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Abstract: People with Parkinson’s disease (PD) experience significant impairments to gait and
balance; as a result, the rate of falls in people with Parkinson’s disease is much greater than that of the
general population. Falls can have a catastrophic impact on quality of life, often resulting in serious
injury and even death. The number (or rate) of falls is often used as a primary outcome in clinical
trials on PD. However, falls data can be unreliable, expensive and time-consuming to collect. We
sought to validate and test a novel digital biomarker for PD that uses wearable sensor data obtained
during the Timed Up and Go (TUG) test to predict the number of falls that will be experienced by
a person with PD. Three datasets, containing a total of 1057 (671 female) participants, including
71 previously diagnosed with PD, were included in the analysis. Two statistical approaches were
considered in predicting falls counts: the first based on a previously reported falls risk assessment
algorithm, and the second based on elastic net and ensemble regression models. A predictive model
for falls counts in PD showed a mean R2 value of 0.43, mean error of 0.42 and a mean correlation
of 30% when the results were averaged across two independent sets of PD data. The results also
suggest a strong association between falls counts and a previously reported inertial sensor-based falls
risk estimate. In addition, significant associations were observed between falls counts and a number
of individual gait and mobility parameters. Our preliminary research suggests that the falls counts
predicted from the inertial sensor data obtained during a simple walking task have the potential to
be developed as a novel digital biomarker for PD, and this deserves further validation in the targeted
clinical population.
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1. Introduction

Parkinson’s disease (PD), a progressive neurodegenerative disease, has significant
deleterious effects on gait and balance. The prevalence of PD has been estimated as 0.3%
in industrialized countries [1], increasing with age to 1% in the over-60s, rising further in
the over-80s. The costs associated with Parkinson’s disease are significant, estimated to be
$23 Bn per year [2,3] in the US and £449 M-£3.3 Bn per year in the UK [4].

The clinical manifestation of PD is characterized by a broad spectrum of motor and
non-motor symptoms [5], and the well-recognized four cardinal features of PD are tremor
at rest, rigidity, akinesia (or bradykinesia) and postural instability. A clear symptom of the
disease, known as Parkinsonian gait, is characterized by slow, shuffling steps, coupled with
impaired dynamic balance.
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People with PD are at a much higher risk of falls compared to the general popula-
tion [6]. They are also twice as likely to fall as patients with other neurological condi-
tions [7,8], falling more frequently particularly in the advanced stages of the disease. It has
been estimated that 38–68% of PD patients will fall at some point during the course of their
disease [6,9–11]; however, a range of novel medications and non-pharmacological inter-
ventions are under development to address this unmet need [12–15]. The current clinical
evidence suggests the best predictor of a fall in a person with PD is the occurrence of a fall
in the previous year [16]. As a result, some clinical trials are adopting self-reported falls
during a follow-up period as the primary endpoint [12]. When falls are used as an outcome
measure, longitudinal studies with longer durations are needed to obtain sufficient falls
data to detect a drug compound’s effect when compared to the baseline. Furthermore, a
lengthy study burdens the patients and may delay the time to market for a compound or
intervention that could potentially reduce the frequency of falls.

Accurately measuring the number of falls per patient in a clinical trial can be chal-
lenging. Data collection usually involves self-reporting either via diaries or regular (e.g.,
weekly) investigator follow-up. Self-reporting is prone to bias as it relies on patient recall
and can be affected by the individual’s perception of a fall [17]. In addition, inaccurate
reporting of falls is well-documented [18]. Fall detection technologies use body-worn or
ambient sensors to measure or detect the impacts associated with falls. While these systems
have been shown to be accurate and sensitive in detecting falls in situations where young
adults simulate falls under controlled conditions [19,20], in real-world settings, they have
been shown to suffer from a significant rate of false positives. Moreover, they are prone to
noncompliance with regard to the long-term wearing of the device [19,21].

The assessment of falls risk in PD patients by measuring individual predictors of
falls, such as pathological gait or impaired balance, provides an opportunity to obtain an
indication of each patient’s individualized risk of falling [22–26]. In contrast to directly
detected falls, falls risk can be assessed frequently, objectively and reliably using clinical
tests quantified using wearable sensors in a clinical setting or potentially under free-living
conditions [24,27–31]. Moreover, utilizing falls risk assessment as an outcome measure
has the potential to reduce the trial sample size and duration. The rate or number of falls
observed in PD patients during a clinical trial is often used as a primary outcome measure
to capture meaningful, interpretable change attributable to an intervention. However, a
digital biomarker predicting the number of falls is currently lacking.

A more promising approach is to use wearable sensors to provide a more sensitive
and objective assessment of the response to intervention than what is currently offered
by typical functional tests (such as the TUG (Timed Up and Go) test, 180◦ turn test, the
Tinetti Scale [32], the Functional Reach Test and the Berg Balance Test [33]). As an example,
the TUG is a standard clinical test of mobility where patients are observed and timed as
they rise from a chair, walk 3 meters, turn, walk back to the chair and sit back down. The
time taken to complete the test (TUG time), measured using a stopwatch, is compared
with standard values with longer times associated with a greater risk of falls. However,
studies using TUG time to distinguish fallers and non-fallers in PD patients report only
moderate sensitivity [22,34,35], with similar results reported for other standard functional
tests [36,37].

Previous research from our group has shown promising results when instrumenting
the TUG test with inertial sensors (QTUG), combining signal processing and machine learn-
ing algorithms to produce a statistical estimate of the patient’s risk of having a fall [27,38]
as well as a statistical estimate of their level of frailty [39]. QTUG has been shown to be
reliable in the measurement of gait and mobility [40], as well as accurate in predicting falls
in PD [22] and community dwelling older adults [38,41]. We believe a statistical model
based on inertial sensor measures of movement has the potential to be used as a surrogate
measure of falls counts in patients with PD.

The current literature supports the utility of an array of objective gait and mobility
parameters as predictors of falls risk in PD patients; however, in clinical trials, self-reporting
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of the falls count is still considered the gold standard to evaluate the efficacy of new therapies.
To the best of our knowledge, this is the first study employing comprehensive wearable
sensor data to develop an algorithm to predict the number of falls that will be experienced
by a person with PD. Our work will offer a preliminary clinical validation of a novel digital
biomarker that can support the effect detection and interpretation of clinical trial outcomes.
Given that falls can be catastrophic for people with PD, therapies and interventions that
aim to reduce falls could have a significant and beneficial effect on the quality of life for
disease sufferers.

2. Datasets

Three datasets containing a total of 1057 participants were included in the analysis,
including 71 participants previously diagnosed with PD. The data consisted of one set of
healthy community dwelling older adults recruited into a large research study (Technology
Research for Independent Living “TRIL” dataset), referred to hereafter as the Training
Dataset “TD”, and two sets of Parkinson’s Disease patients (Order of Saint Francis “PD1”
dataset and University College Dublin’s “Healthy PD”, referred to as “PD2” dataset here-
after). All the participants completed at least one QTUG assessment depending on the
study protocol. Table 1 below provides summary details on the three datasets included.
Further details on each dataset are provided in the sections below and in Appendix A. Of
the two PD datasets reported, the PD2 participants were considered less impaired than the
PD1 participants (see UPRDS (Unified Parkinson’s Disease Rating scale part III) scores in
Table 1).

Table 1. Summary details per dataset. MMSE refers to Mini Mental State Examination. CGA refers to
Comprehensive Geriatric Assessment, includes vision, blood pressure and medication review. BMI
refers to Body Mass Index. UPDRS refers to Unified Parkinson’s Disease Rating scale (UPDRS) part
III. Falls rate is mean falls per patient. TUG time is the mean time to complete the TUG test, while
gait velocity is mean stride velocity during the TUG. Falls rate is reported as the mean number of
falls per patient over the study window.

Dataset TD PD1 PD2

N (M/F) 1015 (344/671) 15 (10/5) 27 (17/9)

Population
Community dwelling
Control
Residential care

Parkinson’s disease Parkinson’s disease

Study type Cross-sectional
Longitudinal Longitudinal Cross-sectional

Outcomes
Clinically reported falls
CGA
MMSE

Weekly falls diaries
UPRDS

Self-reported falls
UPDRS

UPDRS part III - 15.1 ± 9.6 22.56 ± 10.25

Fallers/Non-fallers 409/606 4/11 (12 weeks)
8/7 (24 weeks) 8/18

Total falls (Falls rate) 652 (0.64) 181 (12.1) 10 (0.37)
TUG time (s) 10.8 ± 3.9 12.5 ± 4.3 8.6 ± 2.9
Gait velocity (cm/s) 98.9 ± 18.7 89.4 ± 24.5 116.0 ± 14.9
Age (yrs) 72.2 ± 10.9 67.3 ± 7.1 64.9 ± 7.3
Height (cm) 166.6 ± 9.8 172.9 ± 9.8 171.2 ± 8.3
Weight (kg) 74.6 ± 16.3 80.3 ± 15.7 74.7 ± 13.6
BMI 26.97 ± 4.70 26.86 ± 4.37 25.40 ± 3.79

Each study received ethical approval from the local ethics committee (see detailed
information below). All the data reported here were anonymized and stored in line with
data privacy regulations in each country (e.g., HIPAA, GDPR).

Marked differences in falls rates can be observed across the datasets, with the PD2
dataset reporting a rate of 0.37 falls per participant (measured retrospectively) in contrast
to the PD1 data, which reported 12.1 falls per participant over the study duration (24 weeks
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measured longitudinally). The distribution of falls for each dataset is reported in Figure 1,
which provides a histogram of the falls counts for each dataset. Falls distributions are
clustered around low numbers of falls, with a majority (>50%) of participants in each dataset
reporting no falls. The falls data obtained in TD were reported clinically to an experienced
research nurse who cross-checked against hospital records (where possible). The PD1
falls data were obtained prospectively through daily falls diaries and collected weekly for
6 months from the baseline. The PD2 falls data were self-reported to the researcher at the
time of each QTUG assessment over the 12-week study duration. The differences between
the falls outcome data obtained for PD1 and PD2 meant that the two datasets could not be
pooled and needed to be analyzed separately.
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2.1. Training Dataset (TD)

The data used to train all the statistical models (Training Dataset (TD)) were obtained
from the TRIL research project, which examined technologies to support positive ageing
and included a focus on the prevention of falls. These data were combined with a number
of other smaller datasets arising from separate research studies to form a reference dataset,
used to train the falls risk estimate (FRE) classifier models and mobility risk scores included
in the Kinesis QTUG™ product [27,38,42,43].

