly encountered problem, and
providing the ML model data that are consistent to improve the accuracy of the obtained
result. Usually, original raw data records are too long and might not contain homogeneous
information. Therefore, splitting the data into shorter segments is needed. Segmentation
is the procedure of splitting the signal values (in our case time series) into separate time
intervals called windows, depending on the attribute or the behavior of the desired classes.
Figure 2 illustrates the pre-processing and segmentation steps applied on the SHRP2 data
set in this study.

Figure 2. Pre-processing procedure applied on SHRP2 data set for accident detection.

First, to synchronize the sensor channels of the SHRP2 data set, we re-sampled data
from different sensors at a frequency of 40 Hz. Afterwards, to bring the sensor values
into the same range, min–max scaling normalization was applied. For the segmentation,
a traditional sliding time window approach was employed. The labeling was performed

Sensors 2022, 22, 3634 9 of 21

by using the information from event descriptions provided with the SHRP2 accident data
set, which contains the event start and end time stamps. Based on this information, we
decided to set the segment length to T = 100 which corresponds to approximately 2.5 s.
This duration was chosen to be equal to the maximum event duration based on the SHRP2
data description. An overlapping factor of 50% was also chosen to segment the time series.

The labeling process adds a label of zero or one to each time window depending on
whether the frame at a specific time stamp is part of the event. Windows containing more
than half of the duration of the frame dedicated to an accident event are labeled as one
and the rest of the windows as zero. After the aforementioned steps, our data consists of
34,339 time windows sized of shape T× S where T = 100 is the length of the time window,
and S = 4 is the number of sensor channels. Among these 34,339 time windows, only 2281
are positive samples. Based on these numbers, as expected, we are dealing with a notably
imbalanced data set in which the negative class represents 93% of the whole data set.

3.3. Feature Extraction

Feature extraction is the process of reducing the dimension of the raw data into
an informative abstract representation of the classifier. Extracting features reduces the
complexity of training a classifier by reducing the size of its input data and getting rid of
information irrelevant for the classification problem to be solved.

In this section, the feature extraction techniques used in our study are briefly explained.
We decided to work with the most common state-of-the-art feature extraction approaches
in time-series analysis and apply them on four in-car signals, including gas pedal position,
speed, steering wheel position and acceleration.

Feature extraction methods from both feature engineering and feature learning are
presented in this paper. The most commonly used feature extraction approach is the
traditional feature engineering method consisting of handcrafted features that we refer to
as HC in the following sections. HC features have been implemented for decades and still
serve as a powerful tool when combined with ML classifiers. Traditionally, HC features are
engineered based on knowledge expertise of the data which is not always available. In this
case, it is common to use simple statistical attributes computed on the time series, which
have shown to perform well in practice despite their simplicity [46]. Feature engineering
based on heuristic rules found in the past literature such as [15,16] was also adapted and
tested in our experiments, though due to insufficient performance the method and results
are not presented in this paper.

The second category of feature extraction approaches is deep feature learning. Deep
feature learning refers to the automated learning of features using deep neural networks
(DNNs). An ANN is a composition of L parametric functions represented by “layers”.
ANNs consist of 3 layers: input, hidden and output. A deep neural network (DNN) is an
ANN with at least two hidden layers. Each layer consists of a group of multiple neurons.
Neurons are simple non-linear computational units that output a single value given several
inputs. In the general case, the layer li with i ∈ 1 . . . L takes as input the output of the
previous layer li−1 and applies a non-linearity to compute its own output. The last layer
usually provides an estimation of class probabilities associated with the data given as input
to the model. For this purpose, a softmax activation layer with a number of neurons equal
to the number of classes is traditionally used. DNNs have shown to be extremely good
feature learners, especially in image classification [17].

Since our evaluation framework fixes the classifier, an approach similar to what was
done by Li et al. [14] and Girshick et al. [47] was employed to use DNNs as feature
extractors. The DNNs were first trained in a supervised way using a softmax layer. The
latter was then removed to let the DNN output feature vectors that were used train the
classifier fixed in our framework. A brief explanation of the abovementioned feature
extraction methods chosen for our study follows.

Sensors 2022, 22, 3634 10 of 21

3.3.1. Feature Extraction Based on Handcrafted Features (HC)

Traditional HC feature extraction has been implemented for decades, and due to its
simple set up, it still serves as a powerful baseline when combined with ML classifiers.
The HC features extract information from simple statistical attributes such as minimum,
maximum or a percentile or more elaborated descriptors such as features related to the
frequency–domain based on the Fourier transform of signals. For HC features, we com-
puted simple statistical features that are commonly used in many application domains
using time-series data [14,46]. These features consist of 18 values computed either on the
time series or their power spectrum as shown in Table 2. These features are computed on
each sensor channel individually. The features from all channels are then concatenated
together to form a feature vector of size 18× 4 = 72.

Table 2. List of the handcrafted features used in our study. Each feature is computed on each sensor
channel independently.

Handcrafted Features

Maximum Average Auto-correlation
Minimum Skewness First-order mean

Percentile 20 Kurtosis Second-order mean
Percentile 50 Interquartile Standard-deviation
Percentile 80 Zero-crossing Norm of the first-order mean

Spectral entropy Spectral energy Norm of the second-order mean

To improve the classification efficiency, prevent overfitting (less opportunity to make
decision based on noise) and provide better insight into relevant features, in our paper
HC feature extraction is followed by a feature selection approach. Three popular feature
selection protocols, belonging either to the family of filter-based or wrapper-based methods,
were tested in our study: ReliefF and Fisher score from filter-based and recursive feature
elimination (RFE) from wrapper-based feature selection approaches [8,48–50]. Of these
three methods, only RFE could yield proper improvements in performance. Therefore, only
its results are reported in our paper.

