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Abstract: Spatial autocorrelation and skewed distribution are the most frequent issues in crash rate 

modelling analysis. Previous studies commonly focus on the spatial autocorrelation between 

adjacent regions or the relationships between crash rate and potentially risky factors across different 

quantiles of crash rate distribution, but rarely both. To overcome the research gap, this study utilizes 

the spatial autoregressive quantile (SARQ) model to estimate how contributing factors influence the 

total and fatal-plus-injury crash rates and how modelling relationships change across the 

distribution of crash rates considering the effects of spatial autocorrelation. Three types of 

explanatory variables, i.e., demographic, traffic networks and volumes, and land-use patterns, were 

considered. Using data collected in New York City from 2017 to 2019, the results show that: (1) the 

SARQ model outperforms the traditional quantile regression model in prediction and fitting 

performance; (2) the effects of variables vary with the quantiles, mainly classifying three types: 

increasing, unchanged, and U-shaped; (3) at the high tail of crash rate distribution, the effects 

commonly have sudden increases/decrease. The findings are expected to provide strategies for 

reducing the crash rate and improving road traffic safety. 

Keywords: crash rate modelling; spatial autoregressive; quantile regression; quantile effects; spatial 

autocorrelation 

 

1. Introduction 

Road traffic accident causes serious property damage and casualties around the 

world. In the past decades, many studies have carried out considerable efforts in all kinds 

of aspects of traffic safety to reduce road crashes [1,2]. Among these studies, one of the 

most attractive areas is to explore how various influential factors affect crash rates. There 

were a variety of factors that have been considered in previous studies [3–8], mainly 

summarizing into following four aspects: (1) socioeconomic and demographic 

characteristics consisting of ages, gender, household income, etc., (2) traffic and networks 

including daily vehicle mile/kilometer traveled, traffic congestion, speed limit, the 

number of lanes, intersections, lane width, ramp, curvature, etc., (3) land-use type, such 

as commercial and residential land-use patterns, and (4) other factors such as temporal 

variations.  

To analyze the impacts of these contributing factors on crash rates, many micro-level 

analytic models, such as the random parametric Tobit and random-effects Tobit models, 

have been developed at the segment and intersection level of transportation networks 

[5,9]. The results revealed that factors had varying effects on crash rates due to the 

temporal differences and the crash types. However, few studies have attempted to 

analyze how factors influence crash rates at the macro-level or regional level. The cross-

sectional analyses are becoming increasingly attractive and have considerable potential to 

have an in-depth understanding of crash rates.  
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It is evident that crash rate data have highly left-skewed distribution and outliers 

(e.g., maximum figure) because accident and traffic travel data commonly present 

significantly spatiotemporal differences [10,11]. The conditional mean models are highly 

sensitive to outliers and fail to be extended to the full distribution of crash rate, which may 

make these models output biased results and side effects [12]. However, it is more 

attractive for traffic engineers to understand the effects of risky factors in sites with high 

crash rates than in other locations. Since there are deaths or serious injuries in these places 

[13]. In this context, it is inevitable to introduce the quantile regression (QR) model. The 

QR model has several benefits compared to traditional conditional mean models. At first, 

it can establish the regression function at any location of the distribution of crash rate 

[14,15]. Second, it releases the assumption of the normal distribution of the dependent 

variables. Third, it is insensitive to outliers and skewed distribution. These advantages 

make the QR model more and more popular in the road safety context [12,16,17]. 

However, few studies attempted to establish the quantile effects in crash rate analysis, 

and thereby some of the available information about crash rates were underestimated.  

Additionally, accident data and traffic data are obtained from different locations, and 

there is a fairly strong spatial correlation among adjacent regions. Ignoring the correlation 

and assuming it in residual error in statistical models may lead to biased results [18,19]. 

However, few previously QR-related studies have attempted to address this issue. 

To fill the research gap, this study applied a SARQ model that integrates the spatial 

correlations and quantile effects to estimate how the effects of regional factors on crash 

rates and how are they vary with the figure of crash rates. It aims to answer the following 

questions: (1) Is the SARQ model performs better than the QR model when handling crash 

rates? (2) what are the effects of risky factors and how do they vary across the distribution 

of crash rates? (3) how do the crash types affect the above effects?  

The rest of the study is organized as follows. Section 2 describes the available data 

used in this study. Section 3 introduces the QR and SARQ models. Section 4 reports the 

modelling results and discusses the parameter estimations. Section 5 summarizes the 

remarkable finding and gives further directions. 