The data consisted mainly of community dwelling older adults assessed at St James
Hospital, Dublin, Ireland and included N = 1015 subjects for analysis. Ethical approval
was received from the St James hospital research ethics committee. Each participant
completed a battery of functional tests, including the Timed Up and Go and a 6-meter walk,
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instrumented with inertial sensors. In addition, each participant received a Comprehensive
Geriatric Assessment (CGA), which included vision tests, a medication review and a blood
pressure and cardiovascular assessment. Participants also received a cognitive function
assessment: the Mini Mental State Examination (MMSE). Participants had an average age of
72.2 years, mean height of 166.6 cm and mean weight of: 74.6 kg. Twenty-nine participants
reported they had been diagnosed with PD prior to assessment.

Inclusion criteria: inclusion criteria were subjects 60 years and older, with no history
of stroke, able to walk without assistance, able to provide written informed consent.

Exclusion criteria: aged under 60 years of age, unable to provide informed consent or
MMSE less than 18.

2.2. Parkinson’s Disease Dataset 1 (PD1)

This study was a single site longitudinal study of Parkinson’s disease patients. A
total of 16 participants were recruited from the OSF HealthCare-Illinois Neurological
Institute (Peoria, IL, USA); sensor data were not available for one participant, leaving
15 participants for analysis (5 female, mean age 67.3 ± 7.1 years). Patients were assessed
over a 6-month period; QTUG assessments were conducted on a monthly basis following
an initial baseline assessment. A total of 94 QTUG recordings were available for the
15 participants. Participants were evaluated three times using the UPDRS part III: at
baseline, 90 days and 180 days. The study [22] included a weekly falls diary as well as
SF−36, UPDRS and medication information for each assessment. ‘ON’ or ‘OFF’ state was
documented only as a function of the clinical data captured and has not been explicitly
analyzed. Participants did not receive any pharmaceutical or other intervention over the
course of the trial.

All patients were required to provide informed consent. Ethical approval was received
from the Peoria Institutional Review Board.

Inclusion criteria: able to provide written informed consent, aged 40 to 80, Idiopathic
Parkinson’s disease (meeting UK Brain Bank criteria), responsive to Levodopa for at least
four years, MMSE score greater than 22 and able to walk at least 3 m independently.

Exclusion criteria: atypical Parkinsonism, Hoehn and Yahr stage V, MMSE 21 or less,
use of assisted device for ambulation, co-morbidities affecting balance: severe neuropathy,
weakness, bilateral hip replacement, syncopal episodes causing falls, diagnosed with
lumbar radiculopathy, spinal stenosis or any other back conditions with the potential to
affect fall behavior, drug abuse or alcoholism.

2.3. Parkinson’s Disease Dataset 2 (PD2)

The second Parkinson’s Disease dataset (PD2) arose from the “Healthy PD” study,
conducted in University College Dublin (Dublin, Ireland), and examined the effect of a
12-week exercise intervention study [44] in patients with PD.

Twenty-seven subjects, each with idiopathic PD ranging from stage I to stage III on
the Hoehn and Yahr (H&Y) staging scale, voluntarily consented to participate in the study.
Experimental protocols were approved by the Human Research Ethics Committee for
Sciences at University College Dublin. Participants were evaluated four times during
the study. Following an initial baseline assessment, each participant took part in an
exercise intervention program, was subsequently re-assessed post-intervention and then
followed-up three months after study completion. The participants did not receive any
pharmaceutical intervention over the course of the trial. The participants reported their
history of falls in the previous 12 months at each QTUG assessment; one participant did
not provide falls history.

Inclusion criteria: diagnosed with Parkinson’s, stage I to stage III on the Hoehn and
Yahr (H&Y), able to provide written informed consent.

Exclusion criteria: none.
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3. Methods
QTUG Assessment Protocol

Each participant was assessed using a Timed Up and Go (TUG) test, instrumented
with inertial sensors (QTUG), placed on each shin below the knee (see Figure 2). QTUG
assessments follow a highly prescriptive protocol: test distance measured as exactly 3
meters, turn point marked on the ground using tape (and not marked using a cone).
Participants were always instructed to wear comfortable walking shoes and to complete
the TUG “as fast as safely possible”. Every effort was made to control underfoot conditions
(e.g., removing obstacles or loose carpeting) and to ensure at least four-meter linear space,
ensuring adequate space to turn. Where possible, participants were encouraged to complete
the test without the use of a walking aid; if a walking was used, this was noted in the
software.
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Each QTUG assessment (QTUG™, Kinesis Health Technologies, Dublin, Ireland)
produces 71 different calculated parameters, which include a range of features quantifying
gait, mobility, turning and transfers [27] (details on the processing applied to produce
each parameter are reported elsewhere [38,45]). In addition, each assessment produces a
statistical falls risk estimate (FREsensor) [38,45] based on the inertial sensor data as well as a
statistical Frailty estimate based on the inertial sensor data (FEsensor) [39].
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4. Statistical analysis
4.1. Exploratory Analysis

The association of FREsensor produced by QTUG with falls count was explored for
each dataset. A one-way ANOVA with significance level set to p < 0.05, where the number
of falls is treated as an ordinal variable, was used to examine this relationship. As the TD
dataset was used to develop and validate the current FREsensor, only the PD1 and PD1
datasets were included in this analysis as they are statistically independent from the data
used to generate FREsensor.

The association of the mobility risk scores with falls counts is examined for the PD2
dataset, which is statistically independent of the reference dataset used in creating the
mobility risk scores. A one-way ANOVA (with significance level set to p < 0.05), where falls
count is treated as a categorical variable, was used to examine this relationship.

The exploratory analysis of the association of falls counts with individual gait and
mobility parameters produced by QTUG is included in Appendix B.

4.2. Predictive Model of Falls Counts

Two main approaches were taken to develop a novel method to predict fall rate
(counts) in PD:

1. Using existing trained classifiers to predict falls counts (QTUG FRE and Mobility
score models)

2. Ensemble model based on elastic net models with Poisson regression

For each approach, training and validation were carried out using the training data
(TD) set, while testing on each of the models was carried out on two independent PD
datasets (PD1 and PD2).

Falls count data for all models were log transformed to reduce the effect of zero-
inflation on the distribution using the following expression:

LogNumFalls = log(1 + NumFalls−min(NumFalls))

where min(NumFalls) is zero for all datasets reported here. To analyze or plot predicted
falls counts against actual falls, the prediction can be converted back to NumFalls using the
following expression:

NumFalls = exp(logNumFalls)− 1 + min(NumFalls)

All analyses were performed using Matlab v9.3 (R2017b).

4.2.1. Predicting Falls Counts Using Existing QTUG Risk Estimates (FRE Model)

Two statistically independent datasets (PD1 and PD2) were used to test the perfor-
mance of a predictive model of falls counts (referred to hereafter as the FRE model) based
on measures produced by existing trained QTUG classifier models using three standard
features: FREsensor, FEsensor and TUG time.

FREsensor and FEsensor were trained using the training dataset, as reported
elsewhere [38,39], and are based on regularized discriminant and logistic regression models,
respectively. TUG time (the time to complete the TUG test) has been frequently shown in
the literature to be associated with falls [46,47].

To test the performance of the FRE model, data for each of the independent PD datasets
were then applied to the model using negative binomial regression. Negative binomial
regression was used due to zero-inflation and over-dispersion of the falls count data.

4.2.2. Predicting Falls Counts Using QTUG Mobility Risk Scores (Mobility Score Model)

QTUG produces five mobility risk scores that were calculated from the reference
dataset (N = 1495) [27,43] (this set contains data from both the TD and PD1 datasets, and a
number of other clinical datasets).
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The PD2 dataset was used to examine the performance of the QTUG mobility risk
scores in predicting falls count (Mobility score model). To test the performance of the
Mobility score model, data for each of the independent PD datasets were then fitted to each
independent dataset using negative binomial regression.

4.2.3. Predicting Falls Counts with Elastic Net Regression

To train and validate a novel predictive model for falls counts in PD using QTUG data,
a cross-validated elastic net procedure with a Poisson distribution was used. The model
was trained using the training dataset and tested on the two independent PD datasets (PD1
and PD2).

The training data were considered in a number of different subsets as follows:

• TD-All—All training data
• TD-Fallers—training data excluding non-fallers (number of falls >0)
• TD-PD—PD patients within the training dataset only
• TD-Fallers-PD—PD patients who had experienced at least one fall
• TD-NoPD—training dataset excluding PD patients
• TD-Fallers-NoPD—dataset excluding fallers and patients with PD

A set of trained regression models was produced for each of the training datasets listed
above. To produce a trained model for testing on the independent datasets, the selected
model was trained on all available training data and applied to the test set. Where validation
was required prior to testing, the training set was split into training and validation sets. In all
approaches, model selection was performed using 10-fold cross-validation to reduce bias.

For the elastic net model, an alpha value was set, a priori, to 0.1; models were also
a priori constrained to a minimum model size of three and a maximum model size of 20.
Model selection was also constrained to include the TUG time and to exclude a number of
features with previously reported poor reliability (such as stance time asymmetry).

We considered an ensemble of regression models where the ensemble prediction is
completed by predicting falls count as a linear combination of the estimates from the TD-
NoPD and TD-Fallers-NoPD models. The ensemble coefficients for the linear combination
were obtained through linear regression, estimating true falls count using predictions from
each constituent model on the TD-PD validation set.

The PD1 dataset contains a number of very large outlier falls count values (e.g.,
NumFalls = 127) that distort model predictions. The results are presented for all the data
as well as with outliers removed (NumFalls > 10). For the training set, a small number of
outliers were removed (where NumFalls > 10). The PD2 dataset did not contain any outliers.

4.2.4. Model Performance Metrics

The performances of each model on the training and testing sets were evaluated using
the following metrics: coefficient of determination (R2), root mean squared error (RMSE),
Spearman’s rank correlation (ρ) and model size (number of features).

The coefficient of determination was included for completeness as a measure of
‘goodness of fit’. However, as the falls count data approximate a zero-inflated Poisson
distribution, it should be noted that this measure does not always provide a reliable
assessment of model fit in the presence of outliers or with low samples sizes.

5. Results

We report the results for a range of statistical models intended to predict the fall rates
in PD patients. The sensor data for all the datasets were not normally distributed. Falls
count data were heavily clustered around zero, suggesting that the data may follow a
negative binomial or a zero-inflated Poisson distribution.

The results of a battery of statistical tests analyzing the association with falls counts
for TD, PD1 and PD2 datasets are included in Appendix B.
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5.1. Predictive Model of Falls Counts Using QTUG

The results for the predictive model of falls counts using QTUG data are detailed
below. This involved training and validating a suite of models using the training (TD)
dataset. The selected models were then tested on the two independent PD datasets, which
were held out from all the model training.