RFE feature selection is a wrapper-based approach that aims at evaluating different
sets of features by training and evaluating a classifier for each set and comparing their
classification performances. Each wrapper approach proposes a strategy to select the
sets of input features to test and avoid having to test all configurations, which would be
too computationally expensive. RFE starts with using all features as a whole subset and
training the classifier. Then it eliminates features by recursively considering smaller and
smaller sets of features. In our study, features were eliminated based on feature importance
scores returned by the classifier we chose (random forest and support vector machine).
The n = step size and number of features are based on the lowest score eliminated. The
procedure is recursively repeated until the desired number of remaining features or level
of performance is reached.

3.3.2. Feature Learning Based on Multi-Layer-Perceptron (MLP)

An MLP constitutes the simplest and most traditional architecture for deep learning
models. This form of architecture is also known as a fully connected network since the
neurons in layer li are connected to every neuron in layer li−1 with i ∈ [2, L], L being the
number of layers. Parameters referred to as weights are attributed to each connection.
Consequently, the connection between two consecutive layers of a MLP can be represented
by the following equation:

xli = f (Wli ∗ xli−1
+ bli) (1)

With n(i) ∈ N ∗ number of neurons in layer li, xli ∈ R
n(i)

, Wli ∈ R
n(i)×n(i−1)

, bli ∈ R
n(i)

,
Wli being the matrix of weights connecting the neurons of layer li−1 to layer li, bli the vector

Sensors 2022, 22, 3634 11 of 21

of biases in layer li and xli the output of layer li. Figure 3 illustrates the schematic of the
MLP network used in our study.

.

.

.

.

.

.

...

Hidden layers

Input
layer

l1

.

.

.

.

.

.

Softmax
layer

lh

ln

.

.

.

S

T

Input

Flattening

Figure 3. Architecture of a MLP model for accident detection with h hidden layers, n number of
classes and S number of sensor channels. Input data are first flattened into a (T × S)-dimensional
vector and and then fed to the hidden layers. All layers are fully connected.

3.3.3. Feature Learning Based on Convolutional Neural Networks (CNN)

CNNs mainly contain convolution layers and pooling layers, and some deep learning
architectures include batch normalization layers (see Figure 4). They have been successfully
applied in image recognition [51,52], in various natural language processing tasks [53,54]
and in timeseries analysis [55]. The general form of using a convolution for the centered
time stamp t is given in the following equation:

∀t ∈ [1, T], ct = f (ω ∗ xt−l/2:t+l/2 + b) (2)

where ∗ designates the convolution product, ct the result of the convolution at time t, f
the activation function, x a 1D input, ω the convolutional filter of length l and b a bias
parameter. A convolution can be seen as applying and sliding a filter over a time series, or
in other words as a generic non-linear transformation of an input vector x. For instance,
if convoluting a time series with a filter of length 3 with values equal to [1

3 , 1
3 , 1

3] is the
equivalent of applying a moving average with a sliding window of size 3.

The convolutional maps obtained after applying several convolutional kernels are
usually given as input of a pooling layer, which can be either local or global. A local pooling
operation, such as averaging or taking the maximum value in a sliding window is applied
to downsample the input of the layer. For global pooling, the downsampling operation
is applied across the entire input time dimension, resulting in a single output value. A
normalization layer is sometimes added to the network to help the network converge
quickly during training. A batch normalization [56] and instance normalization [57] are
two popular normalization layers used in CNNs for time-series analysis. When used for
classification, CNNs are usually connected to a classification MLP, whose last layer is a
softmax layer, giving a distribution score over the class variables in the data set.

Sensors 2022, 22, 3634 12 of 21

.

.

.

S

T

.

.

.

.

.

.

Softmax
layer

lh

ln

Dense
layer

Input

. . .

Convolutional
+ activation layer 1

Convolutional
+ activation layer 2

Pooling layer 1

Figure 4. Architecture of a CNN model for accident detection. The designations n, h and S are the
number of classes, layers and sensor channels, respectively. Convolutional layers apply convolution
products on all convolution maps of the previous layer. Pooling layers then downsample the
convolutional output and pass it to the next convolutional layer.

3.3.4. Feature Learning Based on Long Short-Term Memory (LSTM)

Long short-term memory networks are a type of recurrent neural network (RNN) being
a special type of DNN that use loops and connections between nodes along the temporal
sequences to save dynamic temporal information and carry it along the network. LSTM
cells introduce internal mechanisms called gates that can regulate the flow of information
over time by storing it in an internal memory and update output or erase this internal state
depending on their input and the state at the previous time step [58]. Gate operations can
be described as follows:

ft = σ(W f · [ht−1, xt] + b f) (3)

it = σ(Wi · [ht−1, xt] + bi) (4)

ot = σ(Wo · [ht−1, xt] + bo) (5)

mt = ft ⊗mt−1 + it ⊗ σ(Wc · [ht−1, xt] + bC) (6)

where xt is the input vector to the LSTM cell and ht−1 the hidden state vector also known
as the output vector of the LSTM cell. ft, it and ot represent forget, input and output gates,
respectively. These gates have their own weights (W∗), bias (b∗) and activation functions
(σ). The functionality of an input, output and forget gates are used to block the input of the
cell , block its output, and erase its internal memory at time t. mt is the memory state of the
cell at time t, and ⊗ is the element-wise multiplication of two vectors. The architecture of
the RNN with LSTM layers containing LSTM cells is shown in Figure 5. Like all DNNs,
there are different architectural variations of LSTM layers, and the last layer is followed by
dense and softmax layers.

3.3.5. Feature Learning Based on an Autoencoder (AE)

Autoencoders are special types of DNNs that are trained to reproduce input data on
their output using a loss function such as mean squared errors in an unsupervised manner.
An AE applies a dimensionality reduction by first projecting input data into an embedding
space (of usually smaller dimensionality than the one of the input space) using an encoder
to then decompress the embedding to match the original input as closely as possible using
a decoder. By construction, an AE also always has the same number of inputs as outputs.
Figure 6 shows a schematic view of the architecture of an AE. For feature extraction, an AE
is first trained in an unsupervised way to reconstruct its inputs on its output layer. Then
the decoder is removed, and the encoder is used to output feature vectors.

