
 
 

 

 
Sensors 2022, 22, 53. https://doi.org/10.3390/s22010053 www.mdpi.com/journal/sensors 

Article 

Prediction of Lower Extremity Multi-Joint Angles during  
Overground Walking by Using a Single IMU with a Low  
Frequency Based on an LSTM Recurrent Neural Network 
Joohwan Sung 1,2,†, Sungmin Han 1,†, Heesu Park 1,2, Hyun-Myung Cho 1,3, Soree Hwang 1,4, Jong Woong Park 2,* and 
Inchan Youn 1,* 

1 Center for Bionics, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, 
Korea; sjh1449@kist.re.kr (J.S.); han0318@kist.re.kr (S.H.); park@kist.re.kr (H.P.); wisjmeng@kist.re.kr (H.-M.C.); 
srhwang@kist.re.kr (S.H.) 

2 Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Korea 
3 Department of Artificial Intelligence, Korea University, Seoul 02841, Korea 
4 School of Biomedical Engineering, Korea University, Seoul 02841, Korea 
* Correspondence: ospark@korea.ac.kr (J.W.P.); iyoun@kist.re.kr (I.Y.) 
† J. Sung and S. Han contributed equally to this paper. 

Abstract: The joint angle during gait is an important indicator, such as injury risk index, rehabilita-
tion status evaluation, etc. To analyze gait, inertial measurement unit (IMU) sensors have been used 
in studies and continuously developed; however, they are difficult to utilize in daily life because of 
the inconvenience of having to attach multiple sensors together and the difficulty of long-term use 
due to the battery consumption required for high data sampling rates. To overcome these problems, 
this study propose a multi-joint angle estimation method based on a long short-term memory 
(LSTM) recurrent neural network with a single low-frequency (23 Hz) IMU sensor. IMU sensor data 
attached to the lateral shank were measured during overground walking at a self-selected speed for 
30 healthy young persons. The results show a comparatively good accuracy level, similar to previ-
ous studies using high-frequency IMU sensors. Compared to the reference results obtained from 
the motion capture system, the estimated angle coefficient of determination (R ) is greater than 0.74, 
and the root mean square error and normalized root mean square error (NRMSE) are less than 7° 
and 9.87%, respectively. The knee joint showed the best estimation performance in terms of the 
NRMSE and R  among the hip, knee, and ankle joints. 

Keywords: inertial measurement unit; wearable sensor; gait analysis; deep neural network; long 
short-term memory 
 

1. Introduction 
Gait is the basic method of movement, and gait parameters contain much biome-

chanical information. Among various gait parameters, the lower limb joint (hip, knee, and 
ankle) angle on the sagittal plane is relevant to the clinical and physical condition of the 
human. Multi-joint angle information can serve as indicators of an injury risk index in the 
elderly [1–3], the effect of rehabilitation for total knee replacement surgery patients [4,5], 
and the gait state and running ability of humans [6,7]. Motion capture (MoCap) systems 
are widely used for accurate gait analysis in the laboratory [8,9]; markers are attached to 
each subject according to the marker set, and the gait is then analyzed by creating a model 
based on the marker positions. However, this instrument is difficult to use in a daily life 
environment because of its high cost, long preparation and setup time, and requirement 
for a large space [10,11]. To overcome these problems, several gait analysis studies have 
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suggested using inertial measurement unit (IMU) sensors as an alternative method be-
cause of their efficacy, detachability, non-contact nature and lower cost [12–15]. Unfortu-
nately, most studies in this field have still encountered some problems in terms of using 
them for gait analysis in everyday life. First, two or multiple IMU sensors can be attached 
to the lower extremities or back and chest to calculate joint angles. As more sensors are 
attached, we can expect higher accuracy and more degrees of freedom in terms of estimat-
ing joint angles [16]. However, it is impractical to measure multiple joint angles during 
gait using multiple sensors because of the long time required for preparation and the in-
convenience to daily life. Second, in several studies, experiments for developing human 
gait analysis algorithms have been conducted on a treadmill rather than over the ground 
[17,18]. According to previous studies, walking consistently at the same speed on a tread-
mill produces a constant walking pattern rather than walking overground [19–21]. Since 
the speed and pattern of walking outside are diverse, the walking analysis experiment 
should be conducted under the corresponding conditions. The third problem is power 
consumption, with a high sampling rate resulting in high power consumption [22,23]. 
With a high sampling rate, more data is obtained, improving the accuracy of the estimated 
results [24]. However, high sampling rates require more power from the battery. In addi-
tion, high-frequency sensors are relatively high-cost pieces of equipment and require large 
batteries for long-term use, thus difficult to apply in daily life. 