5.1.1. Existing QTUG Falls Risk Model

This section details the performance of the previously trained QTUG FREsensor digital
biomarker as a surrogate measure of falls counts as well as in classifying falls risk. A
significant association between FREsensor and falls count was observed for the PD2 dataset
(F = 4.37, p < 0.05, respectively). The PD2 dataset showed a notable but non-significant
association (F = 2.01, p = 0.17) with falls counts. Figure 3 shows the association of FREsensor
with falls counts for each of the PD1 and PD2 datasets.
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Figure 3. Association between FRE sensor and falls counts for two statistically independent datasets
(PD1 (left) and PD2 (right)). The PD1 dataset took falls counts at 24 weeks post baseline assessment.

The results are reported in Table 2 for the prediction of falls counts using an existing
pre-trained QTUG classifier model (FRE model) tested on two independent datasets (PD1
and PD2). A mean RMSE of 0.42 and a mean Spearman’s correlation coefficient of 0.30 were
obtained when the model performance was averaged across two independent PD datasets.

Table 2. Testing of existing QTUG data model using negative binomial falls count model fit to
independent PD datasets. Results are presented for both the FRE and Mobility models. For the PD1
dataset, results are provided for all data as well as with outliers (NumFalls > 10) removed.

Dataset Model N R2 RMSE Rho #Features

PD1 (all data) FRE 15 0.50 1.27 0.64 3
PD1 (outliers excluded) FRE 12 0.73 0.41 0.44 3
PD1 (0–5+categories) FRE 15 0.70 0.70 0.69 3
PD2 (all data) FRE 26 0.13 0.42 0.15 3
PD2 (all data) Mobility 26 0.48 0.33 0.55 5

The PD1 dataset (N = 15) contained a number of very large outlier falls count values
(e.g., Number of falls (NumFalls) = 127), which distort model predictions. The results
are presented for all the data as well as with outliers removed (Number of Falls >10). In
addition, we present the data when grouped into falls count categories (where Number of
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falls >5 is placed into the five falls categories); the results are provided for three different
scenarios (tested on all data, outliers removed and placed into categories 0–5+).

The PD2 data (N = 26) did not contain any outliers, so the results with outliers excluded
are not presented. For the training set, outliers were also removed.

In addition, a negative binomial model was fit to the mobility scores (Mobility model)
and tested using the PD2 dataset, which yielded ab RMSE of 0.33 and correlation coefficient
of 0.55.

Figure 4 below shows a scatter plot (top panel) and boxplots (bottom panel) of pre-
dicted falls counts versus actual falls counts for the existing QTUG data model, tested on
the two independent datasets. For the PD1 data, outliers where number of falls is greater
than 10 are removed.
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Figure 4. Predicted falls count versus actual number of falls for existing QTUG data model
tested on independent PD test datasets (PD1 (left) and PD2 (right)). For PD1 dataset, outliers
(Number of Falls >10) are removed, for PD2 data set the maximum fall count for any participant was
3. Top panels plot actual fall counts against predicted while bottom panels group fall counts into
buckets (0–6).

5.1.2. Elastic Net Ensemble Models
Training Falls Count Models Using Cross-Validation

The model selection was conducted using 10-fold cross-validation for each model.
Once the model selection was complete, all the training data from each subset were fitted
to the data by re-substitution in order to produce a set of coefficients for each model, along
with results for the performance of the model on the training data. The training results and
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coefficients for each elastic net regression model and sub-set are detailed in Appendices C
and D respectively.

Testing Falls Count Models on Independent PD Datasets

The performance of each of the trained elastic net falls count models on each of the
independent Parkinson’s disease tests sets is detailed in Table 3 below. The ‘TD-All’ model
yielded a mean RMSE of 0.62 and Spearman’s rank correlation coefficient of 0.27 across the
two statistically independent PD datasets.

Table 3. Results for Poisson elastic net model tested on independent PD datasets (PD1 and PD2).
Results are provided for each of the models derived from the TD training subsets. Spuriously high
values are indicated by ##. Outliers (NumFalls > 10) were excluded from analysis.

PD1 PD2

FRE N R2 RMSE ρ #Features N R2 RMSE ρ #Features

TD-All 12 0.00 0.80 0.38 13 26 0.00 0.45 0.16 13
TD-Fallers 12 0.00 0.62 0.34 13 26 0.00 0.38 0.28 13
TD-PD 12 0.00 ## −0.31 19 26 0.00 ## −0.05 19
TD-Fallers-PD 12 0.00 ## −0.38 4 26 0.00 ## −0.10 4
TD-NoPD 12 0.00 0.80 0.35 14 26 0.00 0.45 0.15 14
TD-Fallers-NoPD 12 0.00 0.73 0.52 20 26 0.00 0.41 0.24 20
Ensemble-TD-PD 12 0.00 1.23 0.52 2 26 0.00 1.36 0.24 2

Male

TD-All 9 0.00 0.54 0.07 4 17 0.00 0.26 0.22 4
TD-Fallers 9 0.00 0.49 −0.45 6 17 0.00 0.39 0.47 6
TD-PD 9 0.00 18.81 −0.60 4 17 0.00 16.32 0.03 4
TD-Fallers-PD 9 0.00 12.77 −0.34 11 17 0.00 5.44 0.06 11
TD-NoPD 9 0.00 0.61 −0.07 20 17 0.00 0.29 −0.31 20
TD-Fallers-NoPD 9 0.00 0.51 −0.22 13 17 0.00 0.33 0.60 13
Ensemble-TD-PD 9 0.00 0.69 0.22 2 17 0.00 0.84 −0.60 2

Female

TD-All 3 0.00 0.98 0.50 12 9 0.00 0.52 0.37 12
TD-Fallers 3 0.00 1.19 0.50 18 9 0.00 0.63 0.47 18
TD-PD 3 0.00 0.81 1.00 4 9 0.00 0.67 −0.21 4
TD-Fallers-PD 3 0.00 191.41 −1.00 20 9 0.00 ## 0.02 20
TD-NoPD 3 0.00 0.92 0.50 10 9 0.00 0.48 0.58 10
TD-Fallers-NoPD 3 0.00 1.19 0.50 17 9 0.00 0.64 0.38 17
Ensemble-TD-PD 3 0.00 1.19 0.50 2 9 0.00 0.40 −0.34 2

Figure 5 below demonstrates the performance of the ensemble model when tested on
the two independent PD datasets as both a scatter plot and a boxplot. The results show a
mean RMSE of 1.28 and mean rank correlation coefficient of 0.38.
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6. Discussion

This manuscript reports the results of a wearable sensor-based method to generate
surrogate measures of falls counts in PD. We believe this approach has the potential to be
further developed as a more sensitive readout of falls in PD. Three distinct and independent
datasets, containing a total of 1057 participants (including 71 previously diagnosed with
PD) were included in the analysis.

Using a comprehensive kinematic assessment, we explored the possibility to predict
falls counts using two existing trained models (the FRE model and Mobility model), pre-
viously tested for falls risk assessment, and a novel mathematical approach using elastic
net, ensemble learning and Poisson regression. Previous research has shown that the FRE
and Mobility score models were associated with falls in a number of populations. The gait
and mobility parameters produced by the QTUG algorithm can be noisy and mutually
correlated, so the feature vector dimension needs to be reduced through feature or model
selection. This point, combined with the fact that falls counts are thought to follow a
zero-inflated Poisson process, meant that we considered an elastic net procedure combined
with Poisson regression and ensemble modelling to be a promising means to obtain an
accurate model of falls counts.

The results for the FRE model found that falls counts can be predicted with a mean
RMSE of 0.42 and a mean correlation of 30% with falls counts for two statistically indepen-
dent datasets of patients with PD. Similarly, the results for the Mobility model found that
falls can be predicted with an RMSE of 0.33 and correlation coefficient of 0.55 when tested
on an independent dataset of PD patients. An ensemble of Poisson regression models pro-
duced a mean RMSE of 1.28 and mean rank correlation coefficient of 0.38, while the results,
averaged across a separate male/female elastic net Poisson regression model, yielded an
RMSE of 0.57 and correlation with falls counts of 0.29 for two independent datasets. The
best results reported here were obtained by using an existing trained classifier model (FRE
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model) to predict falls counts. However, some limitations should be considered in the
interpretation of our findings. First, we believe the ensemble modelling approach was
hampered by a small sample of PD patients (given the FRE model was trained on a much
larger, more varied dataset) and may be more promising and might perform better when
trained with a larger and more representative dataset containing a larger proportion of PD
patients. Second, the falls count data for PD1 contained a number of extreme outliers and,
to evaluate their effects, the analyses were performed both including and excluding those
samples. As expected, outliers had a significant impact on the reported outcome, probably
due to the fact that the training data (TD) only contained low falls counts and, as a result,
the model did not generalize well to extremely large falls count values. Third, due to the
small sample size, medication status, on/off periods and disease severity were not consid-
ered in the analysis. Furthermore, the PD2 dataset was perhaps unusually healthy for a
sample of PD patients, able to undertake a 12-week exercise program (with no participants
dropping out) that consisted of spinning, circuit training and tai-chi; this may have led to
lower than expected numbers of falls. Moreover, it is important to consider the intrinsic
nature of falls, which are essentially a random, stochastic event. For this reason, predicting
the exact number of falls that will occur in a given time frame is inherently difficult; the
infrequency of the event belies the risk that may or may not be captured within the clinical
trial horizon. However, this approach, in combination with statistical fall risk estimates,
could provide a clinical view with a higher level of granularity; statistical indices, which
produce a probabilistic estimate of future falls based on an analysis of movement, might
offer additional insight into the state of the neuromuscular control system as opposed to
solely relying on an approach that aims to catch an infrequent and potentially catastrophic
endpoint (i.e., a fall event).

The results also suggest a significant association between the number of falls (falls
counts) and the sensor-based falls risk estimate model (FREsensor) for community dwelling
older adults reported previously [22,27] and currently deployed in a commercial product
(Kinesis QTUG™). In addition, strong associations were observed between falls counts
and a number of individual gait and mobility parameters, particularly measures of gait
variability and average values of temporal–spatial gait during the TUG test (Appendix B).