Sensors 2022, 22, 3634 13 of 21

.

.

.

S

T

Input

.

.

.

.

.

.

Softmax
layer

lh

ln

Dense
layer

LSTM
layers

LSTM cell

Input
gate

Output
gate

Forget
gate

σ

σ

m

xt

xt

xt

xt

t

h

h

ht−1 h

ht

σ
t−1

t−1

t−1

Figure 5. Architecture of a LSTM network for accident detection . The designations n, h and S are the
number of classes, layers and sensor channels, respectively. The cells in the LSTM layers have one
input, forget and output gates. xt, mt and ht refer to the cell input, memory, and output at time t,
respectively, and σ designates the activation function.

.

.

.

S

T

Input

Encoder

.

.

.
.
.
.

...
.
.
.

.

.

.

l1 lh −1

lh

.

.

.
.
.
.

. . .

.

.

.

.

.

.

l1lh −1

lh

Decoder

Flattening

Figure 6. Autoencoder’s architecture used for accident detection consists of encoder and decoder
sections. The encoded layer is used as features for the feature learning purposes; S is the number of
sensor channels and h denotes the number of hidden layers in both the encoder and decoder.

3.4. Classification

Classification is the final step of the ML framework which trains a model to predict
class labels (categories) given an input feature vector associated with a specific data segment.
The classifier constructs a separation between different classes in the feature space. Support
vector machine (SVM) [59], random forest (RF) [60], k-nearest neighbors (KNN) [61],
decision tree [62], etc., are among the most popular classifiers used in the past literature.
In this paper, a soft-margin SVM (known as a C-SVM) with a radial basis function (RBF)
kernel and a RF classifier are the two chosen classifiers due to their high performance and
ability to overcome overfitting in the case of high dimensional data [14,63,64].

A SVM has been shown to be a very effective linear classifier that can also effectively be
applied to non-linear cases with the kernel trick. C-SVM is a variation of a SVM that allows
misclassifications during the training to reduce overfitting by regulating the soft-margin
parameter C that controls how much misclassification is allowed. When training a SVM
with the RBF kernel, two parameters must be considered: C and gamma. The parameter C
trades off misclassification of training examples against simplicity of the decision surface.
Proper choice of C and gamma is critical to the performance of the SVM. A grid search was
performed to find the optimal C and gamma values for each feature set extracted by the
abovementioned methods. The RF is a popular classifier that uses bagging mechanisms

Sensors 2022, 22, 3634 14 of 21

with decision trees to reduce their propensity to overfit. The main hyper-parameter of
RF is T, the number of trees. Similar to SVM parameters, the number of RF trees T was
optimized by a 1-D grid search for each feature set separately.

It should be noted that DNNs are trained directly with a classification layer. To apply
the aforementioned classifiers on the DNNs features, the following procedure needed to be
done. At first the model was trained as usual, and then the classification layer (softmax) was
removed to assign the output of the penultimate layer as an input feature to the classifier.
In feature extraction based on AE, the output of the encoder is the assigned feature after
training the full AE model.

4. Experiments and Results

This section is about the implementation details of all applied algorithms, the eval-
uation setting and the results. All the implementations in this study were coded in
Python Feature learning approaches using DNNs were implemented using the Keras 2.1.0
framework with a Tensorflow 1.14.0 [65] backend, scikit-learn 0.21.3 [66] and trained using
the ADADELTA optimizer [67] with default parameters (initial learning rate of one) for
50 epochs with a batch size ranging from 100 to 1000.

To have a comprehensive measure of our model’s performance, throughout the whole
data set, a K-fold cross-validation [68] was applied to the data set. The number of folds in
this case was set to K = 5 and for each training run, we selected a single partition from our
five folds to be the test set and used the rest for training. The details of the experiments for
each feature extraction algorithm are described as follows:

HC: The HC features consisted of 15 statistical values directly computed on the time
series, and 3 frequency-related on their power spectrum were computed on each
sensor individually and concatenated together. Then RFE feature selection with an
elimination size of three was applied.

MLP: The MLP architecture used in this study contained three dense layers and REctified
Linear Units (RELU) activation. MLP usually takes 1D inputs only, therefore a
flattened layer was used to convert the 2D input to 1D. According to the recom-
mendations of [14,56], a batch normalization layer was placed directly after the
network input to improve results. Three fully connected dense layers with RELU
activation function, containing 2000 neurons each, and a final softmax layer built
up the MLP network used for our study (see Table 3). In Table 3, the values for the
hyper-parameters used for feature learning approaches in this study are shown.
Optimizing the hyper-parameters of DNNs is an important and difficult topic. Opti-
mal parameters for our models were chosen after testing several manually selected
configurations. Manual hyper-parameter selection is the default approach in the
literature due to the absence of other more elaborated high performing approaches.

CNN: As listed in Table 3, the CNN layout consisted of three blocks of batch normalization
and a convolutional layer with RELU activation followed by dense and pooling
layers. The CNN design was based on [14] with some modifications, including a
reduction in the size of the convolutional kernels and an increase pooling window
size, while keeping the amount of kernels the same for each block.

LSTM: The values of all hyper-parameters for the LSTM architecture are provided in
Table 3. Like other ANNs used in this paper, a batch normalization layer was
added at the beginning and a dense and softmax layers at the end of the network.
The gate activation used in the LSTM cells is a sigmond function, and in the dense
layers, a tangent activation function was used.

AE: The AE architecture consisted of simple dense layers (three dense layers for the
Encoder and then three for the Decoder designed as a mirror), with ReLU for the
activation function. Different numbers of dense layers were tested, and the one
achieving the best performance is presented in Table 3.

Sensors 2022, 22, 3634 15 of 21

Table 3. Hyper-parameters of the ANN models on the SHRP2 data set.