2. Literature Review 

Previous studies have discussed the relationships between crash rates and various 

risky factors at the micro-level. Specifically, reference [5] developed two types of random-

effects Tobit models to differentiate the impacts of contributing factors on crash rates 

between nighttime and daytime. Reference [20] applied a random parametric Tobit model 

to analyze the relationships between light, medium, and heavy vehicles and intersection 

density and crash rates of slight injury and killed/severe injury at different road segments. 

In addition, a full Bayesian multivariate random parameter Tobit model was employed to 

estimate the relationships between various risky factors and crash rates for different crash 

rates [9]. The heterogeneous effects of arterial roads, speed limit, and differences, and lane 

balance design parameters on crash rates of different types were explored. These studies 

provide valuable insights for understanding the variations from a relatively micro-level 

perspective. However, efforts in this macro traffic safety modelling are limited.  

Several traditional regression models, such as the negative binomial (NB) model, 

were frequently used to estimate the relationships between crash rates and various 

contributing factors. The crash data and travel data have unique features, i.e., containing 

lots of zero, left-skewed distribution, and few outliers (maximum). These NB models 

could only overcome a part of the deficiencies of the data, i.e., overdispersion and they 

fail to handle other issues of crash rate data [21]. Especially, the central location 

assumption forces them to estimate the relationships at the central location (i.e., the mean 

value), which makes them difficult to be extended to non-central locations, such as the 

high or low tails.  

The QR model, being an enhancement of the conditional mean model, can describe 

the relationship between crash rate and explanatory variables anywhere at the 
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distribution of crash rate [14,15]. The introduction of the concept makes the QR 

particularly useful when the conditional distribution does not follow the standard normal 

distribution. Moreover, it has powerful robustness and flexibility for handling outliers 

and skewed distribution. These excellent advantages make the QR model increasingly 

popular in many research areas including investment, finance, economics, and medicine 

[22,23]. 

Recently, many researchers have applied this model to road safety analysis. Qin 

(2012) introduced the QR model in the crash frequency modelling experiment conducted 

in South Dakota and confirmed that the accident influencing factors have different effects 

on the accident distribution in different areas. Reference [17] estimated the relationships 

between crash counts and related risk factors such as road geometry using the QR model 

and compared the results with the negative binomial regression. The findings obtained 

by both methods were consistent, but the QR model revealed more detailed information. 

Additionally, the spatial extension of the QR model, namely, the geographically weighted 

quantile Poisson regression (GWPQR) model, was also employed to analyze the spatially 

heterogeneous effects of contributing factors on total crash rates at different quantiles of 

the crash frequency distribution [12]. However, the QR-related applications are few 

discussed in previous studies.  

Reference [11] proposed a logistic quantile regression model to address continuous 

bounded outcomes with crash rate prediction in which 400 roadway segments within a 

region were selected in Nevada. The results showed that the logistic QR model could 

provide whole trend variations of estimated coefficients and give an entire view of the 

effects of influencing factors. However, an important phenomenon, i.e., spatial 

autocorrelation was ignored in this study. The crash data were collected at different 

spatial locations, so the crash rate in one region must be affected by its adjacent regions. 

The global QR model underestimates the spatial effects in the real world and may lead to 

biased results. However, few studies paid attention to filling the research gap.  

To summarize, when establishing the crash rate analytic models, some studies 

considered quantile effects, others attempted to solve the spatial autocorrelation, but 

rarely both. Thus, A SARQ model was introduced in this study to understand the 

modelling relationships between crash rates and a variety of contributing factors. The 

contribution of this study to the literature is twofold. First, it applied a quantile version 

spatial AR model to handle the spatial autocorrelation, skewed distribution, and outliers 

existing in the crash rate modelling. Second, it estimated the relationships between three 

types of contributing factors and total and fatal-plus-injury crash rates and analyzed how 

these change with the quantiles of crash rate distribution. 

3. Data Description and Preparation 

3.1. Study Area 

The study area covers the majority of the metropolitan of NYC, which includes four 

counties (i.e., Manhattan, Bronx, Brooklyn, and Queens) and excludes Staten Island due 

to few crash observations here. The spatial unit used in this study is the census tract (CT) 

due to the availability of socioeconomic and demographic characteristics, as shown in 

Figure 1. Few CTs were removed because of the geographical barriers, as shown in the 

CTs covered by light-grey shades. As a result, a total of 2018 CTs were concluded in this 

study.  
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Figure 1. Study Area. 

