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Abstract: Acoustic scene classification (ASC) tries to inference information about the environment
using audio segments. The inter-class similarity is a significant issue in ASC as acoustic scenes with
different labels may sound quite similar. In this paper, the similarity relations amongst scenes are
correlated with the classification error. A class hierarchy construction method by using classification
error is then proposed and integrated into a multitask learning framework. The experiments have
shown that the proposed multitask learning method improves the performance of ASC. On the TUT
Acoustic Scene 2017 dataset, we obtain the ensemble fine-grained accuracy of 81.4%, which is better
than the state-of-the-art. By using multitask learning, the basic Convolutional Neural Network (CNN)
model can be improved by about 2.0 to 3.5 percent according to different spectrograms. The coarse
category accuracies (for two to six super-classes) range from 77.0% to 96.2% by single models. On
the revised version of the LITIS Rouen dataset, we achieve the ensemble fine-grained accuracy of
83.9%. The multitask learning models obtain an improvement of 1.6% to 1.8% compared to their basic
models. The coarse category accuracies range from 94.9% to 97.9% for two to six super-classes with
single models.

Keywords: acoustic scene classification; convolutional neural network; acoustic scene clustering;
multitask learning; late fusion

1. Introduction

Acoustic scene classification (ASC) refers to the task of associating a semantic label to
an audio stream that identifies the environment in which it has been produced [1]. This
task takes as input a relatively long sound clip and outputs predicted acoustic scene class,
e.g., home, park, and bus. Classifying scenes by audio data has its unique advantages. The
recording of audio data is not restricted by the camera angle and illumination condition,
etc. As a result, the equipment for sound collection can be installed in a wider range where
object occlusion is no more a problem. The collection can run indiscriminately in a dark
environment. Moreover, the storage cost of audio data is relatively low compared to image
or video data. Recently, ASC has shown huge potentials in many industrial and business
applications [2,3], such as surveillance, life-logging, and advanced multimedia retrieval [4].

The inter-class similarity is a common challenge in machine learning research [5].
However, it is getting more prominent in ASC, as the labels of the scenes are commonly
annotated according to the spatial functions related to the place where the audio segments
are recorded. Consequently, there are audio segments that are quite similar in terms of
acoustical characteristics while assigned with different labels, e.g., the segments of a library
and those of an office. It is therefore a challenging task to distinguish these similar scenes
even for humans and they are often misclassified by the machine learning algorithms.

Furthermore, in most cases, misclassification occurs among similar scenes. For exam-
ple, in the TUT Acoustic Scenes 2017 dataset [6], the scene of the beach is misclassified in
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most cases as a residential area. Additionally, home is frequently misclassified as a library,
and so on. These errors seem forgivable considering the similarities existing among the
scenes. For example, pedestrians, laughter, blowing wind, and other sounds exist in both
beach and residential areas. The scenes of home and library may have common aspects, for
instance, the quietness, low-voice speaker, and phone ring. Hence, acoustic scenes tend to
be misclassified as those having similar characteristics.

Based on the above, here we propose learning the similarity relations of acoustic
scenes by taking advantage of the classification errors. In our method, we use the spectral
clustering algorithm on the confusion matrix. The scene (class) set of a certain acoustic
scene dataset is then divided into several subsets according to the similarity relation of
the corresponding acoustic scenes. Each subset is assigned a super-class label. Using this
approach, a two-level class hierarchy can be easily built in the label space of the acoustic
scene dataset.

Ye et al. [7] proposed an acoustic event taxonomy construction approach based on
between-dictionary distances. Li et al. [8] also proposed an acoustic scene clustering method
using agglomerative hierarchical clustering on deep embedding extracted by Convolutional
Neural Network (CNN). Their taxonomy heavily depends on the quality of acoustic feature
learnt and the distance metric selected. Conversely, our construction approach is a simple
solution that does not need any feature embedding.

In this paper, the two-level class hierarchy is further integrated into a multitask
learning framework for ASC. To take advantage of the relevance between the super-class
(coarse category) and original class (fine-grained category), a regularization method is
adopted to optimize the training. Note that multitask learning is not a new idea for
ASC. Tonami et al. [9] proposed a multitask learning-based solution for joint analysis of
acoustic events and scenes where each sample was given both scene and event labels
through manual annotation. Abrol et al. [10] also proposed a multitask model which was
trained with hierarchical coarse and fine labels for ASC. They manually created a two-level
class hierarchy by arranging the fine scene classes into coarse classes. In our proposed
self-organized multitask learning method, the original label space is organized into a
hierarchical structure by learning the similarity relationship from the confusion matrix.
In our method, manual annotation is not required, and the class hierarchy is constructed
automatically solely based on the original dataset. This is the reason that the proposed
method is called “self-organized” multitask learning.

The proposed method is evaluated comprehensively on two publicly available datasets
including the TUT Acoustic Scenes 2017, and the LITIS Rouen [11] datasets. As shown
in Figure 1, there are 15 acoustic scenes and 3 super-classes in the TUT Acoustic Scenes
2017 dataset. It is arranged as a two-level class hierarchy by the original dataset publishers.
We compare the constructed class hierarchy with the original one in the experiment. The
LITIS Rouen dataset provides single-level classes. The experiment demonstrates that a
single-level class dataset can also benefit from the proposed method.
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Figure 1. Different organizations of the label spaces. The label space of TUT Acoustic Scenes 2017
dataset is originally organized as a two-level hierarchy, however, merely single-level labels are
provided in the LITIS Rouen dataset. (a) Labels of the TUT Acoustic Scenes 2017 dataset. (b) Labels
of the LITIS Rouen dataset.
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The contributions of this paper are as the following:

(1) To the best of our knowledge, we are the first to automatically construct a taxonomy
for acoustic scenes by learning similarity relationships from classification errors.

(2) By incorporating the constructed two-level class hierarchy, the proposed self-organized
multitask learning method improves the performance of ASC.

The rest of the paper is organized as follows: Section 2 introduces the related works.
Section 3 describes the proposed method. Experimental results and analyses are presented
in Section 4. Discussion is provided in Section 5. Finally, we conclude in Section 6.

2. Related Works

Audio classification has become a hot topic in the field of signal processing. As an
essential part of the audio classification, ASC has been one of the main tasks in the IEEE
DCASE Challenges (2013, 2016–2021). In the conventional ASC techniques, cepstrum
coefficients, as well as other handcrafted audio features, are classified by the Gaussian
mixture models (GMM), hidden Markov models (HMM) and support vector machine
(SVM) methods [12]. For example, Ma et al. [13] used a hierarchical HMM-based model
fed by MFCC features to classify the environmental sounds. Chakrabarty et al. [14] further
proposed a hybrid GMM–HMM system, where average modulation statistics of the scene
provided by the GMM and temporal trajectories of the modulations obtained by the
HMM are fused to achieve better classification performance. Recently, deep learning
techniques have also achieved impressive results on acoustic scene classification [15], e.g.,
CNN [16–19], RNN [20], LSTM [21], DNN [22,23], and their combinations [21]. Among
these models, CNN is the most popular architecture which has shown promising results in
most recent works. For instance, Eghbal-Zadeh et al. [16] proposed an approach using deep
CNN and binaural i-vectors [24] for ASC. Bae et al. [21] also presented a structure composed
of parallel CNN and LSTM [25] networks, which aimed to extract both spectro-temporal
locality and sequential information.