Model Parameter Value/ Type

MLP . # Dense layers 3
. # Neurons in each layer 2000
. Activation function ReLU

CNN . # Conv. blocks 3
. Conv. kernel size for blocks 1, 2 and 3 (5, 1), (4, 1), (3, 1)
. # Conv.kernels in each block 50
. Pool size for blocks 1, 2 and 3 (2, 1), (3, 1), (4, 1)
. # Neurons in the dense layer 1000
. Activation function for the Conv. blocks Tanh
. Activation function for the dense layer ReLU

LSTM . # LSTM layers 2
. # Output dimensions for each LSTM cell 600
. # Neurons in the dense layer 512
. Activation function for the dense layer ReLU

AE . # Encoder dense layers 3
. # Neurons in layers 1, 2 and 3 5000, 3000, 1000
. Activation function ReLU

The evaluation of our feature extraction framework is based on three different metrics,
average F1 score, overall accuracy and weighted F1 score. F1 score is the harmonic mean
of precision and recall, and average F1 score is the mean value of each class F1 scores. As
mentioned in Section 3.1, our data set was strongly imbalanced with only 6.65% positive
samples, and both accuracy and weighted F1 score are very biased in case of an unbalanced
data set. For this reason, the average F1 score, which is the mean value of each class F1
score, is considered as our main evaluation metric due to its ability to take class imbalance
into account [69].

The results of the aforementioned feature extraction approaches with both SVM and
RF classification methods are provided in Tables 4 and 5, respectively.

Table 4. SVM classification evaluation metrics (in percent) of different tested feature extraction
models on the SHRP2 data set.

Methods Accuracy Weighted F1 Score Average F1 Score

HC 94.34 92.99 66.56
MLP 83.60 82.30 75.00
CNN 85.72 84.9 79.10
LSTM 76.81 72.01 57.90

AE 83.40 82.40 75.50

Three main observations can be drawn from Tables 4 and 5. First, the choice of
the classifier impacts the final classification performance. RF improved the average F1
score of HC feature extraction to 71.78%, and a notable improvement of the RF with
almost 10% more for average F1 score is for LSTM feature learning. Second, deep feature
learning outperforms feature engineering. In particular, CNN surpasses other methods
by a remarkable average F1 score of 79.10% and 78.39% for SVM and RF, respectively.
Finally, the quite decent performances with unsupervised deep feature learning (AE) when
compared to supervised feature learning, is a remarkable observation of this study.

Sensors 2022, 22, 3634 16 of 21

Table 5. RF classification performance metrics (in percent) of different feature extraction models of
five cross on the SHRP2 data set.

Methods Accuracy Weighted F1 Score Average F1 Score

HC 94.97 93.95 71.78
MLP 84.06 83.57 77.47
CNN 85.72 84.19 78.39
LSTM 78.00 76.61 67.22

AE 84.22 83.74 77.67

5. Analysis

The experiment on applying feature extraction approaches on a SHRP2 crash data
set reveals the following points: First, all feature learning approaches except LSTM with
both classifiers outperform the feature engineering. LSTMs are usually prone to high
computation time and are difficult to tune. Another reason for the poor performances of
LSTM is the length of the time horizon (T = 100) of the input samples being too long. This
happens quite often when dealing with time series and is one of the reasons CNNs are
preferred over RNNs for time-series processing in the literature.

CNN feature learning obtains a stable top performance with both classifiers. Obtained
results are consistent with the literature, which seems to indicate that CNNs are the most
reliable architecture for time-series classification [70,71]. To understand the difference
between HC features and features created by deep feature learning, the best features
extracted by both approaches were analyzed in our paper. For HC, it is possible to use the
ranking of the RFE algorithm which was applied for feature selection.

Figure 7 shows the RFE on HC features for the five cross-validation folds. In these
figures, the x-axis is the RFE eliminating steps, and the y-axis shows eighteen HC features
of each sensor channel. The RFE method removes features iteratively, starting with the
ones with the least impact on the final classification performance. As can be seen in all
five figures, the HC features extracted by gas and acceleration sensors are the ones that
are eliminated last, meaning that features from these two sensor channels are the most
important HC features selected by RFE.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

2

4

6

8

10

12

14

16

18

20

Gas-pedal position
Accelerarion

Steering angle

Speed

RFE iterations

N
um

be
r

of
 r

em
ai

ni
ng

 H
C

 f
ea

tu
re

s

RFE iterations RFE iterations

Fold 1 Fold 2

Fold 3 Fold 4 Fold 5

Figure 7. RFE results per sensor channel for five cross-validation folds. The y-axis shows the number
of remaining features from each sensor, and the x-axis shows the step by step removal of features
from each sensor.

Sensors 2022, 22, 3634 17 of 21

For DNNs, finding the best features is more challenging since features learned by
DNNs are hard to interpret. Instead, we decided to use an approach based on the Jacobian
matrix of the model to determine which sensor channels are the most important and
whether this matches the observation of the HC results. In case of considering a trained
DNN as an approximation of a multi-input/multi-output function f : RL×S → RC, where
L is the length of a multichannel segment X belonging to the target data set XT , S is the
number of channels, and CT is the number of classes, it is possible to compute the Jacobian
matrix of function f . Each Jacobian value Jc,l,s(X) in the Jacobian Matrix, represents the
importance of xls—the value at the lth time point (1 ≤ l ≤ L) of the sth sensor—on the
predictive function for the cth class. It can therefore be used to indicate which parts of the
input have the most impact on the output classification score. With this, it is possible to
propose a ’Jacobian score’ similar to [72] that would indicate how important to the final
classification score a specific sensor channel is.