3.2. Data Description and Preparation 

Five types of datasets, including crash data, land use data, socioeconomic and 

demographic attributes, road network data, and average annual daily traffic data, were 

collected during the period from 2017 to 2019. As mentioned above, we used the CTs as 

the analysis unit, and we aggregated all of these data at the CT level. 

The crash data set was collected from the NYC Police Department (NYPD). Every 

row in this set represents a crash record, containing its occurring date, time, geographical 

coordinates, involved vehicle types, the number of people being injured or killed. During 

the three years, a total of 237,443 crashes were recorded, including 48,390 injuries and fatal 

crashes. In this study, we calculated the crash rates of total crashes and fatal-plus-injury 

crashes as the dependent variables. Figure 2 shows the spatial distribution of these two 

types of crash rates crossing different CTs. As observed, from the total crash rate 

perspective, the crash rates are concentrated in the southeast areas. While the fatal-plus-

injury crash rates are randomly distributed over the entire city. 
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(a) total crash (b) fata-plus-injury crash 

Figure 2. Spatial distribution of crash rates. 

According to previous studies [8,24], the crash rate in each CT was obtained 

following Equation (1). 

𝐶𝑅𝑖 =
106 × 𝐶𝐹𝑖

365 × ∑ 𝐿𝑖𝑗 × 𝐴𝐴𝐷𝑇𝑖𝑗
 (1) 

where the 𝐶𝑅𝑖 refers to the crash rate at the ith CT, 𝐶𝐹 is the crash frequency in the ith 

CT, 𝐿𝑖𝑗 and 𝐴𝐴𝐷𝑇𝑖𝑗 represent the length and annual average daily traveled (AADT) of 

the jth segment in the ith CT, respectively. 

We obtained the AADT data set from the New York State Department of 

Transportation (NYSDOT). Notably, the data set only record the traffic volume count on 

freeways and major arterials. In addition to being used to calculate the crash rate, AADT 

was applied to generate the daily vehicle kilometer traveled (DVKT) by integrating the 

road network shapefile data that was published by the NYC department of transportation. 

The road network attributes set also provides the posted speed limit of each segment, in 

which the speed limit varies from 15 mph to 50 mph. The above data sets could be found 

at the NYC Open Data website (https://opendata.cityofnewyork.us/, accessed date: 19 

November 2021) by searching for the corresponding keywords (e.g., annual average daily 

traveled).  

Socioeconomic and demographic data were collected from the NYC geodatabase 

(http://www.baruch.cuny.edu/geoportal/nyc_gdb/, accessed date: 19 November 2021). 

The database includes the American Community Survey (ACS) in which the education, 

employment, population, median income, housing, commuting time, etc., were recorded.  

The land-use information was provided by the NYC Department of City Planning 

(DCP) (https://www1.nyc.gov/site/planning/data-maps/open-data.page, accessed date: 19 

November 2021), from which we extracted four land-use patterns: commercial, 

residential, garage, and industrial. Additionally, the entropy index was also calculated to 

measure the diversity of land use in each CT [25]. A greater value of entropy index means 

that there is a higher degree of land-use diversity.  

The mentioned datasets were aggregated at the CT level and categorized into two 

dependent variables and 24 explanatory variables. The detailed descriptive statistics 

about these candidate variables were recorded in Table 1.  
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3.3. Data Processing 

A preliminary diagnostic test, i.e., multicollinearity, was applied to the candidate explanatory 

variables to avoid statistical bias. The Pearson product-moment correlation (PPC) and (variance 

inflation factor) VIF were calculated to identify the statistical correlation, and the variables with VIF 

values greater than 5 or PPC values greater than 0.7 would be removed [19]. Additionally, the 

Moran’ I test was applied to identify whether there is a significant spatial correlation of variables 

among neighbors. The Moran value commonly ranges from −1 to +1. The positive and negative 

values of the Moran index indicate that the variable is spatial clustering or spatial dispersion [7]. If 

the value is close to zero or the corresponding p-value is greater than 0.1, it indicates that the variable 

does not have an easy-observed spatial pattern [26]. Thus, the variables would not be considered in 

this study. Moreover, considering that the model employed in this study is based on Tobler’s First 

Law, we also removed the variables presenting the spatial dispersion. As a result, 15 variables, i.e., 

P_YOU, MHC, CWPT, MCT, P_COM, P_IND, P_ENT_I, RD, P_SL_20, P_SL_30, P_SL_35, P_SL_40, 

P_SL_50, were eliminated and the rest of the remaining variables were used in the following 

research. 
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Table 1. Variables explanation and statistics. 