To address these considerations, this paper proposes a novel multi-joint angle esti-
mation algorithm using a single low-frequency IMU sensor. We attached a single IMU 
sensor to the lateral shank of the right lower limb considering the convenience of the user 
in terms of simply adding functionality to existing exercise tools. Strap bands are used to 
support the patella or relieve knee pain, the efficacy of which has been proven in many 
previous studies [25,26]. If the IMU sensor is added to an existing exercise strap band, the 
user will not experience any discomfort or resistance when using it in daily life. To repro-
duce the situation of walking outdoors as much as possible in the laboratory, we con-
ducted all walking tests overground instead of on a treadmill. To overcome the limitation 
of performing gait analysis with a single sensor at a low sampling rate, we applied the 
long short-term memory (LSTM) algorithm, which is a powerful model for time series 
data. Furthermore, the feature selection method was used to find the optimized input fea-
tures based on their contribution to the regression, increasing the accuracy of the model 
estimation performance. We evaluated the performance of the proposed model by calcu-
lating the root mean square error (RMSE), normalized root mean square error (NRMSE), 
and coefficient of determination (R ), which are widely used to assess estimation results. 
The results of this study have future implications for gait analysis in daily life. 

2. Materials and Methods 
2.1. Experimental Equipment and Protocol 

In all, 30 healthy male young participants were recruited for the collection of gait 
data: age, 23.5 ± 2.5 years; height, 173.4 ± 5.8 cm; body mass, 72.4 ± 10 kg; and BMI, 24 ± 
2.8 kg/m2. Written consent was obtained from each participant prior to the experiment, 
and all experiments were conducted in strict accordance with the Korea Institute of Sci-
ence and Technology (KIST) Ethics guidelines (IRB-2019-027). 

While walking, joint angles on the sagittal plane were calculated using a single IMU 
sensor (eCEN, Eburnean, Seoul, Korea) with an acceleration resolution of 0.01 g and an 
angular velocity resolution of 0.05 °/s. The size of the IMU sensor was 51.3 × 36 × 15 mm3, 
and the mass of the IMU sensor was 10 g. The IMU sensor collected data at a sampling 
frequency of 23 Hz and used BLE 4.0 for wireless transmission. The IMU sensor output 
consisted of 3-axis acceleration, angular velocity, and attitude angle data. The measuring 
range for acceleration was ±16 g; angular velocity, ±2000 °/s; and angle, X and Z ± 180° and 
Y ± 90°. As shown in Figure 1a, the IMU sensor was attached to a lateral shank of the right 
side parallel to the sagittal plane (the YZ plane in the global frame), which is a flat surface 
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at a distance of approximately 10 cm from the femur lateral epicondyle. As the gold stand-
ard for obtaining joint angles, a 10-camera optical MoCap system (Motion Analysis, CA, 
USA) was used. Nineteen reflective markers were attached to the participant’s sacrum, 
pelvis, thigh, knee, shank, ankle, toe, and heel according to a Helen Hays marker set [27,28]. 
The MoCap system samples 60 frames per second. As a result, marker-based calculated 
gait kinematic data are also 60 Hz. 

Thirty participants walked at their preferred walking speed eight times across a 5-m-
long walkway, as shown in Figure 1b. The average walking speed of the participants was 1.27 0.13  m/s, and the average cadence and stride length of the participants were 113.87 7.32 steps/min and 1.33 0.10 m, respectively. Since successive measurements 
result in similar gait speeds and patterns, we provided a one-minute break between trials. 

  
(a) (b) 

Figure 1. Experimental setup. (a) Markers for motion tracking and the inertial measurement unit 
(IMU) attached on the lateral shank of the right side. (b) Straight 5-m-long course with 10 MoCap 
cameras for overground walking. 