As in the ASC, inter-class similarity has been a serious problem for fine-grained visual
recognition. To distinguish the degree of similarity among classes, the common solution
is to use triplet loss [26], quadruplet loss, or N-pair-mc loss [27]. In these methods, the
hierarchical relation of classes should be carefully arranged. The selections of anchor
points in these methods are challenging. Nevertheless, these approaches often require a
larger number of training samples and result in more complex optimizations. Multitask
learning is another solution that needs hierarchical labels. Xie et al. [28] studied the large
intra-class and small inter-class variance in fine-grained image classification and proposed
a multitask learning framework. Zhang et al. [26] also designed a multitask framework
to learn fine-grained feature representations. In their framework, hierarchy and share
attributes are embedded by optimizing both classification and similarity constraints. Wu
et al. [29] further formulated a multitask loss on CNN architecture to utilize the semantic
relationships among food categories.

In this paper, we focus on the inter-class similarities problem in ASC and use a
similar multitask learning solution as in fine-grained visual recognition. Hierarchical labels
were also utilized in [10,22] for multitask learning of ASC. Nevertheless, in those works,
the problem of automatic construction of class hierarchy was not considered. Recently,
multitask learning approaches have been proposed to perform a joint analysis of acoustic
scenes and events [9,30]. However, in these methods, the datasets should be intentionally
prepared using audio synthesis or additional manual annotation.

The size of datasets in ASC is relatively small thus it may lead to over-fitting. High-
quality labeled data are expensive to acquire, especially for audio data. To increase the size
of the datasets, data augmentation is widely used and proven as effective practice [31,32].
Salamon et al. [32] augmented the data by deforming the audio signal directly before
converting it into log-Mel spectrograms. The applied deformation included time stretching,
pitch shifting, dynamic range compression, and background noise.
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Nevertheless, not all augmentation techniques are helpful. Those samples augmented
far from their original ones are harmful to the classification performance. To solve this
problem, Lu et al. [33] proposed a metric learning-based framework to ensure appropriate
augmentation for the appropriate training data. In [31], a GAN-based [34] method was
used to generate additional samples for ASC. These samples were selected by an SVM
hyperplane to ensure augmentation quality.

Zhong et al. [35] proposed a random erasing method for CNN data augmentation. In
the method, a rectangle region is randomly selected within an image. The pixels in the
region are erased with random values. This method is easy to implement, and random
erasing keeps most of the information in the original image. As a result, the filtering
operation to remove the harmful augmented samples performed in [31,33] is not necessary
here. Gharib et al. [36] applied a similar random erasing method for ASC and achieved an
improvement of 0.13 percent compared with their baseline system.

Mixup [37] is another interesting data augmentation method. This method constructs
a new example using a linear interpolation of two random examples from the training
set and their labels. Xu et al. [18] used a multi-channel CNN in ASC and applied mixup
to improve prediction accuracy. In this paper, a class hierarchy construction method is
proposed which appends super-class labels for the training examples. The method does not
increase the size of the dataset. However, it extends the label space of the samples, hence
providing more information. It is demonstrated in our experiment that using multitask
learning with a two-level class hierarchy can effectively enhance the generalization of the
CNN model. Although both mixup and class hierarchy construction bring changes into the
label space, mixup modifies the labels from the one-hot into the ratio type, whereas the class
hierarchy construction provides more one-hot labels by constructing super-class labels.

3. Proposed Method
3.1. Overview

In this paper, we propose a self-organized multitask learning method. The proposed
solution includes two stages: a two-level class hierarchy is automatically constructed in the
first stage using a basic model. The final classifier is then obtained by training a multitask
learning model using the constructed super-class labels and the original fine-grained labels
in the second stage. As shown in Figure 2, the proposed method for ASC includes the
following four steps:

(1) Preparing spectrograms: transforming the raw audio segments into spectrograms that
are suitable for CNN models.

(2) Getting a basic model: training a single-task CNN model as a basic model using the
spectrograms and original fine-grained scene labels.

(3) Constructing a class hierarchy: testing the validation set on the basic model to obtain
a confusion matrix. The spectral clustering is performed on the confusion matrix to
generate super-classes.

(4) Getting the final model: training a multitask CNN model as the final classifier to predict
both the original scene class and the constructed super-class using hierarchical labels.
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3.2. Spectrograms Generation

To apply CNN models, spectrograms are generated from the audio segments using
certain signal processing methods, e.g., the Short-Time Fourier Transform (STFT) [38],
Constant-Q-Transform (CQT) [39], and Mel Frequency Cepstral Coefficients (MFCC) [40].
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They are split into multiple samples and fed into the CNN model. The spectrogram is con-
sidered as a time-frequency representation of the acoustic scene [41]. As CNN is effective
in learning spatially local correlations from images, it can use the spatial and temporal
information in the spectrograms. However, different spectrograms have different process-
ing abilities for the corresponding frequency range, which can be used for characterizing
different acoustic scenes. Therefore, CNN models are widely used as the deep feature
extractor, and multiple spectrogram fusions are usually applied in ASC for performance
enhancement [17,42,43].

In this paper, we generate three kinds of spectrograms, STFT, CQT, and log-Mel
spectrograms, and then evaluate the proposed method on these different presentations,
respectively. Details about the spectrogram generation are described in Section 4.1.

3.3. Basic Model

Using these spectrograms with fine-grained labels, a CNN model is trained to classify
the acoustic scenes. The trained CNN model is referred to as the basic model. A VGG-
like network [17] is considered here as the basic model and its structure is illustrated in
Table 1. After training on different spectrograms, various basic models become available.
Specifically, three basic CNN models are evaluated in the paper, namely the VGG-STFT,
VGG-CQT, and VGG-Log-Mel models.

Table 1. Architecture of the proposed CNN network.

Layer Conv1 Conv2 Pool1 Conv3 Conv4 Pool2 Conv5 Conv6 Conv7 Conv8 Pool3 Conv9 Conv10 Conv11 Full1

Kernel 5 × 5 3 × 3 Max,
2 × 2 3 × 3 3 × 3 Max,

2 × 2 3 × 3 3 × 3 3 × 3 3 × 3 Max,
2 × 2 3 × 3 1 × 1 1 × 1 −

Stride 2 1 2 1 1 2 1 1 1 1 2 1 1 1 −
Padding 2 1 0 1 1 0 1 1 1 1 0 0 0 0 −

Number of
Channels 32 32 32 64 64 64 128 128 128 128 128 512 512 C C

Dropout rate − − 0.3 − − 0.3 − − − − 0.3 0.5 0.5 − −
Activation ReLu ReLu − ReLu ReLu − ReLu ReLu ReLu ReLu − ReLu ReLu ReLu −
Batchnorm Yes Yes − Yes Yes − Yes Yes Yes Yes − Yes Yes Yes −

Note: Symbol C in the last two columns represents the number of classes.

Without loss of generality, the architecture of CNN and the spectrogram are not speci-
fied below. Suppose we are given a set of n training samples TS =

{(
x1, yo

1
)
, . . . , (xn, yo

n)
}

with yo
i ∈ {1, . . . , C} indicating the fine-grained acoustic scene class label of image,

xi, i ∈ [1, n] (namely a spectrogram patch); superscript o denotes original labels of
the dataset.

The CNN network consists of multiple convolutional and pooling layers. At the end
of the network, the output layer uses a softmax activation function to assign probabilities
to each possible class, where there are C nodes in the output layer. Let P(yo

i

∣∣xi) be the
probability corresponding to the true-ground class of xi. There are also L nodes in the
next-to-last layer, which are mapped to C nodes using the fully connected layer. Let
Wv,u(v ∈ [1, C]; u ∈ [1, L]) denote the weights of connections between these two layers. A
negative log-likelihood loss is adopted in the basic model, i.e.,

Loss(W) =
1
n ∑

(xi ,yo
i )∈TS

(− log P(yo
i |xi, W)) + α||W||22 (1)

3.4. Super-Class Labels Construction

Constructing the super-classes by merging similar acoustic scenes is a natural and
straightforward method. However, it is difficult to find out scenes with similar acoustical
properties. Generally, the audio segments are transformed into a certain kind of embedding,
and distances defined on the embedding spaces are used to group the scenes into coarse
categories. However, learning of embedding and distance definition is not easy, and the
clustering results are hard to explain.