Several studies have examined the value of instrumented gait and mobility tests in
the assessment of Parkinson’s [22,29,48,49]. A recent meta-analysis of 26 studies [50] found
that spatiotemporal characteristics of gait, such as slower walking speed, lower cadence
and shorter strides, can increase the risk of future falls. Importantly, clinical features can
be combined with spatiotemporal gait dynamics to elucidate falls pathophysiology [51].
The most consistent results are in relation to stride time variability, which was significantly
associated with falls counts (fall frequency) and not related to tremor, rigidity or bradyki-
nesia in the “off” state [52]. However, stride time variability significantly improved in
response to levodopa, both in fallers and non-fallers, but remained increased in fallers
when compared to non-fallers. Hoskovcová et al. [34] found that stride time variability may
predict falls in prospectively identified PD fallers, which agrees with previous research by
Hausdorff et al. [53] and Lord et al. [54] suggesting the increased gait variability predicts
falls in community dwelling older adults [55]. In addition, authors found that stride time
variability correlated with the total BDI-II score, which was increased in PD fallers. While
the association of various measures of gait with falls in PD has been well-established, this
study demonstrates the potential of combining such measures into a predictive model for
use as a clinical trial endpoint.

A limitation of this study is the small sample sizes available for the two independent
PD datasets; as such, the results reported here may need to be replicated in a larger study.

Future work will aim to replicate these findings in a larger study, including the
evaluation of longitudinal relationships between mobility parameters, falls counts and
UPDRS scores in PD, and their utility in measuring disease progression. Improvements in
the predictive model for falls counts will entail an extended ensemble model approach that
would include both the FRE and Mobility score models.
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7. Conclusions

To conclude, our findings support the goal of integrating wearable sensor technology
into the clinical and routine care of patients with movement disorders and may offer novel
objective endpoints for future clinical trials.
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Abbreviations
Abbreviations used in this manuscript.

Abbreviation Definition
PD Parkinson’s Disease
NumFalls Number of falls
QTUG Quantitative Timed Up and Go
TUG time Time to complete Timed Up and Go test
TD Training dataset for elastic net Poisson regression models
PD1 Parkinson’s test dataset #1
PD2 Parkinson’s test dataset #2
UPDRS Unified Parkinson’s Disease Rating Scale
MMSE Mini Mental State Examination
CGA Comprehensive Geriatric Assessment
FREsensor Inertial sensor-based estimate of falls risk
FEsensor Inertial sensor-based estimate of frailty, based on Fried’s frailty phenotype

Percentile-based scores quantifying mobility across five dimensions (Speed,
Mobility scores Transfers, Turning, Variability, Symmetry), using inertial sensors,

compared to a large reference dataset
FRE model Negative binomial model of falls counts using TUG time FREsensor and FEsensor
Mobility model Negative binomial model of falls counts using mobility scores

Appendix A. Anthropomorphic Data

Anthropomorphic and clinical data for each dataset, stratified by gender, are included
in Table A1 below.
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Table A1. Anthropomorphic and clinical data separated by gender for each dataset.

TD PD1 PD2

All (N = 1015) M (N = 344) F (N = 671) All (N = 15) M (N = 10) F (N = 5) All (N = 27) M (N = 17) F (N = 9)

Age (yrs) 71.52 ± 11.34 69.65 ± 13.75 72.48 ± 9.75 67.29 ± 7.11 67.26 ± 7.06 67.33 ± 8.03 64.92 ± 7.28 64.88 ± 8.86 65.00 ± 2.92
Weight (kg) 74.03 ± 14.22 82.11 ± 11.89 69.88 ± 13.53 80.05 ± 15.64 85.81 ± 10.96 68.51 ± 18.33 74.73 ± 13.55 79.06 ± 11.54 66.56 ± 13.88
Height (cm) 165.61 ± 9.37 174.25 ± 7.27 161.17 ± 6.92 172.29 ± 9.77 176.94 ± 7.13 162.98 ± 7.56 171.24 ± 8.27 175.54 ± 6.24 163.11 ± 4.70
BMI 26.97 ± 4.70 27.05 ± 3.76 26.92 ± 5.11 26.86 ± 4.37 27.34 ± 2.20 25.91 ± 7.35 25.40 ± 3.79 25.63 ± 3.33 24.96 ± 4.74
TUG time (s) 10.77 ± 3.94 10.55 ± 3.52 10.88 ± 4.14 12.60 ± 2.47 11.77 ± 2.55 14.26 ± 1.23 8.60 ± 2.92 9.11 ± 3.38 7.62 ± 1.47
Mean velocity (cm/s) 98.90 ± 18.65 100.17 ± 19.81 98.25 ± 18.01 87.50 ± 10.08 88.52 ± 11.91 85.47 ± 5.33 116.03 ± 14.88 113.16 ± 16.10 121.45 ± 11.11
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Appendix B. Association of QTUG Parameters with Falls Counts

QTUG sensor parameters often do not follow perfectly normal distributions, so non-
parametric statistical tests are used where appropriate. As the number of falls is a count
variable, it can be modelled as an ordinal variable or a Poisson process.

Three sets of statistical tests were carried out for each dataset using binary falls
classification (faller/non-faller) and falls count data (number of falls). The Mann–Whitney
rank sum test was used to compare each QTUG parameter for discrimination between faller
and non-faller populations, where a faller is defined as having one injurious fall or more
than one previous fall. Spearman’s rank correlation was used to examine the relationship
of each QTUG parameter against falls count data. One-way ANOVA, using the falls count
as the categorical variable, was used to examine the association of the QTUG parameters
with falls counts.

The alpha value for each hypothesis test was set to p < 0.05 to detect statistical signifi-
cance. Where possible, falls counts were analyzed in the 0–5+ range, but data for each value
in this range were not available for all datasets (e.g., PD2, only 0, 1, 3 counts available).

Note: the statistical tests detailed above should be considered as purely exploratory.
Model selection is not performed based on this analysis due to the possibility of a type I
error arising from multiple comparisons.

Seventy-one QTUG sensor parameters were included in the analysis per dataset [27,38].
These parameters can be grouped into categories as follows: falls risk and frailty scores,
mobility risk scores, temporal gait parameters, spatial gait parameters, turn parameters,
gait variability, gait symmetry, angular velocity parameters.

Appendix B.1. Training Data (TD) Set

Table A2 details the results of a battery of statistical tests conducted on QTUG parame-
ters calculated from the TD dataset (largely drawn from a sample of community dwelling
older adults). Analyses examined statistical differences in each measure between fallers
and non-fallers as well as the relationship between each measure and the number of falls
reported by participants.

Appendix B.2. PD1 Dataset

Table A3 details the results of a battery of statistical tests conducted on QTUG pa-
rameters calculated from the PD1 dataset (longitudinal study of Parkinson’s Disease pa-
tients) [22]. Analyses examined statistical differences in each measure between fallers
and non-fallers as well as the relationship between each measure and the number of falls
reported by participants. Strong correlations were observed between a number of gait
variability and temporal–spatial gait measures and falls counts.
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Table A2. Statistical analysis of QTUG parameters with falls counts for TD dataset. M and F refer to population stratified by gender (male and female). U refers to
Mann–Whitney rank sum statistic, ρ refers to Spearman’s correlation coefficient, while F refers to F-score from 1-way Anova test. Statistically significant differences
(p < 0.05) are indicated by *.

Mann–Whitney Spearman Anova

Parameter Name Faller
(Mean ± Std)

Non-Faller
(Mean ± Std) Rank Sum ρ(All) ρ(M) ρ(F) F(All) F(M) F(F)

Turn mid-point time (s) 5.22 ± 2.44 4.12 ± 1.35 245,646 * 0.24 * 0.21 * 0.23 * 14.76 * 5.31 * 10.04 *
Mean stride length (cm/s) 123.50 ± 22.03 133.67 ± 20.37 175,859 * −0.22 * −0.19 * −0.20 * 12.55 * 3.64 * 7.68 *
TUG test time (s) 11.63 ± 4.83 10.19 ± 3.07 228,827 * 0.18 * 0.19 * 0.18 * 11.02 * 2.74 * 9.09 *
Number of gait cycles 6.56 ± 2.01 5.92 ± 1.49 232,287 * 0.19 * 0.17 * 0.18 * 10.71 * 2.96 * 7.19 *
Mean stride velocity (cm/s) 94.47 ± 19.24 101.89 ± 17.61 180,628 * −0.19 * −0.20 * −0.18 * 10.19 * 3.31 * 7.17 *
Number of steps 13.60 ± 4.01 12.34 ± 2.97 232,030 * 0.18 * 0.16 * 0.16 * 10.17 * 2.90 * 6.78 *
Walk time (s) 9.05 ± 3.86 7.90 ± 3.01 232,167.5 * 0.19 * 0.19 * 0.19 * 8.99 * 2.75 * 6.64 *
Return from turn time (s) 5.27 ± 2.42 4.67 ± 2.16 229,265 * 0.18 * 0.22 * 0.16 * 6.63 * 2.41 * 4.56 *
Time to Sit (s) 1.83 ± 1.75 2.30 ± 1.42 188,460.5 * 6.07 * 2.38 * 5.15 *
CV Z-axis ang. vel. (%) 4.46 ± 1.18 4.55 ± 1.13 192,059 * −0.11 * −0.16 * −0.11 * 5.46 * 6.89 * 2.95 *
CV X-axis ang. vel. (%) 4.47 ± 1.18 4.56 ± 1.14 194,051 * −0.10 * −0.15 * −0.09 * 5.36 * 6.90 * 2.96 *
CV Y-axis ang. vel. (%) 4.44 ± 1.18 4.50 ± 1.12 202,533 −0.04 −0.08 −0.03 4.97 * 6.36 * 2.80 *
Number of strides in turn 2.57 ± 0.99 2.35 ± 0.82 222,415.5 * 0.12 * 0.13 * 0.09 * 4.93 * 1.47 3.56 *
Min Y-axis ang. vel. × Height (deg·m/s) −369.35 ± 86.63 −380.76 ± 85.97 215,481 0.09 * 0.06 0.10 * 4.77 * 1.25 4.07 *
Min Z-axis ang. vel. x Height (deg·m/s) −292.71 ± 113.61 −330.12 ± 127.30 230,349 * 0.16 * 0.05 0.17 * 4.44 * 0.12 4.84 *
CV stride velocity (%) 3.51 ± 0.93 3.51 ± 0.86 214,948 0.00 0.02 0.00 4.41 * 6.18 * 2.90 *
Magnitude mean at mid-swing points (deg/s) 276.85 ± 60.13 282.06 ± 50.28 202,768 −0.06 * −0.07 −0.10 * 4.21 * 1.47 3.53 *
Max Y-axis ang. vel. × Height (deg·m/s) 602.28 ± 112.62 613.78 ± 111.34 201,741 −0.08 * −0.05 −0.09 * 3.99 * 0.99 3.64 *
Min Y-axis ang. vel. (deg/s) −226.12 ± 53.33 −228.01 ± 49.32 209,191 0.05 0.03 0.08 * 3.90 * 1.12 3.30 *
Turning time (s) 3.20 ± 1.54 2.86 ± 1.55 225,713 * 0.15 * 0.18 0.13 * 3.82 * 1.24 3.17 *
Min Z-axis ang. vel. (deg/s) −178.46 ± 67.06 −197.32 ± 74.50 227,152 * 0.13 * 0.04 0.17 * 3.49 * 0.10 4.34 *
Mean X-axis ang. vel. (deg/s) 47.61 ± 18.02 47.69 ± 17.86 207,329 −0.02 −0.01 −0.04 3.19 * 0.83 3.07 *
Mean single support 0.39 ± 0.05 0.40 ± 0.05 192,517 * −0.11 * −0.08 −0.11 3.14 * 1.17 2.29 *
Cadence (steps/min) 94.55 ± 15.54 97.11 ± 14.24 198,692 * −0.09 * −0.11 −0.12 3.13 * 1.70 3.05 *
Min X-axis ang. vel. × Height (deg·m/s) −705.10 ± 213.10 −740.84 ± 206.64 219,102 * 0.07 * 0.04 0.09 3.12 * 0.93 3.08 *
CV stride length (%) 3.09 ± 0.85 3.02 ± 0.81 214,948 −0.01 0.00 0.01 3.10 * 3.45 * 2.54 *
Mean X-axis ang. vel. × Height (deg·m/s) 77.82 ± 29.63 79.65 ± 30.35 203,230 −0.04 −0.02 −0.05 3.07 * 0.77 3.17 *
Max Y-axis ang. vel. (deg/s) 368.67 ± 68.29 367.82 ± 64.97 210,123 −0.02 −0.02 −0.06 3.00 * 0.83 2.68 *
Time to stand (s) 1.60 ± 1.52 1.17 ± 1.01 157,907.5 * 2.99 * 2.65 * 2.01
Mean double support 0.23 ± 0.09 0.22 ± 0.07 220,289 * 0.10 * 0.10 0.10 2.88 * 0.93 2.53
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Table A2. Cont.