A channel-wise Jacobian score for ωs(X) as the average of absolute Jc,l,s(X) over all
the L time points and all the CT classes is,

ωs(X) =
1

CT

1
L

CT

∑
c=1

L

∑
l=1
| Jc,l,s(X) | (7)

In addition, as described in [72], the global channel-wise Jacobian score Ωs is averaging
ωs(X) over all examples XT in the data set, where |(XT)| refers to the cardinality of XT :

Ωs =
1

|(XT)| ∑
X∈XT

ωs(X) (8)

A high Ωs indicates a high importance of the sensor channel for the classification
problem. Figure 8 shows the Jacobian scores for the four input sensor channels (speed,
gas position, steering angle, acceleration) and for each of the five CNNs trained on each
cross-validation fold. According to the Jacobian scores of these sensors, steering-angle has
the highest impact on the result. Speed and acceleration are the second most important
input signals. Finally, this study shows that gas-position was consistently found to be
considered as the least useful channel by CNN, which is opposite to feature extraction with
HC that obtained its best features from this channel. This would indicate that the features
learned by HC and CNN are different in nature and might be complementary. Additionally,
we present a hypothesis regarding why steering-angle information was regarded as useful
for the classification problem by CNNs and not by HC. The steering-angle signal, compared
to the other sensor channels, is characterized by strong and rapid fluctuations that might
contain valuable frequency-based information for the considered classification problem.
Contrary to CNN, this information might not have been captured well enough by the HC
features that were extracted.

Analysis of the feature importance results led us to combine CNN features with the
optimal ranked HC features to improve the results. The same steps were used to calculate
the features as described in Section 3.3.1. Then the RFE was used to rank all features and
keep only the three best ones. These features were then appended to the 1000 features of
CNN in Section 3.3.3. Combined CNN features improved the average F1 score from 79.10%
to 80.12% for a SVM and from 78.39% to 79.10% for RF classifier which seems to confirm
our hypothesis that both features contain complementary information.

Sensors 2022, 22, 3634 18 of 21

Gas-pedal position
Accelerarion
Steering angle

Speed

Fold 1

Ja
co

bi
an

 S
co

re

Fold 2 Fold 3 Fold 4 Fold 5
 0

 1

 0.2

 0.4

 0.6

 0.8

Figure 8. Jacobian score for CNN of five cross-validation folds of four signals. A higher Jacobian
score indicates that the sensor channel contributed to the learning of more discriminative features.
The y axis represents the normalized magnitude of the Jacobian score for each sensor channel.

6. Conclusions

In this paper, we presented a framework for accident detection from the most basic
sensors in cars in the SHRP2 naturalistic data set using machine learning approaches. This
framework was used to perform a study testing various feature extraction and classification
approaches. The state-of-the-art feature extraction methods, including traditional manual
feature extraction and feature learning, were combined with two classifiers. CNN features
with a SVM classifier outperformed all other tested approaches including HC with an
accuracy of 85.72%, an 84.9% weighted F1 score and an 79.10% average F1 score. This result
is very promising, considering that the data used in this study are based on naturalistic
accidents, and very few samples are severe accidents, recognizable by only four basic in-car
sensors. Additionally, interpretability studies showed that the HC and DNN approaches
were extracting their optimal features from different sensor channels and could therefore
effectively be combined because of their complementarity.

The first major limitation of our study is that we use a single data set due to the
extreme scarcity of data for this application, which limits the generalization capacity of our
findings. Second, it is difficult to compare our findings to other studies due to different
accident definitions and different types of input sensor channels.

Based on our observations and study conclusion, the lessons learned are listed briefly
as follows:

• It is possible to obtain promising results with ML for the detection of accidents using
basic in-car sensor data.

• A deep learning feature extraction method performs better in comparison with HC, and
unsupervised feature extraction remarkably achieves the second best performance score.

Therefore, our future work will include four main points: First, the number of sensor
channels tested in this work is limited. We would like to explore other combination of
channels as well as other learning algorithms to further improve our classification perfor-
mance. Including more sensor modalities such as lateral acceleration and yaw rate to the
data set which are still counting as initial sensors and are available in all cars and analyzing
their influences on the detection performance is a potential study investigation. The second
possible way to improve the accident detection results is to employ more advanced feature
selection algorithms such as embedded feature selection methods for unbalanced data
sets (e.g., [73]) as future work. Third, following the promising performances of unsuper-
vised deep feature learning (AE), further investigation of unsupervised feature learning
techniques for future work is recommended. Finally, to bypass the struggle of insufficient
labeled data, one possible solution would be to investigate transfer learning [74].

Sensors 2022, 22, 3634 19 of 21

Author Contributions: Conceptualization, H.H.P. and F.L.; methodology, H.H.P. and F.L.; software,
H.H.P., L.W. and C.T.; validation, H.H.P.; formal analysis, H.H.P., F.L. and L.W.; investigation, H.H.P.
and R.D.; resources, H.H.P.; data curation, H.H.P.; writing–original draft preparation, H.H.P.; writing–
review and editing, H.H.P., F.L. and L.W.; visualization, H.H.P.; supervision, M.G. and R.W.; project
administration, M.G. and R.W.; funding acquisition, M.G. and R.W. All authors have read and agreed
to the published version of the manuscript.

Funding: Research and development activities leading to this article have been supported by the
German Federal Ministry of Education and Research (BMBF) within the project LEICAR (grant
number: 01IS15048B) and German Federal Ministry for Economic Affairs and Climate Action (BMWK)
within the project GEMIMEG-II (grant number: 01MT20001L).

Acknowledgments: The authors would like to thank Virginia Tech Transportation Institute (VTTI)
for providing access to their data base. The findings and conclusions of this paper are those of the
authors and do not necessarily represent the views of the VTTI, SHRP2, the Transportation Research
Board, or the National Academy of Sciences.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Health Organization. Global Status Report on Road Safety 2018: Summary; Technical Report; World Health Organization:

Geneva, Switzerland, 2018.
2. Bergasa, L.M.; Almería, D.; Almazán, J.; Yebes, J.J.; Arroyo, R. Drivesafe: An app for alerting inattentive drivers and scoring

driving behaviors. In Proceedings of the 2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA, 8–11 June
2014; pp. 240–245.