In our research, we use misclassification information to approximate the similarities
among classes. Specifically, a certain set (e.g., the validation set) of samples is evaluated
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on a basic model. These predicted results are counted into a confusion matrix. Finally, a
spectral clustering algorithm is applied to construct super-class labels and thus expand the
label space. The pipeline is illustrated in Figure 3.
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Figure 3. The pipeline of the construction of super-class labels. Each sample in the validation set
is evaluated by the trained basic CNN model. The prediction results are collected to compute a
confusion matrix. Then, a spectral clustering algorithm is performed upon this matrix. As a result,
original acoustic scene classes are clustered into several subsets. The classes in the same subset
are considered as similar scenes and the same super-class label is assigned to their corresponding
samples.

For a certain basic CNN model, such as the VGG-STFT, a confusion matrix F can be
calculated, with Fci, cj denoting the number of the samples of class ci that are classified
as class cj by that model. After pre-processing, F is transformed to a matrix D to ensure
symmetry:

D =
(

F + FT
)

/2 (2)

Using this matrix D, we apply spectral clustering [44] to divide the original C classes
into N subsets H1, . . . , HN , H1 ∪ . . . ∪ HN = {1, . . . , C}; Hhi ∩ Hhj = ∅( hi 6= hj; hi, hj ∈
[1, N]). The proposed clustering algorithm is provided in Algorithm 1.

Each subset is assigned a super-class label. The TS can be rewritten as TS ={(
x1,

〈
yo

1, ye
1
〉)

, . . . , (xn, 〈yo
n, ye

n〉)
}

with ye
i ∈ {1, . . . , N} indicating the super-class label

of xi, i ∈ [1, n], where superscript e denotes the expanded label. Therefore,

∀i∀j∃m
((

yo
i ∈ Hm ∧ yo

j ∈ Hm

)
→ ye

i = ye
j

)
(3)

The number of super-classes in the above construction (i.e., N) is a hyperparameter
and is selected using experiments.

Algorithm 1. Clustering algorithm in super-class generation

Input: the confusion matrix F, number of clusters N.
Output: super-class clusters H1, . . . , HN
1. Set the diagonal elements of F to zero:
Fk,k = 0, k ∈ {1, . . . , C}
2. Normalize each row of F by the following equations:

SMk =
C
∑

d=1
Fk,d

Fk,t = Fk,t/SMk , k, t ∈ {1, . . . , C}
3. Transform F into a symmetric matrix D:
D =

(
F + FT)/2

4. Assume that B is a diagonal matrix whose elements are set as:

Be,e =
C
∑

q=1
De,q, e ∈ {1, . . . , C}

5. Construct the Laplacian matrixG by:
G = B− D
6. Calculate the eigenvectors a1, a2, . . . , aN corresponding to the N smallest eigenvalues of G.
7. Let A ∈ RCN be the matrix containing a1, a2, . . . , aN as columns; let ri ∈ RN be the i-th row of A.
8. Use K-means algorithm to cluster {r1, r2, . . . , rC} into N clusters RC1, . . . , RCN .
9. Output clusters H1, . . . , HN with Hhi = {z|rz ∈ RChi}, hi ∈ {1, . . . , N}.
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3.5. Multitask Learning Model

In the second stage, the constructed two-level class hierarchy is incorporated into a
multitask learning framework. The structure of the multitask learning model is illustrated
in Figure 4. As it is seen the discrimination of super-class has become an additional task in
the classification process. Consequently, the basic model is transformed into a multitask
learning paradigm. The details are provided in the following.
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To make the model aware of the inter-class similarities, we add another output layer
onto the basic CNN model, leaving all other details of the model unchanged. The newly
added layer has N output nodes and is fully connected onto the original next-to-last layer.
The weights of the newly added connections are denoted as Umj,mi(mj ∈ [1, N]; mi ∈ [1, L]).
We then update the reconstruction error of the new model into a multitask learning form as
the following:

E = ∑
(xi ,〈yo

i ,ye
i 〉)∈TS

−( γ log P(yo
i |xi, W; U) + (1− γ) log P(ye

i |xi, W; U)) (4)

where γ ∈ [0, 1] controls the proportion between the original task and the new task
in the reconstruction error. The weight vector Wt = (Wt,1, . . . , Wt,L) for original class t
should capture similar high-level patterns [28,45] as the weight vector for the super-class
s(t) of class t, i.e., Us(t) =

(
Us(t),1, . . . , Us(t),L

)
. Therefore, we introduce the following

regularization into the loss function:

R =
C

∑
t=1

∣∣∣∣∣∣Wt −Us(t)

∣∣∣∣∣∣2
2

(5)

Finally, the loss function of the new model can be defined as:

LossML(W; U) = E/n + α·R + β·||W; U||22 (6)

where α and β are set to 0.0001.
After performing the self-organized multitask learning method, respectively, we can

obtain boosted models, e.g., VGG-STFT-ML (from VGG-STFT), VGG-CQT-ML (from VGG-
CQT), and VGG-Log-Mel-ML (from VGG-Log-Mel). As expected, our experiments confirm
that the updated model outperforms the basic models.

Note that the CNN model is a building block in the proposed framework. It can be
replaced by any other popular CNN architecture, such as ResNet [46] and GoogleNet [47].
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The backbone of the multitask learning network is not necessary to be restricted by the
basic model. We keep most of the layers unchanged in multitask learning model to facilitate
performance comparison.

Furthermore, the class hierarchy construction and self-organized multitask learning
approaches are not limited to CNN. Hence, similar ideas apply to other models such as
RNN/LSTM, DNN, and DBN, and might be suitable for other applications.

4. Experiments and Results
4.1. Experiment Setup

The TUT Acoustic Scenes 2017 dataset [6] and LITIS Rouen dataset [11] (a revised
version) are selected to evaluate the performance of our method. The TUT Acoustic Scenes
2017 dataset includes Development and Evaluation sets. We have trained the model on the
Development set and evaluated it on the Evaluation set. We also follow the four-fold split
provided by the dataset publishers.

The LITIS Rouen dataset is one of the commonly used publicly available datasets
for ASC. However, it tends to provide over-optimistic results as some examples cut from
the same long recordings are distributed into the training set and test set, respectively.
To avoid the “album effect”, Rakotomamonjy [48] had created a corrected version of the
LITIS Rouen dataset, namely Rouen-15. However, it was not made public. To this end, we
create a revised version by ourselves in this paper. We first merge the 3026 examples into
487 recording files according to the mapping relation presented by the dataset provider on
their website. The dataset is then divided into the training set and test set by file. Similarly,
four-fold cross-validation is performed. The training set is further split into four folds by
file as well. At last, these files are restored into examples. Specifically, 684 examples are
selected as a test set, while 2342 examples are used for training, which are split into 641,
617, 545, and 539 examples, respectively.

Three kinds of spectrograms are generated for the evaluation experiments including
STFT, CQT, and log-Mel spectrograms. Spectrograms are generated for each channel (left
and right) from the audio clips. To generate STFT spectrograms, the window size is set
to 16 ms (706 points) and the hop length is 9.75 ms (430 points) at 44.1 KHz for the TUT
Acoustic Scenes 2017 dataset. For the LITIS Rouen dataset, the window size is 32 ms
(706 points) and the hop length is 19.5 ms (430 points) at 22.05 KHz.

Logarithmic power spectral densities (10 log10 PSD) are utilized to plot the spectro-
grams, which are generated in a one-sided fashion. The sizes of the spectrograms are
1024 × 354 pixels and 1537 × 354 pixels for the two datasets. The spectrograms are divided
into patches with a width of 143 pixels and a shift step of 126 pixels. The size of each patch
is 143 × 354 pixels. Therefore, we obtain 8 and 12 patches for each spectrogram on the two
datasets, respectively.