Variables  Descriptions Min  Average  Max S.D.  

Dependent Variables 

TCR Total crash rate  0.000  0.449  15.352  0.769  

I-F_CR Injury and fatal crash rate  0.000  2.231  100.001  4.353  

Independent Variables 

Education Percent graduate high school or higher aged over 16 years old in each CT 0.000  80.058  100.000  13.922  

PD The number of people per km2 in each CT (in thousands) 0.000  20.870  98.924  14.092  

P_YOU Percent of youth (aged under 19) in each CT 0.000  22.779  67.100  8.196  

P_ELD Percent of elderly (aged over 60) in each CT 0.000  19.139  100.000  8.444  

MHC Median household incomes in each CT (in thousands / dollars) 0.000  62.479  250.000  32.923  

N_VHU The number of vacant housing units in each CT 0.000  8.539  100.000  6.375  

CWC Percent of people who commute to work by car in each CT 0.000  27.976  100.000  17.969  

CWPT Percent of people who commute to work by public transit in each CT 0.000  55.601  100.000  16.317  

CWF Percent of people who commute to work by foot in each CT 0.000  9.157  100.000  9.563  

MCT Mean commute time in each CTs (minutes) 0.000  40.923  73.900  8.833  

P_COM Percent of area used for commercial purpose in each CT 0.000  0.234  1.000  0.202  

P_RES_L Percent of area used for residential purpose in each CT 0.000  0.726  1.000  0.204  

P_GAR Percent of area used for garage purpose in each CT 0.000  0.017  0.462  0.035  

P_IND Percent of area used for industrial purpose in each CT 0.000  0.017  0.856  0.057  

P_ENT_I The entropy index used to measure the land use diversity in each CT 0.000  0.547  1.234  0.240  

DKMT Daily vehicle kilometer travelled in each CT (106 vehicle.km) 0.000  0.411  5.489  0.580  

RD The road length per km2 in each CT (km−1) 2.435  96.239  319.955  29.254  

P_SL_20 Percent of segment length posted speed 20 mph to total length in each CT 0.000  0.032  1.000  0.136  

P_SL_25 Percent of segment length posted speed 25 mph to total length in each CT 0.000  0.904  1.000  0.185  

P_SL_30 Percent of segment length with posted speed 30 mph to total length in each C 0.000  0.012  0.508  0.042  

P_SL_35 Percent of segment length with posted speed 35 mph to total length in each CT 0.000  0.003  0.396  0.024  

P_SL_40 Percent of segment length with posted speed 40 mph to total length in each CT 0.000  0.005  0.530  0.037  

P_SL_45 Percent of segment length with posted speed 45 mph to total length in each CT 0.000  0.005  0.482  0.030  

P_SL_50 Percent of segment length with posted speed 50 mph to total length in each CT 0.000  0.023  0.527  0.064  
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4. Methods 

4.1. Quantile Regression Model 

The QR model is proposed to overcome skewed distribution and outliers that the 

conditional mean models fail to address. It allows us to analyze the effects of the 

explanatory variables of the crash rate at any quantiles of the crash rate distribution. In 

contrast with traditional conditional mean regression models that estimate the parameter 

using the minimum residual sum of squares, QR looks for the arg min of weighted sums 

of absolute residuals. The minimization problem of a quantile regression can be written 

as Equation (2) [14].  

𝛽𝑞̂ = arg min
𝛽𝑞∈ℝ

∑|𝑌𝑛 − 𝑥𝑛𝛽𝑞|𝑤𝑛

𝑁

𝑛=1

 (2) 

where 𝛽𝑞̂ is the vector of coefficient estimates, and the subscript 𝑞 ∈  (0 − 1) denotes the 

quantile to be estimated. In addition, 𝑌𝑛 is the nth entry of Y, 𝑋𝑛 is the nth row of X, and 

wn is the nth observation’s weight. 