Mann–Whitney Spearman Anova

Parameter Name Faller
(Mean ± Std)

Non-Faller
(Mean ± Std) Rank Sum ρ(All) ρ(M) ρ(F) F(All) F(M) F(F)

Single support variability (%) 2.48 ± 0.81 2.41 ± 0.80 215,286 −0.01 0.00 −0.02 2.83 * 2.10 2.50 *
Max Z-axis ang. vel. (deg/s) 228.29 ± 78.44 219.95 ± 77.33 215,623 0.00 0.00 −0.01 2.75 * 2.28 * 2.13
Min X-axis ang. vel. (deg/s) −431.13 ± 127.99 −444.08 ± 122.74 214,101 0.04 0.02 0.08 * 2.67 * 0.83 2.64 *
Double support variability (%) 3.40 ± 0.96 3.37 ± 0.94 212,048 −0.02 −0.04 0.00 2.61 * 3.69 * 1.89
Max Z-axis ang. vel. x Height (deg·m/s) 373.75 ± 131.33 367.73 ± 133.24 211,979 −0.03 −0.01 −0.02 2.61 * 2.27 * 2.35 *
Mean Y-axis ang. vel. × Height (deg·m/s) 94.53 ± 33.82 96.87 ± 34.56 204,249 −0.05 −0.04 −0.05 2.44 * 0.76 2.45 *
Max X-axis ang. vel. × Height (deg·m/s) 697.81 ± 229.74 737.93 ± 223.70 194,870 * −0.09 * −0.08 −0.11 * 2.39 * 0.46 2.30 *
Swing time variability (%) 2.59 ± 0.88 2.57 ± 0.84 209,418 −0.03 −0.02 −0.04 2.37 * 3.24 1.69
Mean stance time (s) 0.81 ± 0.18 0.78 ± 0.16 216,963 * 0.08 * 0.10 0.09 * 2.27 * 1.31 2.34 *
Mean Y-axis ang. vel. (deg/s) 57.90 ± 20.70 58.05 ± 20.50 208,277 −0.02 −0.03 −0.03 2.18 0.76 2.18 *
Stride length asymmetry (%) 2.09 ± 32.69 2.70 ± 20.31 194,835 2.07 1.28 1.24
Stride velocity asymmetry (%) 1.85 ± 32.40 3.68 ± 17.72 209,999 0.06 1.87 1.24 1.20
Mean swing time (s) 0.49 ± 0.07 0.50 ± 0.06 195,354 * −0.07 * 0.01 −0.05 1.78 0.32 1.91
Max X-axis ang. vel. (deg/s) 427.09 ± 140.18 442.08 ± 130.96 198,781 * −0.07 * −0.07 −0.09 * 1.77 0.33 1.94
Mean Z-axis ang. vel. (deg/s) 28.22 ± 12.35 26.72 ± 11.02 216,017 0.01 0.08 0.00 1.71 1.93 2.03
Mean stride time (s) 1.30 ± 0.20 1.28 ± 0.18 212,414.5 0.05 0.10 0.07 1.67 1.41 1.79
Stance time variability (%) 3.29 ± 0.99 3.23 ± 0.99 213,340 −0.01 0.01 0.00 1.58 1.98 1.43
Mean Z-axis ang. vel. x Height (deg·m/s) 46.29 ± 20.84 44.75 ± 18.99 212,131 −0.01 0.07 −0.01 1.45 1.65 2.16
Stride time variability (%) 2.90 ± 0.93 2.79 ± 0.92 217,195 * 0.01 0.03 0.01 1.42 2.19 1.53
Walk ratio 1.08 ± 0.39 1.17 ± 0.52 197,637 * −0.02 0.03 −0.03 1.40 2.92 * 0.96
Step time asymmetry (%) 1.09 ± 25.88 0.32 ± 22.55 206,480 0.06 * 0.00 0.09 * 1.31 1.43 1.47
Mean step time (s) 0.61 ± 0.13 0.60 ± 0.09 206,948 0.02 0.00 0.06 1.25 0.38 1.56
Step time variability (%) 2.69 ± 0.96 2.61 ± 0.88 214,216 −0.01 −0.05 0.01 1.17 2.11 1.15
Turn magnitude (deg/s) 87.47 ± 83.66 87.56 ± 86.78 208,458 0.02 −0.08 0.06 1.14 1.08 1.10
Swing time asymmetry (%) −1.16 ± 18.25 −1.42 ± 14.54 208,523 0.02 0.03 0.01 0.98 0.36 0.84
Stride time asymmetry (%) 0.62 ± 17.91 −1.96 ± 15.32 216,223.5 0.04 0.09 0.03 0.83 1.16 0.33
Stance time asymmetry (%) 1.23 ± 27.91 −1.77 ± 24.76 213,976.5 0.02 0.08 0.01 0.81 0.78 0.67
Magnitude range at mid-swing points (deg/s) 225.93 ± 64.89 222.08 ± 66.36 212,668 0.01 −0.02 0.00 0.62 0.68 0.63
Ratio strides/turning time 0.88 ± 0.35 0.88 ± 0.30 204,135.5 −0.04 −0.04 −0.07 0.53 0.51 0.51
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Table A3. Statistical analysis of QTUG parameters with falls counts for PD1 dataset. M and F refer to population stratified by gender. U refers to Mann–Whitney
rank sum statistic, ρ refers to Spearman’s correlation coefficient, while F refers to F-score from 1-way Anova test. Statistically significant differences (p < 0.05) are
indicated by *.

Mann–Whitney Spearman Anova

Parameter Name Faller
(Mean ± std)

Non-Faller
(Mean ± std) U ρ(All) P(M) ρ(F) F(All) F (M) F(F)

Mean step time (s) 0.62 ± 0.09 0.72 ± 0.10 42 −0.43 −0.19 −0.50 4.07 * 2.04 1.41
Mean stride length (cm/s) 107.00 ± 24.34 126.57 ± 22.17 48 −0.31 −0.05 −0.30 3.51 1.66 1.66
Stride time variability (%) 33.37 ± 12.92 22.63 ± 11.32 59 0.61 * 0.26 0.60 3.10 0.60 200.48 *
Walk ratio 1.09 ± 0.19 1.42 ± 0.26 42 −0.62 * −0.64 * −0.20 2.99 1.49 7.32
CV stride velocity (%) 47.41 ± 9.20 46.47 ± 4.89 51 0.10 −0.27 0.80 2.36 1.62 1.25
CV Z-axis ang. vel. (%) 107.12 ± 8.53 106.16 ± 8.00 53 −0.02 0.07 0.70 2.15 1.17 0.96
Mean swing time (s) 0.49 ± 0.05 0.52 ± 0.10 46 −0.44 −0.37 0.00 2.14 1.87 43.86 *
Double support variability (%) 55.00 ± 23.11 34.25 ± 23.59 59 0.53 * 0.45 0.00 2.00 2.86 6.00
Turn magnitude (deg/s) 64.87 ± 79.45 93.92 ± 121.88 52 −0.20 0.19 −1.00 1.90 9.22 29.05 *
Mean stride time (s) 1.32 ± 0.15 1.47 ± 0.20 43 −0.21 −0.19 −0.30 1.90 1.37 2.18
Step time asymmetry (%) −24.30 ± 6.29 14.16 ± 22.16 36 * −0.47 −0.58 −0.60 1.71 1.14 74.89 *
CV Y-axis ang. vel. (%) 104.85 ± 7.00 105.60 ± 2.95 47 −0.19 −0.49 0.70 1.59 1.21 0.63
Swing time variability (%) 19.06 ± 9.50 31.03 ± 14.75 45 −0.54 * −0.48 −0.90 1.46 0.74 0.57
Min X-axis ang. vel. × Height (deg·m/s) −656.15 ± 121.89 −730.02 ± 178.35 54 0.06 −0.09 −0.10 1.44 0.69 0.28
Time to Sit (s) 1.90 ± 0.62 2.15 ± 0.89 48 −0.37 −0.41 0.70 1.39 1.18 0.81
Single support variability (%) 18.02 ± 6.83 19.3 ± 27.26 51 0.09 0.06 0.10 1.36 3.13 4.60
CV stride length (%) 36.08 ± 8.45 33.73 ± 15.52 52 0.12 −0.09 0.50 1.22 0.68 1.75
Stance time variability (%) 42.50 ± 20.31 40.15 ± 6.90 56 0.46 0.30 0.50 1.12 2.72 0.53
Mean stance time (s) 0.82 ± 0.15 0.95 ± 0.18 45 −0.09 −0.01 −0.20 1.03 0.92 0.32
Stride time asymmetry (%) −1.49 ± 12.09 −2.15 ± 5.26 50 −0.09 −0.02 0.10 1.03 3.91 0.44
Min X-axis ang. vel. (deg/s) −378.73 ± 61.07 −422.86 ± 79.94 57 0.05 −0.03 0.30 1.02 0.67 0.74
Step time variability (%) 29.14 ± 13.03 25.62 ± 18.92 56 0.32 0.16 0.70 1.01 0.76 0.72
Mean stride velocity (cm/s) 80.55 ± 9.46 93.03 ± 13.17 46 −0.36 −0.28 −0.30 0.97 0.39 2.77
Mean double support 0.22 ± 0.05 0.29 ± 0.09 46 −0.04 −0.14 −0.20 0.95 0.62 5.27
Mean Z-axis ang. vel. (deg/s) 42.11 ± 8.15 43.37 ± 2.32 53 −0.04 −0.02 −0.10 0.95 1.28 0.73
Number of steps 13.63 ± 3.12 12.25 ± 3.63 55 0.20 0.03 −0.15 0.90 0.11 5.33
Number of gait cycles 6.63 ± 1.49 6.00 ± 1.87 55.5 0.20 0.07 −0.26 0.83 0.13 15.20
Cadence (steps/min) 91.50 ± 8.82 85.42 ± 8.77 58 0.13 −0.11 0.10 0.80 0.68 0.40
Magnitude mean at mid-swing points (deg/s) 220.23 ± 23.72 278.60 ± 47.40 40 * −0.42 −0.39 −0.70 0.71 0.28 5.26
Mean Z-axis ang. vel. × Height (deg·m/s) 72.50 ± 13.64 74.14 ± 3.73 49 −0.13 0.06 0.30 0.68 1.01 0.97
Mean Y-axis ang. vel. × Height (deg·m/s) 100.46 ± 11.40 118.65 ± 8.36 40 * −0.49 −0.31 −0.70 0.66 0.05 5.96
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Table A3. Cont.