CQT spectrograms are generated using a python library, Librosa 0.5.0. In the gen-
eration function, the sampling rate is set as 22.05 KHz, the filter scale is set to 2, and the
frequency bin is 110. Other parameters are set to their default values. The CQT spectro-
grams with the sizes of 862 × 110 pixels and 1292 × 110 pixels are generated for the TUT
Acoustic Scenes 2017 and the LITIS Rouen, respectively. The spectrograms are split into
patches with a 143-pixels width and an 80-pixels shift step. Consequently, we obtain 10
and 15 patches for each spectrogram per channel on the two datasets, respectively.

We then extract log-scaled Mel-spectrograms with 128 Mel-bands, using a window size
of 92.8 ms (2048 points at 22.05 KHz) and a hop length of 46.4 ms. The sizes of the log-Mel
spectrograms for the two datasets are 430 × 128 pixels and 646 × 128 pixels, respectively.
The patch width is set as 143 pixels and the shift step is 71 pixels. We can generate 5
and 8 patches from each spectrogram on the two datasets. All patches are resized into
143 × 143 pixels before they are fed into the CNN networks. In addition, patches derived
from both channels are separately treated as samples. Note that the above settings of hop
lengths and shift steps are decided and justified in our previous work [17] and reused here
for convenience.
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The experiments are implemented using the TensorFlow [49] platform. A mini-batch
size of 256 is used as well as an early stopping strategy with a patience parameter of 30 and
a maximum epoch of 200. We use Adam [50] optimizer with a learning rate of 0.0001. In
the following experiments, γ in Equation (4) is set to 0.6 for all the multitask models. An
example-level majority voting accuracy is selected as a performance metric in the following
experiments.

4.2. Selection of Super-Class Number

In the self-organized multitask learning models, the number of super-class is an
important parameter that is closely related to the performance. For a given dataset with
C classes, the maximum and the minimum super-class number is C-1 and 2, respectively.
One way is to train and test the multitask learning models with all the possible super-class
numbers and select the model with the highest accuracy. This, however, causes substantial
waste of computing resources. To observe the differences, we have implemented the
multitask learning model using CQT spectrograms on both datasets with all super-class
numbers. Their corresponding accuracies are presented in Figures 5 and 6.
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As it is seen in Figure 5, applied on the TUT Acoustic Scenes 2017 dataset the previous
five models (with super-class numbers 2, 3, 4, 5, and 6) achieve higher accuracies than that
of other models. In other words, the multitask learning model with a very large super-class
number is not competitive in performance. Similarly, in Figure 6, the previous five models
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(except for the one with 4 super-classes) provide higher accuracies on the LITIS Rouen
dataset. Although the decline of performances with the increase in super-class numbers is
not apparent, the best results are still achieved with relatively small super-class numbers.
Consequently, only the multitask learning models with two to six super-classes are explored
in the following experiments.

Note that in Figures 5 and 6, it can be seen that the accuracies of the multitask learning
models outperform the basic model in most cases.

4.3. Evaluations on the TUT Acoustic Scenes 2017 Dataset

Using the proposed method, the basic CNN models are trained on the STFT, CQT, and
log-Mel spectrograms. Based on a specific basic model, a confusion matrix is generated for
each validation set. To obtain more stable divisions, we repeat the process three times. The
final confusion matrix used is calculated using the sum of the twelve confusion matrices
(three times × four splits), as shown in Figure 7.
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Figure 7. Confusion matrices on the TUT Acoustic Scenes 2017 dataset generated by the basic models
(a) using STFT spectrograms; (b) using CQT spectrograms; and (c) using log-Mel spectrograms. The
abscissa represents the predicted label, and the ordinate indicates the true label. Note: Beach (1), bus
(2), café/restaurant (3), car (4), city center (5), forest path (6), grocery store (7), home (8), library (9),
metro station (10), office (11), park (12), residential area (13), train (14), and tram (15).

Based on the confusion matrices, the original 15 acoustic scenes are grouped into
two to six super-classes. The division details are listed in Table 2. For example, using the
confusion matrix generated by the STFT basic model (Figure 7a), the 15 acoustic scenes can
be divided into two super-classes: the classes of bus, car, train, and tram are grouped as one
super-class (represented as the blue squares); the other 11 classes are grouped as another
super-class (represented as the red circles). Compared with the original super-classes
(namely Indoor, Outdoor, and Vehicle categories, see Figure 1a), there are some interesting
findings with the constructed divisions. First, for the two super-classes’ divisions, each of
them keeps one original super-class and merges the other two into another super-class. For
the three super-classes’ divisions, the results for CQT and log-Mel model are identical to
the original Indoor, Outdoor, and Vehicle divisions. The four super-classes’ divisions for
STFT, CQT, and log-Mel models are the same. In addition, the five super-classes’ divisions
for CQT and log-Mel models are also identical. In fact, in most cases, the divisions are
very similar to each other. The above results confirm the robustness of the class hierarchy
construction method.

In general, we rate the divisions for the log-Mel model as the best divisions. For
example, its three super-classes’ division is identical to the original division, where the
two super-classes’ division merges the Outdoor and Vehicle into one super-class, which
seems more reasonable. It is believed that the superiority in divisions is due to the high
performance of the log-Mel basic model (see Table 3). Hence, the basic classifier and the
evaluated samples for confusion matrix creation should be well-chosen.
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Table 2. Clustering details of the constructed super-class for the TUT Acoustic Scenes 2017 dataset.
The classes marked by the same shape with the same color are grouped into the same super-class.

Clustering Scheme Supper-Class for
STFT Model

Supper-Class for
CQT Model

Supper-Class for
Log-Mel Model

Two
Super-Classes
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Table 3. Classification performance of the TUT Acoustic Scenes 2017 dataset using different models.

Model Type Feature Type Super-Class
Number

15 Scenes
Accuracy

Super-Class
Accuracy

Basic Model STFT / 60.0 ± 0.5 /
Multitask STFT 2 61.1 ± 0.3 93.1 ± 0.6
Multitask STFT 3 62.0 ± 0.1 88.8 ± 0.4
Multitask STFT 4 61.1 ± 0.1 85.9 ± 0.8
Multitask STFT 5 61.5 ± 0.5 82.6 ± 0.2
Multitask STFT 6 60.7 ± 0.2 77.0 ± 0.2

Basic Model CQT / 67.5 ± 0.2 /
Multitask CQT 2 68.7 ± 0.2 96.2 ± 0.1
Multitask CQT 3 68.4 ± 0.3 92.5 ± 0.4
Multitask CQT 4 69.5 ± 0.8 89.3 ± 0.7
Multitask CQT 5 68.5 ± 0.4 84.8 ± 0.4
Multitask CQT 6 68.1 ± 0.6 84.0 ± 0.6

Basic Model log-Mel / 69.3 ± 0.1 /
Multitask log-Mel 2 71.5 ± 1.0 94.9 ± 0.1
Multitask log-Mel 3 72.1 ± 0.4 93.8 ± 0.1
Multitask log-Mel 4 71.5 ± 1.5 91.0 ± 0.4
Multitask log-Mel 5 72.8 ± 0.7 89.5 ± 0.5
Multitask log-Mel 6 71.9 ± 1.1 85.2 ± 0.8

To demonstrate the effectiveness of the proposed multitask learning method, the
performances of the multitask models with different super-class numbers using different
spectrograms are given in Table 3. The super-class division used in the experiments here is
presented in Table 2. The experiments are carried out three times and the results are then
reported using the average and standard deviation in percentage. For the STFT models, the
best-achieved accuracy is 62.0% obtained by the multitask model with three super-classes.
This confirms an improvement of 2.0% in comparison with the basic model. Similarly, an
accuracy of 69.5% is achieved by the multitask CQT model with four super-classes which is
equivalent to an improvement of 2.0% over the basic model.