2.2. Data Preprocessing 
2.2.1. Data Resampling and Filtering 

Data analysis was carried out in the Python programming environment. As a result 
of gait analysis, a total of 483 cycles were obtained from 30 participants. Every marker 
data point was filtered with a 4th-order Butterworth low-pass filter with a cutoff fre-
quency of 4 Hz. The IMU sensor data consist of nine different values for the 3-axis angle, 
angular velocity and acceleration data. The 3-axis angle is represented as pitch, roll, and 
yaw. The IMU data were smoothed by a median filter using a 5-sample window. The IMU 
signal length of every gait cycle was different among participants and among trials for 
each participant. To match the size of the kinematic data calculated from MoCap and the 
IMU samples of each gait cycle, all kinematic samples obtained from MoCap marker data 
were resampled to the IMU sample size corresponding to each gait cycle. 

2.2.2. Feature Extraction 
Deep learning-based feature selection techniques have been widely applied in mo-

tion analysis to improve estimation accuracy and overcome the limitation of the slow 
training rate [16,29]. Feature selection is the process of reducing the number of nonin-
formative or redundant predictors to increase predictive model performance. Features 
that are not relevant to the target variable can act as noise and degrade the performance 
of a model. Among the many feature selection methods, we selected the filter feature se-
lection method, which uses statistical techniques (Pearson’s correlation coefficient) to 
evaluate the relationship between each input variable and the target variable [30]. The 
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feature selection process was performed separately for each joint, and the effectiveness of 
feature selection was proven by comparing the result obtained with selected subset fea-
tures to the result obtained with all features. For each joint, every feature that showed a 
meaningful correlation value with the label was selected to obtain a multi-joint estimation 
angle with just one calculation. 

2.3. Deep Learning Model 
2.3.1. Background 

The recurrent neural network (RNN) model processes inputs and outputs as a se-
quence unit, which is suitable for processing sequential data, such as sound and text [31–
34]. The hidden state that is updated based on previous and current information from 
sequential data allows RNNs to perform better than other general multilayer perceptron 
neural network models. The architecture of an RNN consists of the following equations. 
To obtain the hidden state value at the current time 𝑡 as ℎ , we need two weights, 𝑊  
and 𝑊 , and a bias 𝑏 , shown in Equation (1) below. The weight 𝑊  is for the current 
input value 𝑥 , and the weight 𝑊  is for the previous hidden state ℎ . Subsequently, 
the output 𝑦  is calculated through the obtained ℎ , 𝑊  and bias 𝑏 , as shown in Equa-
tion (2) below. As a result, previous information in time series data influences the current 
neural network calculation. ℎ = 𝑡𝑎𝑛ℎ(𝑊 ℎ + 𝑊 𝑥 + 𝑏 ) (1)𝑦 = 𝑊 ℎ + 𝑏  (2)

However, the basic RNN architecture has limitations, called vanishing and explod-
ing gradients, in terms of long-term dependency [35], which means that the gradient be-
comes too small or too large to train properly during RNN backpropagation. To solve 
these problems, the LSTM algorithm was developed by Hochreiter & Schmidhuber [36]. 
By using cell state 𝐶 , LSTM prevents backpropagated errors from vanishing or exploding 
[37]. The forget gate value 𝑓  determines what information to discard from the cell state. 
In the next step, the input gate value 𝑖  determines which of the incoming new infor-
mation to store in the cell state. Finally, output gate 𝑜  determines which part of the cell 
state to send. In short, the LSTM algorithm solves the problem of basic RNNs by training 
the model to store important input and delete less important input in a long-term state. 
The equations are as follows, where W and b denote weight and bias, respectively. 

2.3.2. Model Design 
We propose a deep neural network based on the LSTM model to estimate multi-joint 

angles. The network structure of the LSTM model has 1 layer with extracted feature inputs. 
The batch size for the training model was selected to be 256, and the hidden size was fixed 
to 10. We utilized Adam as an optimizer to train the proposed model [38]. Adam is an 
algorithm for stochastic gradient descent for training deep neural network models. The 
length of the input data sequence was set to 5, and the number of epochs was 500 based 
on loss convergence in the training process. Finally, we used the hyperbolic tangent (Tanh) 
as an activation function, which is commonly used in RNN or LSTM networks. Table 1 
shows the list of hyperparameters used in this model, and Figure 2 shows the structure of 
the proposed model. 

Table 1. Hyperparameters used in the LSTM model. 