Mann–Whitney Spearman Anova

Parameter Name Faller
(Mean ± std)

Non-Faller
(Mean ± std) U ρ(All) P(M) ρ(F) F(All) F (M) F(F)

Swing time asymmetry (%) −8.30 ± 9.65 9.29 ± 26.40 45 −0.18 −0.09 −0.70 0.60 0.52 15.59
Stride length asymmetry (%) 13.36 ± 21.82 4.65 ± 10.97 55 0.37 0.37 0.30 0.59 0.45 0.91
Min Z-axis ang. vel. (deg/s) −212.79 ± 41.74 −211.98 ± 47.11 53 0.04 −0.15 0.10 0.58 0.53 4.90
Number of strides in turn 2.00 ± 0.50 2.25 ± 1.09 51 0.00 −0.24 0.71 0.57 0.44 0.20
Mean Y-axis ang. vel. (deg/s) 58.07 ± 5.23 69.93 ± 10.07 41 −0.50 −0.37 −0.90 0.54 0.08 17.40
Max X-axis ang. vel. (deg/s) 397.95 ± 136.75 329.90 ± 139.25 57 0.33 0.18 0.70 0.52 0.30 0.38
Max X-axis ang. vel. × Height (deg·m/s) 690.15 ± 241.87 574.03 ± 278.02 56 0.31 0.20 0.70 0.51 0.31 0.39
Max Y-axis ang. vel. × Height (deg·m/s) 522.79 ± 75.12 621.04 ± 143.92 47 −0.13 −0.03 −0.30 0.51 0.35 3.75
Walk time (s) 8.94 ± 1.84 8.53 ± 2.10 54 0.18 0.10 −0.30 0.50 0.02 5.61
Turn mid-point time (s) 5.99 ± 1.43 4.84 ± 1.40 59. 0.38 0.36 0.20 0.49 0.03 5.27
Magnitude range at mid-swing points (deg/s) 199.31 ± 40.43 198.76 ± 119.76 54 0.30 0.28 0.00 0.48 0.07 5.69
Return from turn time (s) 6.34 ± 0.87 6.55 ± 0.88 48 −0.06 −0.16 0.00 0.47 0.33 7.80
Ratio strides/turning time 0.67 ± 0.12 0.78 ± 0.43 54 −0.08 −0.19 0.30 0.46 0.24 0.10
Min Z-axis ang. vel. × Height (deg·m/s) −367.52 ± 74.68 −363.26 ± 87.86 51 0.01 −0.15 0.10 0.45 0.42 6.45
Max Z-axis ang. vel. × Height (deg·m/s) 385.15 ± 86.89 434.88 ± 34.78 45 −0.21 −0.18 0.40 0.42 1.49 1.16
Min Y-axis ang. vel. × Height (deg·m/s) −343.45 ± 72.88 −437.32 ± 119.89 58 0.19 −0.10 0.50 0.41 0.31 3.56
Turning time (s) 2.99 ± 0.54 3.00 ± 0.54 52 0.17 −0.09 0.50 0.41 0.23 0.90
Min Y-axis ang. vel. (deg/s) −198.00 ± 38.24 −260.72 ± 90.53 58 0.11 −0.07 0.50 0.35 0.33 6.17
Time to stand (s) 2.07 ± 0.69 1.17 ± 0.31 63.5 0.52 * 0.48 0.72 0.35 0.18 0.74
Max Z-axis ang. vel. (deg/s) 223.24 ± 50.55 254.43 ± 21.03 45 −0.21 −0.18 0.00 0.33 1.55 1.87
TUG test time (s) 12.33 ± 2.11 11.39 ± 2.06 57 0.31 0.24 0.20 0.31 0.12 8.49
Max Y-axis ang. vel. (deg/s) 302.00 ± 37.09 368.15 ± 109.42 46 −0.08 −0.14 −0.30 0.25 0.23 6.58
Mean single support 0.39 ± 0.02 0.37 ± 0.06 57 −0.02 0.03 0.10 0.25 0.13 8.85
Stride velocity asymmetry (%) 10.85 ± 17.77 8.50 ± 18.30 54 0.08 −0.10 0.30 0.13 0.42 1.07
CV X-axis ang. vel. (%) 115.90 ± 8.89 117.16 ± 24.26 59 0.17 0.20 0.80 0.12 0.07 2.78
Stance time asymmetry (%) −0.06 ± 18.66 −6.24 ± 22.11 57 0.13 0.35 0.80 0.09 0.93 2.74
Mean X-axis ang. vel. (deg/s) 54.77 ± 9.19 53.40 ± 6.21 52 0.10 0.24 0.00 0.09 0.13 0.09
Mean X-axis ang. vel. × Height (deg·m/s) 94.50 ± 15.62 90.80 ± 4.62 53 0.12 0.27 0.00 0.09 0.12 0.02
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Appendix B.3. PD2 Dataset

Analysis of the five mobility risk scores with falls counts for the PD2 dataset found
non-significant associations between each mobility risk score and the number of falls
as follows:

• Speed score, F = 2.09, p = 0.15
• Turn score, F = 0.71, p-value: 0.50
• Transfer score, F = 2.14, p = 0.14
• Variability score, F = 1.3, p = 0.29
• Symmetry score, F = 2.41, p = 0.11

Figure A1 below illustrates the association of each mobility risk score with falls
counts for the PD2 dataset. Note: falls count data were only available for the count
values 0, 1 and 3.

Sensors 2022, 22, 54 19 of 27 
 

 

Figure A1 below illustrates the association of each mobility risk score with falls 
counts for the PD2 dataset. Note: falls count data were only available for the count values 
0, 1 and 3. 

 
Figure A1. Association of mobility risk scores with number of falls for PD2 dataset. Boxplots for 
each mobility score are shown (Top row: Speed score, Turn score, Transfer score; Bottom row: 
Variability score, Symmetry score). 

Table A4 below details results for a battery of statistical tests conducted on QTUG 
parameters calculated from the PD2 dataset (exercise intervention study of a sample of 
Parkinson’s Disease patients) [44]. Analyses examined statistical differences in each meas-
ure between fallers and non-fallers, as well as the relationship between each measure and 
the number of falls reported by participants. Significant associations were found between 
falls counts and a number of gait and mobility parameters. 

Table A4. Statistical analysis of QTUG parameters with falls counts for PD2 dataset. M and F refer 
to population stratified by gender. U refers to Mann–Whitney rank sum statistic, ρ refers to Spear-
man’s correlation coefficient, while F refers to F-score from 1-way Anova test. Statistically signifi-
cant differences (p < 0.05) are indicated by *. 

 Mann–Whitney Spearman Anova 

Parameter Name  
Faller (Mean ± 

std) 
Non-Faller (Mean ± 

std) U ρ (All) Ρ (M) ρ (F) F (All) F (M) F (F) 

Min X-axis ang. vel. (deg/s) −547.81 ± 150.96 −565.14 ± 93.27 119 0.07 0.44 −0.33 2.89 6.09 * 1.43 
Ratio strides/turning time 1.36 ± 0.24 1.10 ± 0.29 142.5 0.41 * 0.39 0.40 2.81 2.87 1.08 
Number of gait cycles 6.88 ± 1.45 5.39 ± 1.38 144.5 * 0.42 * 0.43 0.47 2.75 4.96 * 0.87 
Min X-axis ang. vel. × Height (deg.m/s) −927.44 ± 242.36 −972.68 ± 174.56 122 0.11 0.38 −0.33 2.66 4.28 1.60 
Mean stride length (cm/s) 112.10 ± 12.10 126.20 ± 14.58 71 * −0.41 * −0.22 −0.60 2.55 1.32 1.63 
Number of steps 14.13 ± 3.30 11.28 ± 2.66 143.5 * 0.41 * 0.41 0.52 2.46 5.18 * 1.05 
Time to stand (s) 1.37 ± 0.37 1.00 ± 0.41 148 * 0.45 * 0.44 0.53 2.14 3.57 0.91 
Stance time variability (%) 31.96 ± 16.77 41.87 ± 17.52 85 −0.28 −0.03 −0.40 1.73 0.02 0.59 
Time to Sit (s) 2.10 ± 1.87 1.40 ± 0.46 118.5 0.08 0.60 * −0.32 1.67 10.53 * 0.82 
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score, Symmetry score).

Table A4 below details results for a battery of statistical tests conducted on QTUG
parameters calculated from the PD2 dataset (exercise intervention study of a sample
of Parkinson’s Disease patients) [44]. Analyses examined statistical differences in each
measure between fallers and non-fallers, as well as the relationship between each measure
and the number of falls reported by participants. Significant associations were found
between falls counts and a number of gait and mobility parameters.
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Table A4. Statistical analysis of QTUG parameters with falls counts for PD2 dataset. M and F refer to population stratified by gender. U refers to Mann–Whitney
rank sum statistic, ρ refers to Spearman’s correlation coefficient, while F refers to F-score from 1-way Anova test. Statistically significant differences (p < 0.05) are
indicated by *.