4.2. Quantile Version for Spatial Autoagressive Model 

The effects of variables on crash rates not only changed with the quantiles but also 

present affected by potential spatial autocorrelation. As the spatial extension of the QR 

model, the spatial autoregressive quantile (SARQ) model can be used to account for the 

spatial correlation among neighbors at both central and non-central locations [27]. For the 

spatial autoregressive model, its general form can be described as: 

𝑌𝑡 = 𝜆𝑞𝑊𝑌𝑡 + 𝛽𝑞𝑋 + 𝜀 (3) 

where W is an 𝑁 × 𝑁 spatial weight matrix, specifying the spatial associations between Y 

of different areas. N is the number of observations. λ is the parameter of spatial lag term 

𝑊𝑌𝑡  and indicates the degree of spatial autocorrelation. 𝛽  denotes the estimated 

parameter of each explanatory variable. Other parameters are defined previously.  

Combining quantile regression models, the SARQ model is described as:  

𝑌𝑡 = 𝜆𝑞𝑊𝑌𝑡 + 𝛽𝑞𝑋 + 𝜀 (4) 

where 𝜆𝑞  and 𝛽𝑞  represent the spatial lag term and coefficients of the explanatory 

variable at the qth quantile. W is the spatial weight matrix. This model is estimated by 

two-stage least squares (2SLS). The first stage is a regression of endogenous variable 𝑊𝑌𝑡, 

then the predicted value of 𝑊𝑌𝑡 is used as an explanatory variable and combined with 

explanatory variables to obtain the predicted value of 𝑌𝑡  [28]. For more detailed 

information about the parameter estimation process, please see reference [29]. 

5. Results and Discussion 

5.1. Model Comparison 

Three common measures, i.e., mean absolute error (MAE), root mean square error 

(RMSE), and R-squared (R2), were used to evaluate the model performance of QR and 

SARQ models. The lower the values of RMSE and MAE are, the predicted accuracy of the 

corresponding models are [30]. In addition, models with a higher value of R2 towards 1 

fit better to the data. To obtain the predicted accuracy of the two models crossing the entire 

distribution of crash rates, we set the quantile value to q = 0.02, 0.03, …, 0.97, 0.98. The 

comparison results relating to total and fatal-plus-injury crash rates are shown in Figure 

3. As observed in Figure 3a, the MAE and RMSE values at each quantile of the SARQ 

model were much lower than that of the basic QR model and the R2 value of the SARQ 

model at each quantile was also greater than that of the QR model, indicating that the 

SARQ model outperforms the QR model in data fitness and prediction accuracy. The 

results are not unnormal, as the SARQ model defines the spatial autocorrelation using a 
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specific spatial structure and considers more influences of unobserved factors. The sub-

figure showed that the two quantile-based models perform best at the non-central location 

(i.e., 50th quantile), which reveals the necessity of using the quantile regression models to 

handle the outliers and skewed distribution of crash rate. More importantly, we could 

observe how the three measures vary with quantiles, specifically, the MAE and RMSE 

figures present a U-shape across the entire distribution of total crash rates, while the figure 

of R2 exhibits the negative U-shape crossing the distribution. The results show that when 

the quantile value move from the low tail to the high tail, the model performance improve 

and reach the optimal point, and then decrease during the rest of the distribution. The U-

shape not only indicates how the modelling location affects the model performance but 

also provides the best modelling location. The results of the fatal-plus-injury crash rate 

reveal similar findings, as shown in Figure 3b.  

To evaluate the transferability of the SARQ model, we randomly sampled 70% of 

data 5 times from the entire data for model validation. we also provide the R-squared (R2) 

value to evaluate the ability of model fitness. The results are shown in Appendix A. The 

model performance does not significantly deteriorate, suggesting that the model has good 

transferability. 

The above discussion suggested the benefits of the SARQ model in the crash rate 

modelling: it could not only inherit the ability of the quantile model to deal with skew 

distribution and outliers but also solve the spatial autoregression existing in crash rates. 

Thus, the estimation results of the SARQ model were selected to be used for follow-up 

research. 

 

(a) total crashes 

 

(b) fatal-plus-injury crashes 

Figure 3. Comparison results of RMSE and MAE. 