3. Donnelly, B.R.; Schabel, D.; Blatt, A.J.; Carter, A. The automated collision notification system. In Proceedings of the Transportation
Recording: 2000 and Beyond. International Symposium on Transportation Recorders, Arlington, VA, USA, 3–5 May 1999.

4. Meiring, G.A.M.; Myburgh, H.C. A review of intelligent driving style analysis systems and related artificial intelligence algorithms.
Sensors 2015, 15, 30653–30682. [CrossRef] [PubMed]

5. Zaldivar, J.; Calafate, C.T.; Cano, J.C.; Manzoni, P. Providing accident detection in vehicular networks through OBD-II devices
and Android-based smartphones. In Proceedings of the 2011 IEEE 36th Conference on Local Computer Networks, Washington,
DC, USA, 4–7 October 2011; pp. 813–819.

6. Kusano, K.; Gabler, H.C. Comparison and validation of injury risk classifiers for advanced automated crash notification systems.
Traffic Inj. Prev. 2014, 15, S126–S133. [CrossRef] [PubMed]

7. Nishimoto, T.; Mukaigawa, K.; Tominaga, S.; Lubbe, N.; Kiuchi, T.; Motomura, T.; Matsumoto, H. Serious injury prediction
algorithm based on large-scale data and under-triage control. Accid. Anal. Prev. 2017, 98, 266–276. [CrossRef] [PubMed]

8. Gulino, M.S.; Di Gangi, L.; Sortino, A.; Vangi, D. Injury risk assessment based on pre-crash variables: The role of closing velocity
and impact eccentricity. Accid. Anal. Prev. 2021, 150, 105864. [CrossRef]

9. Available online: www.thyssenkrupp-automotive-technology.com/en/products-and-services/carvaloo (accessed on 16 February
2022) .

10. Transportation Research Board of the National Academy of Sciences. The 2nd Strategic Highway Research Program Naturalistic
Driving Study Dataset. 2013. Available online: https://insight.shrp2nds.us (accessed on 10 September 2020).

11. Leduc, G. Road traffic data: Collection methods and applications. Work. Pap. Energy Transp. Clim. Chang. 2008, 1, 1–55.
12. Pour, H.H.; Wegmeth, L.; Kordes, A.; Grzegorzek, M.; Wismüller, R. Feature Extraction and Classification of Sensor Signals in

Cars Based on a Modified Codebook Approach. In Proceedings of the International Conference on Computer Recognition Systems;
Springer: Berlin/Heidelberg, Germany, 2019; pp. 184–194.

13. Alvi, U.; Khattak, M.A.K.; Shabir, B.; Malik, A.W.; Muhammad, S.R. A Comprehensive Study on IoT Based Accident Detection
Systems for Smart Vehicles. IEEE Access 2020, 8, 122480–122497. [CrossRef]

14. Li, F.; Shirahama, K.; Nisar, M.A.; Köping, L.; Grzegorzek, M. Comparison of feature learning methods for human activity
recognition using wearable sensors. Sensors 2018, 18, 679. [CrossRef]

15. Ali, H.M.; Alwan, Z.S. Car Accident Detection and Notification System Using Smartphone; LAP LAMBERT Academic Publishing:
Saarbrucken, Germany, 2017.

16. Amin, M.S.; Jalil, J.; Reaz, M.B.I. Accident detection and reporting system using GPS, GPRS and GSM technology. In Proceedings of
the 2012 International Conference on Informatics, Electronics & Vision (ICIEV), Dhaka, Bangladesh, 18–19 May 2012; pp. 640–643.

17. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Proceedings of the European Conference on
Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 818–833.

18. Jakobsen, K.; Mouritsen, S.C.; Torp, K. Evaluating eco-driving advice using GPS/CANBus data. In Proceedings of the 21st ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems, Orlando, FL, USA, 5–8 November 2013;
pp. 44–53.

http://doi.org/10.3390/s151229822
http://www.ncbi.nlm.nih.gov/pubmed/26690164
http://dx.doi.org/10.1080/15389588.2014.927577
http://www.ncbi.nlm.nih.gov/pubmed/25307377
http://dx.doi.org/10.1016/j.aap.2016.09.028
http://www.ncbi.nlm.nih.gov/pubmed/27776309
http://dx.doi.org/10.1016/j.aap.2020.105864
www.thyssenkrupp-automotive-technology.com/en/products-and-services/carvaloo
https://insight.shrp2nds.us
http://dx.doi.org/10.1109/ACCESS.2020.3006887
http://dx.doi.org/10.3390/s18020679

Sensors 2022, 22, 3634 20 of 21

19. Tefft, B.C. Reducing risk and improving traffic safety: Research on driver behavior and performance. Inst. Transp. Eng. ITE J.
2018, 88, 30–34.

20. Ferreira, J.; Carvalho, E.; Ferreira, B.V.; de Souza, C.; Suhara, Y.; Pentland, A.; Pessin, G. Driver behavior profiling: An investigation
with different smartphone sensors and machine learning. PLoS ONE 2017, 12, e0174959.

21. Al-Sultan, S.; Al-Bayatti, A.H.; Zedan, H. Context-aware driver behavior detection system in intelligent transportation systems.
IEEE Trans. Veh. Technol. 2013, 62, 4264–4275. [CrossRef]

22. Zinebi, K.; Souissi, N.; Tikito, K. Driver Behavior Analysis Methods: Applications oriented study. In Proceedings of the 3rd
International Conference on Big Data, Cloud and Application (BDCA 2018), Kenitra, Morocco, 4–5 April 2018.

23. Khalid, S.; Khalil, T.; Nasreen, S. A survey of feature selection and feature extraction techniques in machine learning. In
Proceedings of the 2014 Science and Information Conference, Shenzhen, China, 26–28 April 2014; pp. 372–378.