Mann–Whitney Spearman Anova

Parameter Name Faller
(Mean ± std)

Non-Faller
(Mean ± std) U ρ (All) P (M) ρ (F) F (All) F (M) F (F)

Min X-axis ang. vel. (deg/s) −547.81 ± 150.96 −565.14 ± 93.27 119 0.07 0.44 −0.33 2.89 6.09 * 1.43
Ratio strides/turning time 1.36 ± 0.24 1.10 ± 0.29 142.5 0.41 * 0.39 0.40 2.81 2.87 1.08
Number of gait cycles 6.88 ± 1.45 5.39 ± 1.38 144.5 * 0.42 * 0.43 0.47 2.75 4.96 * 0.87
Min X-axis ang. vel. × Height (deg·m/s) −927.44 ± 242.36 −972.68 ± 174.56 122 0.11 0.38 −0.33 2.66 4.28 1.60
Mean stride length (cm/s) 112.10 ± 12.10 126.20 ± 14.58 71 * −0.41 * −0.22 −0.60 2.55 1.32 1.63
Number of steps 14.13 ± 3.30 11.28 ± 2.66 143.5 * 0.41 * 0.41 0.52 2.46 5.18 * 1.05
Time to stand (s) 1.37 ± 0.37 1.00 ± 0.41 148 * 0.45 * 0.44 0.53 2.14 3.57 0.91
Stance time variability (%) 31.96 ± 16.77 41.87 ± 17.52 85 −0.28 −0.03 −0.40 1.73 0.02 0.59
Time to Sit (s) 2.10 ± 1.87 1.40 ± 0.46 118.5 0.08 0.60 * −0.32 1.67 10.53 * 0.82
Turn mid-point time (s) 4.38 ± 1.35 3.47 ± 0.98 139 0.35 0.47 0.43 1.67 6.59 * 1.21
TUG test time (s) 10.04 ± 3.90 7.95 ± 1.93 137 0.32 0.54 * 0.43 1.63 9.33 * 0.35
Cadence (steps/min) 124.28 ± 14.23 114.54 ± 13.54 138 0.35 0.09 0.53 1.57 0.00 0.32
Step time asymmetry (%) −5.28 ± 8.07 4.56 ± 15.91 85 −0.23 −0.44 0.16 1.52 2.77 0.17
Double support variability (%) 44.87 ± 22.83 59.47 ± 24.87 80 −0.06 1.44 0.00 1.21
Return from turn time (s) 5.66 ± 2.73 4.48 ± 1.05 124 0.16 0.54 * 0.00 1.43 8.86 * 0.04
Single support variability (%) 14.63 ± 6.29 15.72 ± 8.02 105 −0.07 0.09 −0.33 1.40 0.27 1.18
Number of strides in turn 2.75 ± 0.66 2.28 ± 0.65 131.5 0.30 0.51 * 0.30 1.36 5.41 * 1.00
Min Z-axis ang. vel. × Height (deg·m/s) −344.60 ± 89.50 −428.51 ± 142.38 133 0.26 0.54 * −0.05 1.35 4.26 0.09
Mean stride time (s) 0.99 ± 0.13 1.09 ± 0.15 75 −0.38 −0.16 −0.48 1.29 0.05 0.23
Min Z-axis ang. vel. (deg/s) −204.88 ± 60.36 −248.61 ± 78.34 133 0.25 0.63 * −0.05 1.20 5.03 * 0.04
Mean Z-axis ang. vel. × Height (deg·m/s) 58.29 ± 21.38 73.53 ± 22.58 79 −0.32 −0.60 * −0.09 1.16 5.47 * 0.23
CV Y-axis ang. vel. (%) 102.25 ± 12.24 99.47 ± 4.61 111 0.00 0.66 * −0.48 1.09 26.42 * 0.33
Max X-axis ang. vel. (deg/s) 513.96 ± 130.46 521.80 ± 115.13 108 0.04 −0.13 0.26 1.08 0.24 0.99
Mean stance time (s) 0.54 ± 0.12 0.63 ± 0.14 84 −0.27 −0.06 −0.17 1.05 0.12 0.06
Max Y-axis ang. vel. × Height (deg·m/s) 695.89 ± 97.81 754.29 ± 87.17 87 −0.24 −0.28 −0.21 1.02 3.30 0.31
Mean Z-axis ang. vel. (deg/s) 34.69 ± 13.72 42.57 ± 12.00 81 −0.30 −0.66 * −0.02 0.97 6.72 * 0.28
Mean Y-axis ang. vel. × Height (deg·m/s) 151.04 ± 34.21 164.50 ± 22.61 97 −0.10 −0.54 * 0.00 0.95 7.95 * 0.00
Walk time (s) 6.97 ± 2.05 5.96 ± 1.43 128 0.23 0.41 0.36 0.94 5.11 * 0.36
Mean step time (s) 0.47 ± 0.05 0.50 ± 0.05 83 −0.28 −0.03 −0.29 0.94 0.01 0.45
Mean X-axis ang. vel. × Height (deg·m/s) 123.93 ± 36.45 134.50 ± 26.58 95 −0.11 −0.57 * 0.24 0.91 6.50 * 0.08
Stride time variability (%) 18.36 ± 10.00 24.30 ± 12.92 93 −0.19 −0.03 −0.09 0.90 0.04 0.12
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Table A4. Cont.

Mann–Whitney Spearman Anova

Parameter Name Faller
(Mean ± std)

Non-Faller
(Mean ± std) U ρ (All) P (M) ρ (F) F (All) F (M) F (F)

Max X-axis ang. vel. × Height (deg·m/s) 871.44 ± 218.31 900.28 ± 220.22 100 −0.05 −0.09 0.26 0.88 0.12 1.13
Mean single support 0.47 ± 0.06 0.44 ± 0.05 125 0.17 0.06 −0.14 0.82 0.11 0.35
Mean X-axis ang. vel. (deg/s) 73.60 ± 23.74 78.21 ± 14.57 99 −0.07 −0.60 * 0.24 0.77 9.83 * 0.03
Walk ratio 1.26 ± 0.28 1.32 ± 0.20 87 −0.26 0.09 −0.77 * 0.76 0.63 2.77
Mean stride velocity (cm/s) 110.73 ± 11.71 118.38 ± 15.12 86 −0.24 −0.31 −0.60 0.75 1.80 1.66
Max Y-axis ang. vel. (deg/s) 410.66 ± 64.62 439.30 ± 46.89 100 −0.10 −0.41 −0.28 0.73 6.76 * 0.61
Step time variability (%) 14.55 ± 3.67 18.03 ± 7.57 93 −0.16 −0.16 0.05 0.69 0.72 0.04
Mean Y-axis ang. vel. (deg/s) 89.57 ± 22.92 95.83 ± 12.59 102 −0.05 −0.57 * −0.16 0.67 12.42 * 0.05
Magnitude range at mid-swing points (deg/s) 231.85 ± 38.68 262.60 ± 68.58 92 −0.17 −0.16 −0.38 0.63 0.37 0.89
Max Z-axis ang. vel. x Height (deg·m/s) 370.38 ± 138.85 439.48 ± 145.56 85 −0.25 −0.54 * −0.09 0.57 4.23 0.48
Mean swing time (s) 0.45 ± 0.05 0.46 ± 0.05 92 −0.20 0.06 −0.47 0.51 0.04 0.97
Swing time asymmetry (%) −1.15 ± 6.95 5.01 ± 15.92 93 −0.17 −0.25 −0.12 0.50 0.76 0.04
Mean double support 0.11 ± 0.06 0.15 ± 0.08 94 −0.16 −0.03 −0.10 0.45 0.02 0.11
Max Z-axis ang. vel. (deg/s) 220.89 ± 90.20 254.29 ± 77.16 88 −0.22 −0.57 * 0.05 0.42 5.17 * 0.54
Min Y-axis ang. vel. × Height (deg·m/s) −448.05 ± 67.60 −505.38 ± 184.20 119 0.11 0.06 0.26 0.34 0.26 0.62
Min Y-axis ang. vel. (deg/s) −263.50 ± 40.48 −293.17 ± 98.47 119 0.11 0.06 0.46 0.32 0.41 0.90
CV X-axis ang. vel. (%) 112.51 ± 11.99 114.59 ± 8.75 107 −0.04 0.25 −0.12 0.25 0.58 0.01
CV Z-axis ang. vel. (%) 114.45 ± 10.74 116.44 ± 10.80 97 −0.10 −0.31 −0.03 0.25 0.43 0.13
Swing time variability (%) 17.52 ± 7.16 19.20 ± 9.93 101 −0.09 0.09 −0.38 0.25 0.02 0.46
Magnitude mean at mid-swing points (deg/s) 319.85 ± 61.43 331.20 ± 33.43 111 0.03 −0.35 −0.09 0.22 5.54 * 0.31
Stride length asymmetry (%) −8.04 ± 14.32 −8.47 ± 19.78 112 0.03 −0.22 0.13 0.21 0.75 1.49
Turning time (s) 2.05 ± 0.41 2.10 ± 0.48 108 −0.02 0.28 0.07 0.16 0.67 0.06
CV stride velocity (%) 39.37 ± 8.67 38.05 ± 12.71 119 0.11 0.31 −0.15 0.11 0.63 0.06
Stride velocity asymmetry (%) −5.78 ± 11.33 −3.46 ± 17.00 102 −0.09 −0.09 −0.16 0.10 0.47 0.17
Turn magnitude (deg/s) 141.09 ± 143.28 135.91 ± 104.43 101 −0.09 −0.44 0.05 0.09 2.61 0.37
Stance time asymmetry (%) −5.88 ± 22.93 −10.84 ± 29.75 116 0.09 0.09 0.05 0.09 0.25 0.09
CV stride length (%) 31.76 ± 10.14 34.03 ± 13.32 106 −0.01 0.25 −0.13 0.08 0.41 1.05
Stride time asymmetry (%) −4.09 ± 12.40 −5.59 ± 16.93 111 0.03 0.06 −0.07 0.03 0.06 0.08
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Appendix C. Model Training Performance

Training set results for Poisson regression models for the TD dataset are detailed in
Table A5 below. The results are reported with outliers removed (number of falls >10),
resulting in three samples being excluded from the training sets.

Table A5. Training set results for each Poisson regression model, selected using an elastic net
procedure. Outliers (NumFalls > 10) are removed to improve model fit.