Hyperparameters Values 
Number of layers 1 

Batch size 256 
Hidden size 50 
Optimizer Adam 
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Learning rate 0.001 
Sequence length 5 

Number of epochs 500 
Activation function Tanh 

The MSE is one of the most commonly used loss functions for regression. The loss 
function is the summation of the mean of squared difference data between the true and 
predicted values for each joint and can be written as follows: MSE =  A 1𝑁 𝑦 , 𝑦 ,  

+ B 1𝑁 (𝑦 , 𝑦 , ) +  C 1𝑁 (𝑦 , 𝑦 , )  
(3)

where N is the number of samples tested; 𝑦 and 𝑦 are the gold standard and predicted 
values, respectively; and A, B, and C are empirically selected to be 3, 1, and 4, respectively. 
We performed a normalization process to scale the input features to a range of 0 to 1 as 
follows: X =  𝑋 𝑋𝑋 𝑋  (4)

where 𝑋 is the normalized value; 𝑋  is the raw value; and 𝑋  and 𝑋  denote 
the maximum and minimum original values, respectively. Normalization reduced the in-
ternal covariate shift to improve training and prevent overfitting. After normalization, the 
IMU data were applied to the LSTM model as input data to estimate the angle of each 
joint, as shown in Figure 2. 

 
Figure 2. Architecture of the LSTM model, where 𝑥  and 𝑦  denote the preprocessed IMU input 
data and multi-joint angles as output from the LSTM deep neural network. In time sequence data, 
the output at time step 𝑡, 𝑦  affects the result at time step 𝑡 + 1 as the input. While repeating this 
procedure as training, the cell state determines which information to remember and which to for-
get to improve performance. 

2.4. Data Analysis 
To quantitatively measure the joint angle prediction performance using the LSTM 

model, we used the RMSE, R , and the NRMSE. The NRMSE is normalized by dividing 
the difference between the maximum and minimum values of the prediction result using 
the LSTM model for each gait cycle. The RMSE and NRMSE values represent the error of 
a model predicting quantitative data, and the R  value represents the goodness of fit of 
the prediction result. The equations to calculate the RMSE, NRMSE and R  are as follows. 
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𝑅𝑀𝑆𝐸 =  ∑ ( ) , 𝑁𝑅𝑀𝑆𝐸 =     , 𝑅 = 1 ∑ ( )∑ ( )  (5)

In the equation for the RMSE, n denotes the number of samples, and 𝑦 and 𝑦 are 
the gold standard and predicted values, respectively. In the equation for R , 𝑦 denotes 
the observed response variable, 𝑦 its mean and 𝑦 the corresponding predicted values 
[39]. 

In this study, we evaluated an LSTM model using all the available features from an 
IMU sensor. Then, we applied the selected features using the feature extraction method, 
which removed redundant features. To train and test the LSTM model quantitatively, the 
training data set and test data set were divided in three different ways: (1) within one 
subject, (2) intra-subject, and (3) inter-subject. In the within-one-subject method, we di-
vided the training data set and test data set by the gait cycle within one participant. Ap-
proximately 20 cycles of overground gait were conducted by each participant; 80% (16 
cycles) of the data were divided into a training data set, and 20% (4 cycles) were divided 
into a test set, as shown in Figure 3a. In the intra-subject method, we combined all 30 
participants’ data randomly by gait cycle and then split them at 80% for the training data 
set and the remaining 20% for the test data set regardless of the consequences of the trials 
(Figure 3b). In the inter-subject method, the training data set and test data set were divided 
based on the subject. Twenty-four people, equivalent to 80%, were used for training, and 
the remaining six people (20%) who had not been involved in the training were used for 
testing. In each of the three methods, 5-fold cross-validation (CV) was applied to calculate 
optimal parameters, which performs the fitting procedure a total of five times to avoid 
biased model performance from the way the training and testing subsets are selected. 

 
Figure 3. Five-fold cross-validation was applied to evaluate the model. The training data set and 
test data set were divided in three ways in each fold: (a) Within-one-subject; data were split for 
training and testing within the #n-th subject at a ratio of 8:2. (b) Intra-subject; data were split for 
training and testing from randomly concatenated whole gait cycle data at a ratio of 8:2. (c) Inter-
subject; all gait cycles from 24 randomly chosen participants were chosen as training data, and all 
gait cycles from the remaining six participants were assigned as test data. 
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3. Results 
In this section, the results of the feature selection applied to increase the regression 

accuracy are shown. After that, the results are shown when feature selection is applied by 
each of the three methods, depending on how the training set and test set are divided. 