24. Ang, J.S.; Ng, K.W.; Chua, F.F. Modeling Time Series Data with Deep Learning: A Review, Analysis, Evaluation and Future Trend.
In Proceedings of the 2020 8th International Conference on Information Technology and Multimedia (ICIMU), Selangor, Malaysia,
24–25 August 2020; pp. 32–37. [CrossRef]

25. Mori, M.; Miyajima, C.; Angkititrakul, P.; Hirayama, T.; Li, Y.; Kitaoka, N.; Takeda, K. Measuring driver awareness based
on correlation between gaze behavior and risks of surrounding vehicles. In Proceedings of the 2012 15th International IEEE
Conference on Intelligent Transportation Systems, Anchorage, AK, USA, 16–19 September 2012; pp. 644–647.

26. Bachoo, S.; Bhagwanjee, A.; Govender, K. The influence of anger, impulsivity, sensation seeking and driver attitudes on risky
driving behaviour among post-graduate university students in Durban, South Africa. Accid. Anal. Prev. 2013, 55, 67–76.
[CrossRef] [PubMed]

27. Jahangiri, A.; Rakha, H.A.; Dingus, T.A. Adopting machine learning methods to predict red-light running violations. In
Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Las Palmas, Spain, 15–18
September 2015; pp. 650–655.

28. Ohn-Bar, E.; Trivedi, M.M. Beyond just keeping hands on the wheel: Towards visual interpretation of driver hand motion
patterns. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China,
8–11 October 2014; pp. 1245–1250.

29. Lee, C.; Saccomanno, F.; Hellinga, B. Analysis of crash precursors on instrumented freeways. Transp. Res. Rec. 2002, 1784, 1–8.
[CrossRef]

30. Bagdadi, O. Assessing safety critical braking events in naturalistic driving studies. Transp. Res. Part F Traffic Psychol. Behav. 2013,
16, 117–126. [CrossRef]

31. Bagdadi, O.; Várhelyi, A. Development of a method for detecting jerks in safety critical events. Accid. Anal. Prev. 2013, 50, 83–91.
[CrossRef] [PubMed]

32. Harlow, C.; Wang, Y. Automated accident detection system. Transp. Res. Rec. 2001, 1746, 90–93. [CrossRef]
33. Kamijo, S.; Matsushita, Y.; Ikeuchi, K.; Sakauchi, M. Traffic monitoring and accident detection at intersections. IEEE Trans. Intell.

Transp. Syst. 2000, 1, 108–118. [CrossRef]
34. Bacon, J.; Bejan, A.I.; Beresford, A.R.; Evans, D.; Gibbens, R.J.; Moody, K. Using real-time road traffic data to evaluate congestion.

In Dependable and Historic Computing; Springer: Berlin/Heidelberg, Germany, 2011; pp. 93–117.
35. White, J.; Thompson, C.; Turner, H.; Dougherty, B.; Schmidt, D.C. Wreckwatch: Automatic traffic accident detection and

notification with smartphones. Mob. Netw. Appl. 2011, 16, 285–303. [CrossRef]
36. Chuan-zhi, L.; Ru-fu, H.; Ye, H.w. Method of freeway incident detection using wireless positioning. In Proceedings of the 2008

IEEE International Conference on Automation and Logistics, Qingdao, China, 1–3 September 2008; pp. 2801–2804.
37. Sheu, J.B. A sequential detection approach to real-time freeway incident detection and characterization. Eur. J. Oper. Res. 2004,

157, 471–485. [CrossRef]
38. Faiz, A.B.; Imteaj, A.; Chowdhury, M. Smart vehicle accident detection and alarming system using a smartphone. In Proceedings

of the 2015 International Conference on Computer and Information Engineering (ICCIE), Rajshahi, Bangladesh, 26–27 November
2015; pp. 66–69.

39. Ahmed, V.; Jawarkar, N.P. Design of low cost versatile microcontroller based system using cell phone for accident detection and
prevention. In Proceedings of the 2013 6th International Conference on Emerging Trends in Engineering and Technology, Nagpur,
India, 16–18 December 2013; pp. 73–77.

40. Stisen, A.; Blunck, H.; Bhattacharya, S.; Prentow, T.S.; Kjærgaard, M.B.; Dey, A.; Sonne, T.; Jensen, M.M. Smart devices are
different: Assessing and mitigatingmobile sensing heterogeneities for activity recognition. In Proceedings of the 13th ACM
Conference on Embedded Networked Sensor Systems, Seoul, Korea, 1–4 November 2015; pp. 127–140.

41. Ozbayoglu, M.; Kucukayan, G.; Dogdu, E. A real-time autonomous highway accident detection model based on big data
processing and computational intelligence. In Proceedings of the 2016 IEEE International Conference on Big Data (Big Data),
Washington, DC, USA, 5–8 December 2016; pp. 1807–1813.

42. Pan, B.; Wu, H. Urban traffic incident detection with mobile sensors based on SVM. In Proceedings of the 2017 XXXIInd General
Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Montreal, QC, Canada, 19–26
August 2017; pp. 1–4.

43. Ghosh, S.; Sunny, S.J.; Roney, R. Accident detection using convolutional neural networks. In Proceedings of the 2019 International
Conference on Data Science and Communication (IconDSC), Bangalore, India, 1–2 March 2019; pp. 1–6.

http://dx.doi.org/10.1109/TVT.2013.2263400
http://dx.doi.org/10.1109/ICIMU49871.2020.9243546
http://dx.doi.org/10.1016/j.aap.2013.02.021
http://www.ncbi.nlm.nih.gov/pubmed/23523893
http://dx.doi.org/10.3141/1784-01
http://dx.doi.org/10.1016/j.trf.2012.08.006
http://dx.doi.org/10.1016/j.aap.2012.03.032
http://www.ncbi.nlm.nih.gov/pubmed/23200443
http://dx.doi.org/10.3141/1746-12
http://dx.doi.org/10.1109/6979.880968
http://dx.doi.org/10.1007/s11036-011-0304-8
http://dx.doi.org/10.1016/S0377-2217(03)00209-1

Sensors 2022, 22, 3634 21 of 21

44. Osman, O.A.; Hajij, M.; Bakhit, P.R.; Ishak, S. Prediction of near-crashes from observed vehicle kinematics using machine learning.
Transp. Res. Rec. 2019, 2673, 463–473. [CrossRef]

45. Hankey, J.M.; Perez, M.A.; McClafferty, J.A. Description of the SHRP2 Naturalistic Database and the Crash, Near-Crash, and Baseline
Data Sets; Technical Report; Virginia Tech Transportation Institute: Blacksburg, VA, USA, 2016.