The accuracy of the multitask CQT model with three super-classes is 68.4%, which
is identical to the original Indoor, Outdoor, and Vehicle division. As we can see, the
performance of the model using original manually grouped division is outperformed by
the one using super-classes generated by the proposed method. This means that even the
datasets with hierarchical labels benefit from the proposed method.

The same situation can be observed in the log-Mel models. The accuracy of the
multitask log-Mel model using three super-classes (they are the same as the original
division) is 72.1%. However, the best accuracy among the multitask log-Mel models is
72.8%. This indicates an improvement of 3.5% over the basic model. All the multitask
models (with two to six super-classes) have outperformed their corresponding basic models
in Table 3.

A one-sided paired t-test was applied to obtain the statistical significant difference of
the accuracy of 15-scenes between the basic model and the corresponding best-performed
multitask model. The results revealed the statistical significance (significance level < 0.05)
of the accuracy improvement on the STFT, CQT, and log-Mel models, respectively.

4.4. Evaluations on the LITIS Rouen Dataset

The confusion matrix used is similarly calculated using the sum of the twelve confusion
matrices generated from the validation sets (Figure 8).
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represents the predicted label, and the ordinate indicates the true label. Note: Quiet street (1), busy 
street (2), restaurant (3), plane (4), shop (5), bus (6), train (7), metro Rouen (8), market (9), café (10), 
car (11), tubestation (12), high speed train (13), kid game hall (14), metro Paris (15), billiard pool hall 
(16), student hall (17), pedestrian street (18), and train station hall (19). 
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Figure 8. Confusion matrices on the LITIS Rouen dataset generated by the basic models (a) using
STFT spectrograms; (b) using CQT spectrograms; and (c) using log-Mel spectrograms. The abscissa
represents the predicted label, and the ordinate indicates the true label. Note: Quiet street (1), busy
street (2), restaurant (3), plane (4), shop (5), bus (6), train (7), metro Rouen (8), market (9), café (10),
car (11), tubestation (12), high speed train (13), kid game hall (14), metro Paris (15), billiard pool hall
(16), student hall (17), pedestrian street (18), and train station hall (19).

According to the above confusion matrices, the 19 scene classes in the LITIS Rouen
dataset are grouped into two to six super-classes, as shown in Table 4. The divisions indicate
the following findings: First, it is found that the outputs of the class hierarchy construction
method are stable and robust. For example, the three super-classes’ divisions for the STFT
model and log-Mel model are the same. Likewise, the five super-classes’ divisions and the
six super-classes’ divisions for the STFT model and CQT model, respectively, are identical.
The two super-classes’ divisions and four super-classes’ devisions for the STFT model and
log-Mel model are very similar as well. The difference only lies in the division of a single
class. Second, the classes bus, train, metro Rouen, car, high-speed train, and metro Paris are
grouped into one super-class in almost all cases. It is the equivalent of the Vehicle category
in the TUT Acoustic Scenes 2017 dataset. However, the class plane is separated from the
Vehicle super-class and divided as a one-element super-class, which seems more reasonable,
as the plane is a kind of non-ground transportation. The classes restaurant, billiard pool
hall, and student hall are also clustered as a fixed combination regularly. The features they
have in common include their medium-sized indoor space and people’s close-talk. These
features may produce similar acoustical characteristics.
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Table 4. Clustering details of the constructed super-class for the LITIS Rouen dataset. The classes
marked by the same shape with the same color are grouped into the same super-class.

Clustering Scheme Generated by
STFT Model
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CQT Model
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Table 5 compares the accuracies of basic models, as well as their corresponding 
multitask learning models. The experiments are repeated three times and the average and 
standard deviation accuracies are provided. For the STFT models, the best accuracy is 
76.0% which is achieved by the multitask model with four super-classes. It is equivalent 
to an improvement of 1.6% over the basic model. Additionally, the five multitask models 
all outperform the basic one. For the CQT models, the multitask model with two super-
classes achieves the best accuracy, providing an improvement of 1.9% over the basic 
model. Again, the five multitask CQT models are all superior to the basic model. For the 
log-Mel models, the best accuracy of 78.1% is achieved by the multitask model with two 
super-classes. This is equivalent to an improvement of 1.8% over the basic one. Similarly, 
the results of the t-test had revealed the statistical significance (significance level < 0.05) of 
the accuracy improvement by the corresponding best-performed multitask model (over 
the basic model) on the STFT, CQT, and log-Mel models, respectively. According to the 
results, the classification performance of LITIS Rouen dataset has been significantly 
improved by constructing super-classes and integrating them into the multitask learning 
framework. Consequently, we can see that the proposed self-organized multitask learning 
method is also helpful for the acoustic scene datasets with single-level labels. According 
to the extended super-class labels for each sample, the super-class results predicted by the 
multitask learning models are also evaluated and shown in Table 5. High accuracies have 
been achieved on the super-class classification tasks. For instance, for the log-Mel models, 
an accuracy of 97.9% is achieved for the two super-classes classification and it is 94.9% for 
the six super-classes classification. 
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Table 5 compares the accuracies of basic models, as well as their corresponding
multitask learning models. The experiments are repeated three times and the average and
standard deviation accuracies are provided. For the STFT models, the best accuracy is
76.0% which is achieved by the multitask model with four super-classes. It is equivalent
to an improvement of 1.6% over the basic model. Additionally, the five multitask models
all outperform the basic one. For the CQT models, the multitask model with two super-
classes achieves the best accuracy, providing an improvement of 1.9% over the basic model.
Again, the five multitask CQT models are all superior to the basic model. For the log-Mel
models, the best accuracy of 78.1% is achieved by the multitask model with two super-
classes. This is equivalent to an improvement of 1.8% over the basic one. Similarly, the
results of the t-test had revealed the statistical significance (significance level < 0.05) of
the accuracy improvement by the corresponding best-performed multitask model (over
the basic model) on the STFT, CQT, and log-Mel models, respectively. According to
the results, the classification performance of LITIS Rouen dataset has been significantly
improved by constructing super-classes and integrating them into the multitask learning
framework. Consequently, we can see that the proposed self-organized multitask learning
method is also helpful for the acoustic scene datasets with single-level labels. According to
the extended super-class labels for each sample, the super-class results predicted by the
multitask learning models are also evaluated and shown in Table 5. High accuracies have
been achieved on the super-class classification tasks. For instance, for the log-Mel models,
an accuracy of 97.9% is achieved for the two super-classes classification and it is 94.9% for
the six super-classes classification.

Table 5. Classification performance of the revised version of the LITIS Rouen dataset using different
models.