3.1. Feature Extraction 
Figure 4 shows the degree of importance of the features required to predict each joint 

angle among nine features as a percentage. The selected features are informative for pre-
dicting the corresponding joint, and the remaining features are redundant. Through trial 
and error, features representing more than 30% importance were selected to estimate each 
joint angle. The selected features for the ankle joint were pitch, roll and x-axis acceleration, 
which are the most importance. The pitch was also shown to be the most important in 
predicting the knee joint angle, while the x-axis and y-axis accelerations presented signif-
icant importance. Unlike the other two joints, the z-axis gyroscope was the most important 
in estimating the hip joint angle. The pitch, x-axis acceleration, and y-axis gyroscope also 
presented a greater than 30% importance. 

 
Figure 4. Importance of features in predicting each joint angle, where the X-axis denotes features 
from the IMU data and the Y-axis denotes the importance of features divided by the maximum 
importance value among features. 

3.2. Estimation of Joint Angles 
By using data from the single low-frequency IMU, the joint kinematics during over-

ground gait were predicted based on the LSTM model. As kinematic data, we calculated 
hip, knee and ankle joint angles in the sagittal plane. The predicted joint kinematic values 
were compared with the kinematic results from MoCap. We estimated the joint angles 
with two different subsets as input features. First, data of all nine features obtained from 
IMU were used as input features. After that, six selected features, consisting of pitch, roll, 
x- and y-axis acceleration, and y- and z-axis gyroscope obtained from the feature extrac-
tion process at each joint, were used as input features. To evaluate model performance, 
the training data set and test data set were divided in three different ways: (1) within one 
subject, (2) intra-subject and (3) inter-subject. Overall, the angles estimated using the se-
lected features as input were better than those estimated using all features when com-
pared to the MoCap results. In all three data division methods, the knee joint angle was 
estimated more accurately than the hip and ankle joint angles. 

The average R  value calculated individually from 30 participants was greater than 
0.96 when using all features and 0.98 when using selected features. Moreover, the RMSE 
and the NRMSE were less than 0.83° and 1.59% when using all features as input and less 
than 0.47° and 0.91% when using selected features as input. The results show that the 
method of dividing data within one subject produces the best performance in estimating 
joint angles compared to the other division methods. Even though the difference was 
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small, we found that the estimation performance improved when using selected features 
as input. More detailed information is provided in Table 2 and Figure 5 below. 

Table 3 and Figure 6 show the comparison between estimated joint angles and corre-
sponding reference joint angles obtained from the MoCap system in the intra-subject sec-
tion. Among the ankle, knee and hip joints, the knee joint angle obtained using the selected 
features showed the best accuracy in terms of the R  and NRMSE. When using all fea-
tures as input to calculate joint angles, the RMSE ranged from 3.96° to 6.34°, and the 
NRMSE ranged from 8.52% to 9.30%. The RMSE ranged from 3.06° to 5.76°, and the 
NRMSE ranged from 6.70% to 8.66%, when using selected features as input data. 

Following our hypothesis, the inter-subject method showed the lowest accuracy in 
predicting joint angles because of testing unseen data sets during the training process. As 
with other methods of dividing data into training and test sets, knee joint estimation using 
the selected features as input showed the lowest NRMSE and highest R . With the inter-
subject method, the R  was greater than 0.74, and the RMSE and NRMSE were less than 
7.00° and 9.87%, respectively. More detailed information is provided in Table 4 and Figure 
7 below. 

Table 2. Within-one-subject division method, 5-fold cross-validation comparison between joint an-
gles estimated by the proposed LSTM model using two different input feature sets and a conven-
tional MoCap system. 

 Ankle Joint Knee Joint Hip Joint 

All Features 
R  0.96 0.99 0.97 

RMSE(°) 0.42 0.36 0.83 
NRMSE (%) 1.43 0.57 1.59 

Selected 
Features 

R  0.98 0.99 0.98 
RMSE(°) 0.14 0.15 0.47 

NRMSE (%) 0.54 0.24 0.91 

Table 3. Intra-subject division method, 5-fold cross-validation comparison between joint angles es-
timated by the proposed LSTM model using two different input feature sets and a conventional 
MoCap system. 

 Ankle Joint Knee Joint Hip Joint 

All Features 
R  0.73 0.89 0.90 

RMSE (°) 3.96 6.34 5.47 
NRMSE (%) 8.52 9.30 9.01 

Selected 
Features 

R  0.83 0.92 0.90 
RMSE (°) 3.06 5.76 4.80 

NRMSE (%) 7.21 6.70 8.66 

Table 4. Inter-subject division method, 5-fold cross-validation comparison between joint angles es-
timated by the proposed LSTM model using two different input feature sets and a conventional 
MoCap system. 