All N R2 RMSE ρ #Features

TD-All 1015 0.08 0.46 0.29 16
TD-Fallers 347 0.03 0.51 0.19 17
TD-PD 29 0.25 0.57 0.62 0
TD-Fallers-PD 19 0.04 0.69 0.33 0
TD-NoPD 986 0.08 0.45 0.30 17
TD-Fallers-NoPD 328 0.04 0.49 0.21 19
Ensemble-TD -PD 29 0.07 0.63 0.24 2

Male N R2 RMSE ρ #Features

TD -All 344 0.00 0.46 0.29 3
TD-Fallers 86 0.02 0.58 0.27 5
TD-PD 18 0.04 0.49 0.64 3
TD-Fallers-PD 11 0.10 0.42 0.83 10
TD-NoPD 326 0.11 0.42 0.38 19
TD-Fallers-NoPD 75 0.09 0.57 0.33 12
Ensemble-TD-PD 18 0.04 0.49 0.09 2

Female N R2 RMSE ρ #Features

TD-All 671 0.07 0.47 0.27 11
TD-Fallers 261 0.08 0.47 0.28 17
TD-PD 11 0.03 0.78 0.76 3
TD-Fallers-PD 8 0.63 0.52 0.85 19
TD-NoPD 660 0.05 0.46 0.26 9
TD-Fallers-NoPD 253 0.08 0.44 0.27 16
Ensemble-TD-PD 18 0.23 0.70 0.50 2

Figure A2 below shows the elastic net trace and deviance plots for TD-All model fit.
The selected model chosen was for the lambda value yielding the minimum standard error
(SE) for a minimum model size of 3 and a maximum model size of 20.
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Figure A3 below shows the predicted falls count values against the actual number of
falls for the selected Poisson elastic net model trained using TD-All dataset.
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Figure A3. Poisson model fit with elastic net to TD training set data (TD-All model). Data are shown
for both the all data and gender stratified (male/female) models.

Appendix D. Model Coefficients

Regression coefficients and the selected feature for each model trained on TD data are
detailed in the tables below (Tables A6–A12). Each set of model coefficients is identified by
the TD data subset used to train it.

Table A6. TD-All falls count model coefficients. Beta refers to Poisson regression coefficients, chosen
through an elastic net procedure.

All Male Female

Beta Features Beta Features Beta Features

0.268767 Intercept −1.43612 Intercept −0.48572 Intercept
−0.71395 single_support 0.004605 TurnTime −0.02719 single_support
−0.00214 swing_CV −0.00196 AV_AP_CV −0.00117 swing_CV
−0.01688 AV_ML_CV −0.00319 AV_V_CV 0.035354 TurnTime
0.049997 TurnTime 0.001368 TurnEndTime
−0.02888 AV_AP_CV −0.00102 AV_AP_CV
−0.03023 AV_V_CV −0.00245 AV_V_CV

9.38 × 10−5 AV_V_min 0.000345 AV_V_min
−0.00293 MeanVelocity −0.00183 MeanVelocity
−0.00191 VelocityCV −0.00354 MeanStrideLen
−0.00544 MeanStrideLen 0.000317 AV_V_minByH
0.000265 AV_V_minByH 0.005656 ManualTUG
0.003158 ManualTUG
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Table A7. TD-Fallers falls count model coefficients. Beta refers to Poisson regression coefficients,
chosen through an elastic net procedure.

All Male Female

Beta Features Beta Features Beta Features

−0.61432 Intercept −0.81756 Intercept 0.678357 Intercept
−3.9 × 10−5 AV_ML_max 0.000941 GaitCycles −0.00501 single_support

0.000163 AV_ML_min −7.5 × 10−6 AV_mid_swing_mean −0.07407 single_support_CV
0.000448 GaitCycles −0.00058 AV_turn_mag −0.0037 swing_CV
−7 × 10−5 AV_mid_swing_mean −8 × 10−5 MeanVelocity −0.00023 Cadence

−0.00021 AV_turn_mag 0.00018 ManualTUG −4.4 Page: 23
× 10−5 AV_turn_mag

−0.00013 AV_V_max −0.00302 AV_V_mean
−0.00091 MeanVelocity −0.00041 AV_V_max
−0.00084 MeanStrideLen 0.000281 AV_V_min
−0.00016 AV_ML_maxByH −0.02218 VelocityCV
0.000205 AV_ML_minByH −0.00524 MeanStrideLen
−6.5 × 10−5 AV_V_maxByH −0.03254 StrideLenCV

0.007641 ManualTUG −3.3 × 10−5 AV_ML_maxByH
0.000551 AV_ML_minByH
−0.0028 AV_V_meanByH
−0.00051 AV_V_maxByH
0.000429 AV_V_minByH
0.007744 ManualTUG

Table A8. TD-PD falls count model coefficients. Beta refers to Poisson regression coefficients, chosen
through an elastic net procedure.

All Male Female

Beta Features Beta Features Beta Features

−1.34037 Intercept −0.9424 Intercept −0.01892 Intercept
−0.15412 single_support_CV 0.037872 stance_CV −3.2 × 10−5 AV_AP_max
0.009744 stance_CV 0.067785 swing_CV 0.010441 MeanTurningTime
0.113734 swing_CV 6.52 × 10−5 AV_ML_maxByH −4 × 10−5 AV_AP_maxByH
−0.07459 step_CV
0.001598 AV_ML_max
0.093939 AV_ML_CV
−0.00088 AV_turn_mag
−0.02979 TurnTime
0.081551 AV_AP_CV
−0.00035 AV_AP_mean
−0.00057 AV_AP_max
0.189167 AV_V_CV
−0.16128 StrideLenCV
0.055812 MeanStepsTurn

9.12 × 10−5 AV_ML_maxByH
−0.0004 AV_AP_meanByH
−0.00035 AV_AP_maxByH
−8.6 × 10−5 AV_V_maxByH



Sensors 2022, 22, 54 27 of 30

Table A9. TD-Fallers-PD falls count model coefficients. Beta refers to Poisson regression coefficients,
chosen through an elastic net procedure.

All Male Female

Beta Features Beta Features Beta Features

−2.00125 Intercept −1.3143 Intercept 0.241844 Intercept
0.316766 AV_V_CV −0.00523 single_support_CV 0.92493 double_support
0.000114 AV_ML_minByH 0.380233 swing −0.53451 single_support
0.000257 ManualTUG 0.095187 swing_CV −1.63885 swing

−0.00655 GaitCycles −0.14224 step_CV
−0.00101 StepNo 0.000438 AV_ML_min
0.001431 AV_V_CV 0.031803 GaitCycles

4.5 × 10−5 AV_V_max 0.00999 StepNo
−0.00066 MeanStepsTurn −0.00067 AV_AP_mean

4.82 × 10−5 AV_V_maxByH 0.070045 AV_V_CV
−0.00479 ManualTUG −0.00041 AV_V_mean

−0.00155 MeanStrideLen
0.1255 MeanTurningTime

0.078945 MeanStepsTurn
0.115859 MeanTurnRatio
−0.00015 AV_ML_meanByH
0.000433 AV_ML_minByH
−0.00052 AV_AP_meanByH
−1.4 × 10−5 AV_AP_maxByH
−0.00048 AV_V_meanByH

Table A10. TD-NoPD falls count model coefficients. Beta refers to Poisson regression coefficients,
chosen through an elastic net procedure.

All Male Female

Beta Features Beta Features Beta Features

0.065301385 Intercept −0.27568 Intercept −0.7974 Intercept
0.018407619 double_support −0.64365 single_support 0.000294 WalkTime
−0.636511776 single_support 0.012447 single_support_CV 0.001582 GaitCycles
−0.019776173 AV_ML_CV 0.106376 stance 0.027008 TurnTime
−0.000217534 Cadence 0.455945 stride 0.001196 TurnEndTime
0.051661245 TurnTime −0.07504 AV_ML_CV 0.000128 AV_V_min
−0.028394423 AV_AP_CV −0.00496 Cadence −0.00115 MeanVelocity
−0.030063354 AV_V_CV −0.00126 AV_turn_mag −0.00228 MeanStrideLen

1.30698 × 10−5 AV_V_min 0.05316 TurnTime 0.00015 AV_V_minByH
−0.00240226 MeanVelocity −0.08651 AV_AP_CV 0.003563 ManualTUG
−0.000603359 VelocityCV −0.0796 AV_V_CV
−0.005019106 MeanStrideLen 0.005054 AV_V_mean
0.000201194 AV_V_minByH 0.000411 AV_V_max
0.003828431 ManualTUG −0.0005 AV_V_min

−0.00456 MeanVelocity
−0.00429 MeanStrideLen
0.001651 AV_V_meanByH

4.84 × 10−5 AV_V_maxByH
−0.00022 AV_V_minByH
0.011925 ManualTUG
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Table A11. TD-Fallers-NoPD falls count model coefficients. Beta refers to Poisson regression coeffi-
cients, chosen through an elastic net procedure.

All Male Female

Beta Features Beta Features Beta Features

−0.360429 Intercept −0.58931 Intercept 0.636402 Intercept
−0.001329 stance_CV −0.52148 single_support −0.05248 single_support_CV
−5.32 × 10−5 AV_ML_max −0.1655 swing −0.00303 stride_CV
2.381 × 10−5 AV_ML_min 0.002619 WalkTime −0.00172 Cadence
−0.003735 AV_ML_CV 0.030711 GaitCycles 0.000913 TurnEndTime
0.001525 WalkTime 0.01269 StepNo −0.00126 AV_V_mean

0.0003581 GaitCycles −0.00046 AV_mid_swing_mean −0.0004 AV_V_max
−0.000813 Cadence −0.00163 AV_turn_mag 0.000391 AV_V_min
−0.000133 AV_mid_swing_mean −6.4 × 10−5 AV_AP_mean −0.03916 VelocityCV
−0.00028 AV_turn_mag −0.00157 MeanVelocity −0.00515 MeanStrideLen
−0.002004 AV_AP_CV −0.01273 MeanTurnRatio −0.03979 StrideLenCV
−0.003814 AV_V_CV −0.00011 AV_AP_meanByH −0.00012 AV_ML_maxByH
−0.000311 AV_V_max 0.003843 ManualTUG 0.000233 AV_ML_minByH
−0.001205 MeanVelocity −0.00161 AV_V_meanByH
−0.006212 VelocityCV −0.00045 AV_V_maxByH
−0.001575 MeanStrideLen 0.000453 AV_V_minByH
−0.000173 AV_ML_maxByH 0.006292 ManualTUG
0.0001248 AV_ML_minByH
−0.000177 AV_V_maxByH
0.0083301 ManualTUG

Table A12. Ensemble model coefficient for combining TD-NoPD and TD-Fallers-NoPD models.

All Male Female

Beta Dataset Beta Dataset Beta Dataset

−6.3744604 TD-NoPD −2.08471 TD-NoPD −7.93649 TD-NoPD
4.90488203 TD-Fallers-NoPD −0.27718 TD-Fallers-NoPD 8.236352 TD-Fallers-NoPD
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