Model Type Feature Type Super-Class
Number

19 Scenes
Accuracy

Super-Class
Accuracy

Basic Model STFT / 74.4 ± 0.7 /
Multitask STFT 2 75.7 ± 0.6 97.1 ± 0.2
Multitask STFT 3 75.0 ± 0.6 96.6 ± 0.2
Multitask STFT 4 76.0 ± 0.4 95.8 ± 0.3
Multitask STFT 5 75.5 ± 0.9 96.1 ± 0.1
Multitask STFT 6 74.7 ± 0.5 95.2 ± 0.3

Basic Model CQT / 75.6 ± 0.8 /
Multitask CQT 2 77.5 ± 0.4 97.3 ± 0.1
Multitask CQT 3 77.2 ± 0.5 97.7 ± 0.4
Multitask CQT 4 75.8 ± 0.7 96.6 ± 0.0
Multitask CQT 5 77.0 ± 0.3 96.7 ± 0.2
Multitask CQT 6 76.5 ± 0.6 95.1 ± 0.3

Basic Model log-Mel / 76.3 ± 0.7 /
Multitask log-Mel 2 78.1 ± 0.3 97.9 ± 0.3
Multitask log-Mel 3 77.7 ± 0.9 97.9 ± 0.0
Multitask log-Mel 4 76.2 ± 0.7 95.6 ± 0.3
Multitask log-Mel 5 76.7 ± 0.3 95.6 ± 0.2
Multitask log-Mel 6 77.1 ± 1.0 94.9 ± 0.4

4.5. Ensemble Results

Late fusion ensemble is commonly used in the domain of ASC (see, e.g., [31,51]). For
instance, in [31], the linear logistic regression was performed on the classification scores of
eight models to obtain fusion results by the winner of first place in the DCASE Challenge
2017. Here, we also use a late fusion ensemble. Specifically, the best multitask models are
selected and combined with a simple majority voting scheme. For the TUT Acoustic Scenes
2017 dataset, these models include the multitask STFT model with three super-classes, the
multitask CQT model with four super-classes, and the multitask log-Mel model with five
super-classes. For the revised version of the LITIS Rouen dataset, these models include
the multitask STFT model with four super-classes, the multitask CQT model with two
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super-classes, and the multitask log-Mel model with two super-classes. The ensemble
results, as well as the state-of-the-art results for the two datasets, are displayed in Table 6.

Table 6. Comparison of accuracies with state-of-the-art works.

Reference Method Accuracy Dataset

[31] GAN + SVM + FCNN 83.3 TUT
[51] Background subtraction 80.4 TUT
[52] Late fusion of CNN and ensemble classifiers 80.0 TUT
[53] Embedded filters + DCT-based temporal module 79.2 TUT
[17] Multi-spectrogram fusion 77.7 TUT
[18] Mixup + multi-channel 76.7 TUT
[54] Sound texture enhancement 75.7 TUT
[55] Multi-spectrogram encoder-decoder 72.6 TUT

Ensemble of three basic
models Ensemble 77.8 TUT

Our method Super-class construction + multitask learning 81.4 TUT

[48] Supervised nonnegative matrix factorization 81.8 Rouen-15
Ensemble of three basic

models Ensemble 78.1 Rouen-revised

Our method Super-class construction + multitask learning 83.9 Rouen-revised

Note: TUT is referred to the TUT Acoustic Scene 2017 dataset (evaluation set); Rouen-15 for the LITIS Rouen-15
dataset; and Rouen-revised for the LITIS Rouen dataset (revised version).

As shown in Table 6, the ensemble result using the three best multitask models for
the TUT Acoustic Scenes 2017 is 81.4%. This is higher than the accuracies of most of the
state-of-the-art techniques listed in Table 6 except for the model in [31] which used GAN
data augmentation. The ensemble result using the three best multitask models for our
revised version of LITIS Rouen is 83.9%. For a rough comparison, the accuracy of Rouen-15
(81.8%) [48] is listed here. This is as the evaluated datasets are different. To comprehensively
evaluate the multitask learning method, the three basic models are also late fused using the
same ensemble method. The ensemble result on the TUT Acoustic Scenes 2017 dataset is
77.8% and the one on the LITIS Rouen dataset is 78.1%. Hence, our proposed ensemble
results outperform the corresponding basic ensemble results by 3.6% and 5.8%, respectively,
on the two considered datasets.

5. Discussion
5.1. Similarity Relationship of Acoustic Scenes

The experiment results confirm our assumption that the similarity relation amongst the
acoustic scenes can be reflected by the classification errors. For example, according to the
confusion matrices (Figure 7), in most cases, the classes of beach, city center, and park are,
respectively, misclassified as residential areas (for example, there are 1167 beach samples
misclassified as residential areas in Figure 7a). Additionally, the residential areas are
misclassified as parks; grocery stores are misclassified as cafés; and homes are misclassified
as libraries and vice versa. It is also seen that a train is misclassified as a tram, a car is
misclassified as a bus, and so on. Similarly, for the LITIS Rouen dataset (Figure 8), in most
cases, the class of shop is misclassified as market; metro Rouen is misclassified as metro
Paris, and the train station hall is misclassified as a market. The above scenes are similar
and understandable from the human point of view, hence seem convincing to us that the
similarity relationship among scenes can be learnt from the confusion matrix.

5.2. Advantages of the Super-Class Construction Method

Deviating from the classical acoustic scene/event taxonomy methods [7,8], the pro-
posed super-class construction method only depends on the classification results by a basic
classifier. It does not need any feature embedding. The method is simple and effective. As
shown in Tables 2 and 3, identical class hierarchies can be achieved by using classifiers on
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different spectrograms. Furthermore, the method does not limit the type of basic classifier.
It can be SVM, random forest, and other models, although the CNN model is applied in this
paper. In this sense, the proposed method has good robustness and general applicability.
On the other hand, the super-class is constructed based on the similarity relations among
scenes. It is more explainable compared to the embedding-based results. Finally, the
proposed method is also capable to construct a multi-level class hierarchy.

Although the construction method is proposed for ASC, it can be easily extended into
acoustic event clustering and other audio taxonomy.

5.3. Foundation of Self-Organized Multitask Learning

As shown in the experiments, the proposed self-organized multitask learning method
can improve the ASC performance compared to the corresponding basic models. The
achieved improvement comes in three ways. First, the constructed super-class labels
provide more information in supervised learning. Second, teaching the model to classify
the fine-grained category along with the coarse category accords with the cognitive law of
“learning the easy things first” [56]. Third, according to [57], the performance of the harder
task can be improved by using the information obtained from easier tasks, where predicting
the super-class is an easier task. As shown in Table 5, high super-class accuracies are
achieved by our models. For example, the two to six super-classes accuracies of multitask
learning models using log-Mel spectrograms in the LITIS Rouen dataset are 97.9%, 97.9%,
95.6%, 95.6%, and 94.9%, respectively. Consequently, to keep the auxiliary task easy, the
number of super-class should not be too large. This also justifies why competitive results
are not obtained by the models with larger super-class numbers (see Figures 5 and 6).

5.4. Regularization by Similarity Relation

The relevance between super-class and original class is expressed as a regularization
item in the multitask learning loss function (see Equation (5)). According to our experiments,
this regularization slightly improves the performance. The evaluation experiments are only
performed on the multitask learning models with three super-classes using STFT, CQT, and
log-Mel spectrograms in both datasets. The improvements in the TUT Acoustic Scene 2017
dataset are 0.3%, 0.6%, and 0.8% and those in the LITIS Rouen dataset are 0.4%, 0.4%, and
0.6%, for STFT, CQT, and log-Mel models, respectively.

6. Conclusions

In this paper, the similarity relation among acoustic scenes is utilized to construct a
two-level class hierarchy. The class hierarchy is further incorporated into a self-organized
multitask learning framework. The experimental results show that the proposed multitask
learning method can improve the classification performance effectively using different
spectrograms.

The best improvements of the STFT, CQT, and log-Mel multitask models over their
corresponding basic models are 2.0%, 2.0%, and 3.5%, respectively, on the TUT Acoustic
Scenes 2017 dataset. Corresponding to two to six super-classes, respectively, the coarse
category classification accuracies range from 93.1 to 77.0% for STFT models, from 96.2% to
84.0% for CQT models, and from 94.9% to 85.2% for log-Mel models. By applying the late
fusion strategy, a fine-grained category accuracy of 81.4% is achieved on the dataset. On
the LITIS Rouen dataset, the best improvements over the corresponding basic models are
1.6%, 1.9%, and 1.8% for the STFT, CQT, and log-Mel multitask models, respectively. The
super-class accuracies range from 97.1% to 95.2%, from 97.7% to 95.1%, and from 97.9%
to 94.9% corresponding to two to six super-classes, for STFT, CQT, and log-Mel models,
respectively. An ensemble fine-grained category of 83.9% is achieved.