5.2. Parameter Estimation and Quantile Effects Analysis 

Table 2 summarizes the parameter estimations, their corresponding statistical 

significance, and standard errors of SARQ models with total and fatal-plus-injury crash 

rates. A comparison of coefficient estimates among the five selected quantiles (i.e., 0.1, 0.3, 

0.5, 0.7, and 0.9) are provided in the table, which could help us understand how the effect 

of each explanatory variable varies across different locations of crash rate distribution. We 

could conclude that the signs of all coefficients are consistent with that reported in 

previous studies [4,11,20]. The sign of these statistically significant coefficients remained 

unchanged crossing different quantiles, although there are huge differences in the size of 
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coefficients. Five variables including daily vehicle kilometer traveled (DVKT), the 

percentage of elderly people (ELD_P), the proportion of the area used for the residential 

purpose (P_RES_L), the percent of segment length posted 25-speed limits (P_SL_25) and 

the percent of people who commute to work by foot (CWF) expresses negative 

relationship with total and fatal-plus-injury crash rates. The negative coefficients of DVKT 

indicate that an increase in DVKT leads to a downward trend of crash rates. The result 

has been reported in many previous studies in which negative relationships were also 

observed [8,31]. The result can be attributed to the fact that the greater number of DVKT 

makes vehicles move slowly, which reduces the possibility of accidents [8]. However, the 

side effects need to be discussed in further research using more detailed crash datasets, 

since we observed that the coefficients at the high tail (i.e., 0.7 and 0.9 quantiles) are not 

statistically significant. The negative signs of P_RES_L and P_SL_25 frequently occurred 

in previous related studies, as the figures of speed limits in residential communities are 

commonly low, and the legal speed limits ensure that there are few observations of 

crashes in residential areas and sites with low-speed limits [32]). Generally, the non-

motorized facilities, such as pavement, provide urban travelers with a safer travel 

environment, which makes the walking behavior is more likely to be related to low crash 

risk. Thus, without any doubt, there is a negative sign of CWF.  

The rest of the remaining four variables, i.e., population density (PD), the percent of 

people who commute to work by car (CWC), the percent of area used for garage purpose 

(P_GAR), and the percent of segment length posted 45-speed limits (P_SL_45), are 

positively related to crash rates in two models. The results are consistent with the previous 

studies which reported that an excessive number of people, garages, CWC, and P_SL_45 

leads to a frequent occurrence of accidents. At first, the higher number of residents and 

garages are, the more trips generate, and the more possibility of accidents there is. Second, 

the greater number of vehicles with higher speeds will increase the crash risk and crash 

rates in the situation that the traffic volume mainly depended on segment width rather 

than the posted speed limits [33,34]. Third, compared with working by bicycle or foot, the 

crash rates increase with the journeys working by car, because the streets are more 

dangerous and crowded than pavement or bicycle lane during the commuting period 

[35,36].  

However, we find that the coefficients of most variables are only statistically 

significant at one or two quantiles in both models, which limits the understanding of 

quantile effects of independent variables on crash rates. Thus, we present the statistically 

significant coefficients (at the 90% confidence level) for quantiles ranging from q = 0.01, 

0.02, …, 0.98 to illustrate how these estimated coefficients change across the entire 

distribution of total and fatal-plus-injury crash rates, respectively.
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Table 2. Coefficients estimation of Spatial AR quantile model. 

Variables Total Crash Rate  Fatal-Plus-Injury Crash Rate  

 q = 0.1 q = 0.3 q = 0.5 q = 0.7 q = 0.9 q = 0.1 q = 0.3 q = 0.5 q = 0.7 q = 0.9 

PD 0.554 ** 

(0.0014) 

1.131 *** 

(0.002) 

1.571 *** 

(0.0026) 

2.240 *** 

(0.004) 

3.390 ** 

(0.004) 

0.076 * 

(0.0003) 

0.174 ** 

(0.0004) 

0.312 *** 

(0.0006) 

0.431 *** 

(0.0009) 

0.680 * 

(0.003) 

P_ELD −0.001 (0.002) −0.003 * 

(0.002) 

−0.003 

(0.0034) 

−0.003 

(0.006) 

−0.006 

(0.007) 

0.000 

(0.0003) 

0.000 

(0.0006) 

−0.000 

(0.008) 

0.001 

(0.001) 

0.002 

(0.002) 

CWC −0.007 ** 

(0.001) 

−0.013 *** 

(0.0017) 

−0.014 *** 

(0.0023) 

−0.014 * 

(0.0034) 

−0.004 

(0.004) 

−0.001 *** 

(0.0003) 

−0.002 *** 

(0.0004) 

−0.003 *** 

(0.0005) 

−0.002 

(0.0009) 

−0.004 

(0.002) 

CWF 0.002 * 

(0.002) 