46. Cook, D.J.; Krishnan, N.C. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data; John Wiley
& Sons: Hoboken, NJ, USA, 2015.

47. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

48. Duda, R.O.; Hart, P.E. Pattern Classification; John Wiley & Sons: Hoboken, NJ, USA, 2006.
49. Tang, J.; Alelyani, S.; Liu, H. Feature selection for classification: A review. In Data Classification: Algorithms and Applications. 2014;

p. 37. Available online: www.cvs.edu.in/upload/feature_selection_for_classification.pdf (accessed on 10 February 2022).
50. Urbanowicz, R.J.; Meeker, M.; La Cava, W.; Olson, R.S.; Moore, J.H. Relief-based feature selection: Introduction and review. J.

Biomed. Inf. 2018, 85, 189–203. [CrossRef] [PubMed]
51. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
52. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

53. Zaremba, W.; Sutskever, I.; Vinyals, O. Recurrent neural network regularization. arXiv 2014, arXiv:1409.2329.
54. Luong, M.T.; Sutskever, I.; Le, Q.V.; Vinyals, O.; Zaremba, W. Addressing the rare word problem in neural machine translation.

arXiv 2014, arXiv:1410.8206.
55. Gamboa, J.C.B. Deep learning for time-series analysis. arXiv 2017, arXiv:1701.01887.
56. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456.
57. Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Instance normalization: The missing ingredient for fast stylization. arXiv 2016,

arXiv:1607.08022.
58. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
59. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
60. Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [CrossRef]
61. Kramer, O. K-nearest neighbors. In Dimensionality Reduction with Unsupervised Nearest Neighbors; Springer: Berlin/Heidelberg,

Germany, 2013; pp. 13–23.
62. Myles, A.J.; Feudale, R.N.; Liu, Y.; Woody, N.A.; Brown, S.D. An introduction to decision tree modeling. J. Chemom. A J. Chemom.

Soc. 2004, 18, 275–285. [CrossRef]
63. Cutler, D.R.; Edwards Jr, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in

ecology. Ecology 2007, 88, 2783–2792. [PubMed]
64. Gouverneur, P.; Li, F.; Adamczyk, W.M.; Szikszay, T.M.; Luedtke, K.; Grzegorzek, M. Comparison of Feature Extraction Methods

for Physiological Signals for Heat-Based Pain Recognition. Sensors 2021, 21, 4838. [CrossRef] [PubMed]
65. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A

system for large-scale machine learning. In Proceedings of the 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

66. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

67. Zeiler, M.D. Adadelta: An adaptive learning rate method. arXiv 2012, arXiv:1212.5701.
68. Browne, M.W. Cross-validation methods. J. Math. Psychol. 2000, 44, 108–132. [CrossRef] [PubMed]
69. Yang, J.; Nguyen, M.N.; San, P.P.; Li, X.; Krishnaswamy, S. Deep convolutional neural networks on multichannel time series for

human activity recognition. In Proceedings of the Ijcai, Buenos Aires, Argentina, 25–31 July 2015; Volume 15, pp. 3995–4001.
70. Zhao, B.; Lu, H.; Chen, S.; Liu, J.; Wu, D. Convolutional neural networks for time series classification. J. Syst. Eng. Electron. 2017,

28, 162–169.
71. Sadouk, L. CNN approaches for time series classification. In Time Series Analysis-Data, Methods, and Applications; IntechOpen:

London, UK, 2019; pp. 1–23.
72. Li, F.; Shirahama, K.; Nisar, M.A.; Huang, X.; Grzegorzek, M. Deep Transfer Learning for Time Series Data Based on Sensor

Modality Classification. Sensors 2020, 20, 4271. [CrossRef]
73. Liu, H.; Zhou, M.; Liu, Q. An embedded feature selection method for imbalanced data classification. IEEE/CAA J. Autom. Sin.

2019, 6, 703–715. [CrossRef]
74. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [CrossRef]

http://dx.doi.org/10.1177/0361198119862629
www.cvs.edu.in/upload/feature_selection_for_classification.pdf
http://dx.doi.org/10.1016/j.jbi.2018.07.014
http://www.ncbi.nlm.nih.gov/pubmed/30031057
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1080/01431160412331269698
http://dx.doi.org/10.1002/cem.873
http://www.ncbi.nlm.nih.gov/pubmed/18051647
http://dx.doi.org/10.3390/s21144838
http://www.ncbi.nlm.nih.gov/pubmed/34300578
http://dx.doi.org/10.1006/jmps.1999.1279
http://www.ncbi.nlm.nih.gov/pubmed/10733860
http://dx.doi.org/10.3390/s20154271
http://dx.doi.org/10.1109/JAS.2019.1911447
http://dx.doi.org/10.1109/TKDE.2009.191

	Introduction
	Related Work
	Driving Behavior Analysis
	Accident Detection
	Rule-Based Accident Detection
	ML-Based Accident Detection

	Materials and Methods
	Data Acquisition
	Data Pre-Processing and Segmentation
	Feature Extraction
	Feature Extraction Based on Handcrafted Features (HC)
	Feature Learning Based on Multi-Layer-Perceptron (MLP)
	Feature Learning Based on Convolutional Neural Networks (CNN)
	Feature Learning Based on Long Short-Term Memory (LSTM)
	Feature Learning Based on an Autoencoder (AE)

	Classification

	Experiments and Results
	Analysis
	Conclusions
	References