According to the experiments, the following conclusions can be drawn:

(1) The similarity relation based class hierarchy construction method is effective and
reasonable.
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(2) The constructed class hierarchy can be utilized to improve the ASC performance
effectively in multitask learning.

(3) For a hierarchically arranged dataset, there may exist a hierarchy that is automatically
constructed by our method. This may perform better than the original hierarchy in
ASC.

(4) In self-organized multitask learning, the number of super-class should be chosen
carefully. The multitask models with large super-class numbers would not obtain
competitive results.

(5) The relevance between coarse and fine-grained classes can be utilized as regularization
to improve the ASC performance.

(6) By arranging the class hierarchy, the self-organized multitask learning method pro-
vides a feasible way to promote the performance of a certain model.

In future work, we will extend this confusion matrix based super-class construction
method into the domain of acoustic event taxonomy. Furthermore, to improve the perfor-
mance of scene identification, the multimodal fusion method will be explored. Specifically,
image and sensor data, etc., can be employed to enhance the audio data in the scene
identification task.

Author Contributions: Conceptualization, W.Z. and Z.M.; methodology, W.Z.; software, Z.M.; vali-
dation, Z.M. and W.Z.; formal analysis, W.Z.; investigation, W.Z.; resources, G.Z.; data curation, Z.M.;
writing—original draft preparation, W.Z.; writing—review and editing, Z.M.; visualization, Z.M.;
supervision, G.Z.; project administration, G.Z.; funding acquisition, W.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was partially supported by the National Key Research and Development
Program, grant number 2019YFB1804003 and Guangzhou Science and Technology Fund, grant
number 201804010314 and Characteristic Innovation Projects of the Educational Commission of
Guangdong Province, China, grant number 2016KTSCX025.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Barchiesi, D.; Giannoulis, D.; Stowell, D.; Plumbley, M.D. Acoustic Scene Classification: Classifying environments from the

sounds they produce. IEEE Signal Process. Mag. 2015, 32, 16–34. [CrossRef]
2. Stowell, D.; Giannoulis, D.; Benetos, E.; Lagrange, M.; Plumbley, M.D. Detection and classification of acoustic scenes and events.

IEEE Trans. Multimed. 2015, 17, 1733–1746. [CrossRef]
3. Hossain, M.S.; Muhammad, G. Environment classification for urban big data using deep learning. IEEE Commun. Mag. 2018, 56,

44–50. [CrossRef]
4. Imoto, K. Incorporating Intra-Class Variance to Fine-Grained Visual Recognition. Acoust. Sci. Technol. 2018, 39, 182–188. [CrossRef]
5. Em, Y.; Gag, F.; Lou, Y.; Wang, S.; Huang, T.; Duan, L.-Y. Incorporating Intra-Class Variance to Fine-Grained Visual Recognition.

In Proceedings of the 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, China, 10–14 July 2017;
pp. 1452–1457.

6. Mesaros, A.; Heittola, T.; Diment, A.; Elizalde, B.; Shah, A.; Vincent, E.; Raj, B.; Virtanen, T. DCASE 2017 challenge setup: Tasks,
datasets and baseline system. In Proceedings of the DCASE 2017-Workshop on Detection and Classification of Acoustic Scenes
and Events, Munich, Germany, 16–17 November 2017; pp. 85–92.

7. Ye, J.; Kobayashi, T.; Wang, X.; Tsuda, H.; Murakawa, M. Audio Data Mining for Anthropogenic Disaster Identification: An
Automatic Taxonomy Approach. IEEE Trans. Emerg. Top. Comput. 2017, 8, 126–136. [CrossRef]

8. Li, Y.; Liu, M.; Wang, W.; Zhang, Y.; He, Q. Acoustic Scene Clustering Using Joint Optimization of Deep Embedding Learning and
Clustering Iteration. IEEE Trans. Multimed. 2019, 22, 1385–1394. [CrossRef]

9. Tonami, N.; Imoto, K.; Niitsuma, M.; Yamanishi, R.; Yamashita, Y. Joint analysis of acoustic events and scenes based on multitask
learning. In Proceedings of the 2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA),
New Paltz, NY, USA, 20–23 October 2019; pp. 338–342.

10. Abrol, V.; Sharma, P. Learning Hierarchy Aware Embedding from Raw Audio for Acoustic Scene Classification. IEEE/ACM Trans.
Audio Speech Lang. Process. 2020, 28, 1964–1973. [CrossRef]

11. Rakotomamonjy, A.; Gasso, G. Histogram of gradients of time-frequency representations for audio scene classification. IEEE/ACM
Trans. Audio Speech Lang. Process. 2014, 23, 142–153.

http://doi.org/10.1109/MSP.2014.2326181
http://doi.org/10.1109/TMM.2015.2428998
http://doi.org/10.1109/MCOM.2018.1700577
http://doi.org/10.1250/ast.39.182
http://doi.org/10.1109/TETC.2017.2700843
http://doi.org/10.1109/TMM.2019.2947199
http://doi.org/10.1109/TASLP.2020.3001969


Sensors 2022, 22, 36 21 of 22

12. Geiger, J.T.; Schuller, B.; Rigoll, G. Large-scale audio feature extraction and SVM for acoustic scene classification. In Proceedings
of the 2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, USA, 20–23 October
2013; pp. 1–4.

13. Ma, L.; Milner, B.; Smith, D. Acoustic environment classification. ACM Trans. Speech Lang. Process. TSLP 2006, 3, 1–22. [CrossRef]
14. Chakrabarty, D.; Elhilali, M. Exploring the role of temporal dynamics in acoustic scene classification. In Proceedings of the 2015

IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 18–21 October
2015; pp. 1–5.

15. Yu, D.; Li, J. Recent progresses in deep learning based acoustic models. IEEE/CAA J. Autom. Sin. 2017, 4, 396–409. [CrossRef]
16. Eghbal-Zadeh, H.; Lehner, B.; Dorfer, M.; Widmer, G. CP-JKU submission for DCASE-2016: A hybrid approach using binaural

i-vectors and deep convolutional neural networks. In Proceedings of the IEEE AASP Challenge on Detection and Classification of
Acoustic Scenes and Events (DCASE), Budapest, Hungary, 3 September 2016; pp. 5024–5028.

17. Weiping, Z.; Jiantao, Y.; Xiaotao, X.; Xiangtao, L.; Shaohu, P. Acoustic scene classification using deep convolutional neural network
and multiple spectrograms fusion. In Proceedings of the Detection and Classification of Acoustic Scenes and Events (DCASE),
Munich, Germany, 16–17 November 2017; pp. 133–137.

18. Xu, K.; Feng, D.; Mi, H.; Zhu, B.; Wang, D.; Zhang, L.; Cai, H.; Liu, S. Mixup-based acoustic scene classification using multi-channel
convolutional neural network. In Proceedings of the Pacific Rim Conference on Multimedia, Hefei, China, 21–22 September 2018;
pp. 14–23.

19. Hershey, S.; Chaudhuri, S.; Ellis, D.P.; Gemmeke, J.F.; Jansen, A.; Moore, R.C.; Plakal, M.; Platt, D.; Saurous, R.A.; Seybold, B.
CNN architectures for large-scale audio classification. In Proceedings of the 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 131–135.

20. Phan, H.; Koch, P.; Katzberg, F.; Maass, M.; Mazur, R.; Mertins, A. Audio scene classification with deep recurrent neural networks.
In Proceedings of the INTERSPEECH, Stockholm, Sweden, 20–24 August 2017.

21. Bae, S.H.; Choi, I.; Kim, N.S. Acoustic scene classification using parallel combination of LSTM and CNN. In Proceedings of the
Detection and Classification of Acoustic Scenes and Events 2016 Workshop (DCASE2016), Budapest, Hungary, 3 September 2016;
pp. 11–15.