0.003 

(0.0018) 

0.004 ** 

(0.0033) 

0.007 ** 

(0.0044) 

−0.001 

(0.0048) 

−0.000 

(0.0004) 

0.000 

(0.0004) 

0.000 

(0.0008) 

−0.000 

(0.0012) 

−0.004 

(0.002) 

P_RES_L −0.003 ** 

(0.086) 

0.001 

(0.108) 

0.000 

(0.161) 

−0.003 

(0.272) 

−0.03 ** 

(0.303) 

0.001 

(0.016) 

0.000 

(0.028) 

0.000 

(0.0416) 

−0.001 

(0.069) 

−0.004 ** 

(0.191) 

P_GAR 0.170 ** 

(0.608) 

0.314 ** 

(0.847) 

0.300 

(0.992) 

0.712 ** 

(1.723) 

0.942 

(1.615) 

0.040 ** 

(0.119) 

0.065 ** 

(0.249) 

0.100 ** 

(0.191) 

0.141 * 

(0.318) 

0.231 

(1.095) 

DVMT −1.145 ** 

(0.058) 

−1.712 * 

(0.065) 

−3.252 *** 

(0.073) 

−2.482 

(0.086) 

−2.756 

(0.086) 

−0.150 

(0.011) 

−0.413 * 

(0.014) 

−0.458 ** 

(0.014) 

−0.264 

(0.019) 

−0.789 

(0.056) 

P_SL_25 −0.633 *** 

(0.105) 

−0.834 *** 

(0.116) 

−1.034 *** 

(0.214) 

−1.323 *** 

(0.287) 

−1.530 *** 

(0.271) 

−0.102 ***  

(0.027) 

−0.156 ***  

(0.035) 

−0.199 ***  

(0.032) 

−0.242 *** 

(0.056) 

−0.274 *** 

(0.183) 

P_S_45 0.321 ** 

(0.561) 

0.316 ** 

(0.474) 

0.178 

(0.649) 

0.163 

(0.779) 

0.532 

(0.946) 

0.087 ** 

(0.098) 

0.081 ** 

(0.125) 

0.069 ** 

(0.113) 

0.008 

(0.226) 

0.166 

(0.754) 

Note: Min, Average, Max, S.D. refer to minimum, average, maximum, and standard deviation values, respectively. *, ** and *** mean that the estimated 

coefficients are statistically significant at the 90%, 95%, and 99% confidential interval, respectively.
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As observed in Figures 4 and 5, the positive effects of CWC, PD, and P_GAR variables 

increase with the quantile of the distribution of total crash rate, indicating that their 

motivating effects are becoming more significant at sites with higher values of crash rates. 

The above findings support the previously reported studies [11] and suggest that utilizing 

the accident prevention and control measures related to the number of residents and 

garages in high-crash-rates sites are more effective than being applied in areas with low 

crash rates. Similar trends are observed in the coefficients of DVKT, P_RES_L, and 

P_SL_25, with the figure (with negative signs) presenting a higher value at the high tail of 

the total crash rates distribution than at the low tail. The quantile effects indicate that the 

greater number of crash rates is, the more significant their effects on crash rates are. 

Generally, road traffic conditions will become increasingly complex when the number of 

traffic accidents increases [12]. In this case, any change in the values of the above three 

variables will lead to a significant increase in traffic crash rates. The finding indicate that 

the effects of approaches used for preventing crashes are more significant in areas where 

there is a high possibility of crashes. The conclusion may be related to urban travelers’ 

and safety engineers’ actions. Whether vehicle drivers or transportation departments, 

they always pay more attention to accident-prone areas than other areas and are more 

sensitive to safety facilities or signals in these areas, which makes these measures more 

useful. 

However, there are different patterns of coefficients related to CWF, ELD_P, and 

P_SL_45. The estimated distribution of parameters of P_SL_45 exhibited a U-shape. 

Specifically, when the quantile value changes from the low tail to the high tail, the figure 

decreases and reaches the lowest point, and then rose during the rest of the distribution. 

Notably, the signs of these parameters do not change across the 97 quantiles.  

In the two models, the figures of coefficients of ELD_P remain unchanged no matter 

how crash rates change, meaning that the effects of elderly people on crash rates are not 

sensitive to variations in crash rate itself. Unfortunately, the coefficients are very close to 

zero, and only very few coefficients were statistically significant, which makes it difficult 

for us to analyze its relationship with the crash rate deeply. One possible explanation is 

that the ELD_P figures vary insignificantly across different CTs. Moreover, some 

unobserved variables may have impacts on the relationships between ELD_P and crash 

rate, but it fails to be explored. Thus, this variable has the same impacts on different CTs 

where there are significant differences in crash rates.  