 Ankle Joint Knee Joint Hip Joint 

All Features 
R  0.62 0.87 0.84 

RMSE (°) 5.15 8.14 7.49 
NRMSE (%) 12.2 11.01 10.97 

Selected 
Features 

R  0.74 0.89 0.86 
RMSE (°) 4.35 7.00 6.19 

NRMSE (%) 9.87 9.10 9.74 
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(a) All Features 

 
(b) Selected Features 

 

Figure 5. Within-one-subject division method. The graphs show the results of the test set ran-
domly divided into training and test set data at 8:2 from among the total gait cycle data from one 
participant. Comparison between reference data obtained by a conventional MoCap system and 
joint angles estimated by the proposed LSTM model using two different feature sets: (a) all fea-
tures as input in the within-one-subject method; (b) selected features as input in the within-one-
Scheme 6. Intra-subject division method. The graphs show the results of the test set randomly di-
vided into training and test set data at 8:2 from among the total gait cycle data from all 30 partici-
pants. Comparison between reference data obtained by a conventional Mocap system and joint 
angles estimated by the proposed LSTM model using two different feature sets: (a) all features as 
input in the intra subject method; (b) selected features as input in the intra subject method. 

(a) All Features 

 
(b) Selected Features 



Sensors 2022, 22, 53 10 of 14 
 

 

 

Figure 7. Inter-subject division method. The graphs show the results the entire gait cycle of the six 
participants corresponding to the test set defined by randomly dividing the 30 participants at a 
ratio of 8:2. Comparison between reference data obtained by a conventional Mocap system and 
joint angles estimated by the proposed LSTM model using two different feature sets: (a) all fea-
tures as input in the inter subject method; (b) selected features as input in the inter subject method. 

4. Discussion 
In this work, we proposed an LSTM model for joint angle estimation using a single 

low-frequency IMU sensor. We conducted the study with one IMU sensor and focused on 
long-term use to apply the system in our daily lives. The joint angles predicted utilizing 
the LSTM model showed a reasonably good match with the results obtained using MoCap 
despite the low number of samples per cycle from the use of a single 23 Hz IMU sensor 
and a relatively small amount of training data. These results imply that the motion of the 
shank during walking is an important determinant in calculating multi-joint angles and 
that the tradeoff between the number of data samples per gait cycle and long-term usage 
in daily life can be solved by utilizing an LSTM model, which has a powerful deep learn-
ing architecture for time series input data. Among the three different training and test 
data division methods, the within-one-subject method showed the highest accuracy. This 
is interpreted as the reason for data in the testing set being more similar to data in the 
trained set within one participant than between subjects. The reason why the inter-subject 
method showed relatively low performance could be that the LSTM model tested data it 
had not encountered previously during training. This result enables us to infer that the 
more we train a model with various gait speeds and patterns, the more accurate the model 
will become and the wider it can be applied to participants with different gait patterns. 
Excluding the within-one-subject method, which already showed high accuracy, for the 
intra- and inter-subject methods, using the selected features as input showed significantly 
better accuracy than using all features from the IMU sensor as input. This is thought to be 
because irrelevant input features are removed through feature selection processing, thus 
finding the optimal subsets to increase model performance using the correlation with the 
target variable, and only selected features relevant to the target input are used to estimate 
joint angles. Regarding other previous studies, Moshen et al. [18] proposed a convolu-
tional neural network (CNN) model-based joint angle estimation method using a shoe-
mounted accelerometer with a sampling rate of 100 Hz during treadmill walking. Using 
the inter-subject division method, the hip and ankle joint NRMSEs were found to be 9.9% 
and 11.1%, respectively. Dorschky et al. [40] proposed kinematic and kinetic estimation 
methods using dynamic optimization, which yielded a dynamically consistent simulation 
based on data from accelerometers and gyroscopes in seven IMUs. According to these 
research results, the hip, knee, and ankle joint relative RMSEs (rRMSEs) were found to be 
21.9%, 8.8%, and 10.9%, respectively. Moshen et al. [41] also presented a four-layer CNN 
model-based joint angle calculation method utilizing strain sensors with a sampling rate 
of 100 Hz during treadmill walking. The hip and ankle joint NRMSEs were 9.34% and 
9.99%, respectively, when the training and test data were divided using the inter-subject 
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method. Among the three joints, the estimated hip and ankle joint angles showed larger 
errors compared with the MoCap results than did the estimated knee joint angle. We rea-
soned that because the IMU is attached to the shank, which is closest to the knee joint, it 
enables the model to predict movement of the knee joint better than that of other joints. 
Furthermore, knee movement in the sagittal plane is relatively constant between subjects 
and has a lower degree of freedom than other joints [18]. 

The limitations of our study and the technical problems to be solved include the cal-
culation of additional gait parameters and the accuracy of estimation angles, the applica-
bility in various gait environments, and the user-customized algorithm. First, when the 
proposed joint angle prediction method is utilized, the estimated angular error is within 
the maximum RMSE of 7° and the maximum NRMSE of 9.87%. Although the low accu-
racy limitation was overcome somewhat by using the LSTM model, the accuracy could 
not be further improved because of the use of a single IMU with a small sample size due 
to a low sampling rate to obtain data from overground trials, which allows various gait 
patterns, simulating walking in daily life. It is expected to have higher accuracy in terms 
of RMSE and R  if the same model is used with IMU with a higher sampling rate. For 
example, even if an experiment is conducted at the same self-selected speed, in a slow 
speed group, more samples may be obtained per gate cycle, so the accuracy may be ex-
pected to increase, whereas in a fast speed group, fewer samples may be obtained and 
thus the accuracy may be decreased. As seen with the intra-subject and within-one-subject 
methods, improved accuracy can be expected by training big data obtained through more 
gait experiments with many subjects in the future. In case of high speed such as running, 
IMU with higher sampling rates needs to be used to calculate joint angles. Second, all 
experiments were conducted indoors because the MoCap results were used as the gold 
standard. However, according to previous studies, different gait kinematic results are ob-
tained depending on the test environment, including whether the subjects are barefoot or 
in shoes [42], indoors or outdoors [43], male or female [44], and young or old [45]. Thus, 
in future studies, a larger group of participants with differences in demographic features, 
such as sex, age, height, and weight, needs to be recruited, and experiments should be 
conducted in various environments. In particular, patients who have undergone knee sur-
gery or have a brain disease show differences in gait characteristics from subjects in the 
control group [46,47]; by using this fact, it is possible to quantitatively determine the re-
habilitation status of patients or the presence of disease [8]. Since the proposed algorithm 
is the result of trials in 30 healthy young males, if this model is applied directly to the 
patient, it would not show as good performance as healthy subjects. To overcome this 
problem, additional experiments in patients are needed in the future study, and it is nec-
essary to confirm the possibility of applying the developed model in this case by utilizing 
another verified system instead of MoCap. Third, additional gait parameter results, such 
as cadence, speed, stride length, and step width, were not calculated in this paper. How-
ever, this information is needed for extensive gait analysis in terms of assessment or diag-
nosis. To this end, using participants’ body dimensions, such as the length of the leg and 
foot, to examine biomechanics based on estimated joint angles it is expected to be useful 
for obtaining additional gait parameters in further studies. Last, sensitivity of IMU related 
to attachment location. If the IMU is attached to a different side or other position of the 
lower limb, it will have completely different accelerometers and gyroscopes for the same 
motion, resulting in a different performance. To overcome this, in the future study, it is 
needed to propose algorithms that are not affected by the attachment position of the sen-
sor and can be applied to various attachment positions. 

5. Conclusions 
This paper presented a method that for estimating the hip, knee, and ankle joint an-

gles in the sagittal plane during walking using only a single IMU with a low sampling 
rate for application outdoors in daily life. Using a 23 Hz sensor could reduce the time 
taken to collect data and reduce the memory space; however, the estimation accuracy 
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value is limited. Despite the use of data from a shank-mounted IMU with a low sampling 
rate and the overground test environment resulting in inconsistent gait patterns, the 
multi-joint angles were well predicted by using the feature selection method and the 
LSTM model with a relatively small amount of training data. The results indicate that the 
LSTM algorithm, which is widely used for time series data, is a good deep learning algo-
rithm for estimating human walking behavior. Furthermore, it is especially notable that 
movement of the shank is a determinant factor in estimating multi-joint angles during 
overground walking. This reliable predictive performance is expected to play a comple-
mentary role in evaluating users’ exercise ability or patients’ rehabilitation status through 
gait analysis in the future. 
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