The effects of a few variables are not only affected by the number of crash rates but 

also influenced by the crash types. Figures 4 and 5 show that in the total crash rate model, 

the coefficients of CWF presented a U-shaped pattern, while in the fatal-plus-injury crash 

rate model, the figures are likely to be constant across different quantiles. The results 

indicate that the CWF did not have a varying effect as the number of fatal-plus-injury 

crash rates change.  

Finally, we find that the coefficient values increase/decrease sharply at the high tail 

(i.e., 0.7, 0.8, and 0.9 quantiles) of the distribution of crash rates than at the low tail (i.e., 

0.1, 0.2, and 0.3 quantiles). The result implies that the safety measures arranged by the 

transportation department in areas with high crash rates should also far exceed those 

arranged in areas with low crash rates. Meanwhile, the distributed pattern of coefficients 

at the high tail is more unstable than that at the low tail. The result is not uncommon. The 

travel environment becomes more chaotic after a crash or crashes, which means that more 

unobserved factors, such as the driver’s reaction, have a greater impact on modelling 

relationships that we observed. 
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Figure 4. Coefficient estimates in SARQ model with total crash rate as the dependent variable. 

 

Figure 5. Coefficient estimates in SARQ model with fatal-plus-injury crash rate as the dependent 

variable. 

6. Conclusions and Future Work 

This study investigated how the regional factors influenced the crash rates changed 

with the number of crash rates using a spatial autoregressive quantile (SARQ) model. 

Using available data collected in New York City from 2017–2019, the relationships 

between three types of nine independent variables, i.e., traffic networks and volume, 

demographic characteristics, and land-use patterns, and crash rates (total or fatal-plus-

injury) were revealed. The main findings of this study are multi-dimensions.  

At first, the SARQ model obtained more robust results in crash rates analysis for 

addressing the skewed distribution, outliers, and spatial autocorrelation. Second, the 
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parameter analysis suggested that eight variables including CWC, PD, P_GAR, P_SL_45, 

CWF, DVMT, and P_SL_25, and are the key factors influencing the variations of total and 

fatal-plus-injury crash rates. The increases of the first five variables increase the crash risk, 

while the growth of other variables reduces the crash rates. The effects of six variables, 

i.e., DVMT, P_RES_L, CWF, PD, P_GAR, P_SL_45, on crash rates (total or fatal-plus-

injury) would become more significant with the number of crash rates. The results imply 

that there should be much more strong accident prevention countermeasures in sites with 

higher crash rates, and the same approaches were expected to be more effective here. 

Some variables, such as ELD_P, had stable effects on crash rates no matter how the 

number of crash rates varies. The effects of P_SL_45 were U-shaped, meaning that there 

are greater relationships between this variable and crash rates at both high-crash rates or 

low-crash-rates areas. Additionally, the effects of CWW were of difference between total 

crash rates and fatal-plus-injury crash rates. The above findings indicate the considerable 

potential of the SARQ model in analyzing the crash rates.  

The policy-based insights of this study include the following several aspects. At first, 

the speed-related traffic facilitates, such as speed bump, no speed, not only in areas with 

high speed and high accident rate but also in areas with high speed and low accident rate. 

In these areas, the driver’s attention is not so focused, which may lead to an increase in 

the accident rate. Secondly, reducing car commuting and setting up traffic control 

measures similar to that in residential areas are very effective in areas with high traffic 

accident rates. Third, there should be much more strong accident prevention 

countermeasures, such as restrictions of traffic entrance, limiting speed, in sites with 

higher crash rates. In addition, when the accident rate in the local area increases to a 

certain level, the strength of these measures should increase exponentially rather than 

linearly. 

Thus, in the follow-up research, the quantile effects of ELD_P should be discussed, 

and advanced models that consider the spatial heterogeneity of crash rates are advocated. 

We highlight that the findings are obtained using datasets in NYC. Similar experiments 

are strongly encouraged to be applied in other datasets and gain more interesting and 

comprehensive findings. 
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Figure A1. Model performance of total crash rate. 
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Figure A2. Model performance of fatal-plus-injury crash rate. 
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