22. Xu, Y.; Huang, Q.; Wang, W.; Plumbley, M.D. Hierarchical learning for DNN-based acoustic scene classification. In Proceedings of
the Detection and Classification of Acoustic Scenes and Events 2016 Workshop (DCASE2016), Budapest, Hungary, 3 September
2016; pp. 110–114.

23. Guo, J.; Xu, N.; Li, L.-J.; Alwan, A. Attention based CLDNNs for short-duration acoustic scene classification. In Proceedings of
the INTERSPEECH, Stockholm, Sweden, 20–24 August 2017; pp. 469–473.

24. Dehak, N.; Kenny, P.J.; Dehak, R.; Dumouchel, P.; Ouellet, P. Front-end factor analysis for speaker verification. IEEE Trans. Audio
Speech Lang. Process. 2010, 19, 788–798. [CrossRef]

25. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
26. Zhang, X.; Zhou, F.; Lin, Y.; Zhang, S. Embedding label structures for fine-grained feature representation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1114–1123.
27. Sohn, K. Improved deep metric learning with multi-class n-pair loss objective. In Proceedings of the Advances in Neural

Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 1857–1865.
28. Xie, S.; Yang, T.; Wang, X.; Lin, Y. Hyper-class augmented and regularized deep learning for fine-grained image classification.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 2645–2654.

29. Wu, H.; Merler, M.; Uceda-Sosa, R.; Smith, J.R. Learning to make better mistakes: Semantics-aware visual food recognition.
In Proceedings of the 24th ACM International Conference on Multimedia, Amsterdam The Netherlands, 15–19 October 2016;
pp. 172–176.

30. Imoto, K.; Tonami, N.; Koizumi, Y.; Yasuda, M.; Yamanishi, R.; Yamashita, Y. Sound event detection by multitask learning of
sound events and scenes with soft scene labels. In Proceedings of the ICASSP 2020–2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 621–625.

31. Mun, S.; Park, S.; Han, D.K.; Ko, H. Generative adversarial network based acoustic scene training set augmentation and selection
using SVM hyper-plane. In Proceedings of the DCASE 2017–Detection and Classification of Acoustic Scenes and Events Workshop,
Munich, Germany, 16–17 November 2017; pp. 93–97.

32. Salamon, J.; Bello, J.P. Deep convolutional neural networks and data augmentation for environmental sound classification. IEEE
Signal Process. Lett. 2017, 24, 279–283. [CrossRef]

33. Lu, R.; Duan, Z.; Zhang, C. Metric learning based data augmentation for environmental sound classification. In Proceedings of
the 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 15–18
October 2017; pp. 1–5.

34. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Networks. Proc. Adv. Neural Inf. Process. Syst. 2014, 3, 2672–2680. [CrossRef]

35. Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; Yang, Y. Random Erasing Data Augmentation. AAAI 2020, 34, 13001–13008. [CrossRef]

http://doi.org/10.1145/1149290.1149292
http://doi.org/10.1109/JAS.2017.7510508
http://doi.org/10.1109/TASL.2010.2064307
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.1109/LSP.2017.2657381
http://doi.org/10.1145/3422622
http://doi.org/10.1609/aaai.v34i07.7000


Sensors 2022, 22, 36 22 of 22

36. Gharib, S.; Derrar, H.; Niizumi, D.; Senttula, T.; Tommola, J.; Heittola, T.; Virtanen, T.; Huttunen, H. Acoustic scene classification:
A competition review. In Proceedings of the 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing
(MLSP), Aalborg, Denmark, 17–20 September 2018; pp. 1–6.

37. Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. Mixup: Beyond empirical risk minimization. In Proceedings of the
International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

38. Nawa, S.; Quatieri, T.; Lim, J. Signal Reconstruction from Short-Time Fourier Transform Magnitude. IEEE Trans. Acoust. Speech
Signal Process. 1983, 31, 986–998.

39. Brown, C.J.; Puckette, S.M. An efficient algorithm for the calculation of a constant Q transform. J. Acoust. Soc. Am. 1992, 92,
2698–2701. [CrossRef]

40. Logan, B. Mel frequency cepstral coefficients for music modeling. In Proceedings of the In International Symposium on Music
Information Retrieval, Montréal, QC, Canada, 23–25 October 2000; pp. 1–11.

41. Boashash, B.; Khan, N.A.; Ben-Jabeur, T. Time-frequency features for pattern recognition using high-resolution TFDs: A tutorial
review. Digit. Signal Process. 2015, 40, 1–30. [CrossRef]

42. Paseddula, C.; Gangashetty, S.V. Late fusion framework for Acoustic Scene Classification using LPCC, SCMC, and log-Mel band
energies with Deep Neural Networks. Appl. Acoust. 2021, 172, 107568. [CrossRef]

43. Mcdonnellk, M.D.; Gao, W. Acoustic Scene Classification Using Deep Residual Networks with Late Fusion of Separated High
and Low Frequency Paths. In Proceedings of the ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Virtual Conference, 4–8 May 2020; pp. 141–145.

44. Ng, A.; Jordan, M.; Weiss, Y. On spectral clustering: Analysis and an algorithm. In Advances in Neural Information Processing
Systems; MIT Press: Cambridge, MA, USA, 2002; pp. 849–856.

45. Gopal, S.; Yang, Y. Recursive regularization for large-scale classification with hierarchical and graphical dependencies. In
Proceedings of the 19th ACM SIGKDD–International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA
11–14 August 2013; pp. 257–265.

46. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

47. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

48. Rakotomamonjy, A. Supervised representation learning for audio scene classification. IEEE/ACM Trans. Audio Speech Lang. Process.
2017, 25, 1253–1265. [CrossRef]

49. Abadi, M.; Agarwal, A.; Barham, P.; Barham, P.; Brevdo, E.; Chen, Z.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al.
TensorFlow: Large-scale machine learning on heterogeneous systems. In Proceedings of the Operating Systems Design and
Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

50. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning
Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–15.

51. Han, Y.; Park, J.; Lee, K. Convolutional neural networks with binaural representations and background subtraction for acoustic
scene classification. In Proceedings of the DCASE 2017–Detection and Classification of Acoustic Scenes and Events Workshop,
Munich, Germany, 16–17 November 2017; pp. 46–50.

52. Alamir, M.A. A novel acoustic scene classification model using the late fusion of convolutional neural networks and different
ensemble classifiers. Appl. Acoust. 2021, 175, 107829. [CrossRef]

53. Chen, H.; Zhang, P.; Yan, Y. An audio scene classification framework with embedded filters and a DCT-based temporal module.
In Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Brighton, UK, 12–17 May 2019; pp. 835–839.

54. Wu, Y.; Lee, T. Enhancing sound texture in CNN-based acoustic scene classification. In Proceedings of the ICASSP 2019–2019
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 815–819.

55. Pham, L.; Phan, H.; Nguyen, T.; Palaniappan, R.; Mertins, A.; McLoughlin, I. Robust acoustic scene classification using a
multi-spectrogram encoder-decoder framework. Digit. Signal Process. 2021, 110, 102943. [CrossRef]

56. Lee, Y.J.; Grauman, K. Learning the easy things first: Self-paced visual category discovery. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011; pp. 1721–1728.

57. Caruana, R. Multitask learning. Mach. Learn. 1997, 28, 41–75. [CrossRef]

http://doi.org/10.1121/1.404385
http://doi.org/10.1016/j.dsp.2014.12.015
http://doi.org/10.1016/j.apacoust.2020.107568
http://doi.org/10.1109/TASLP.2017.2690561
http://doi.org/10.1016/j.apacoust.2020.107829
http://doi.org/10.1016/j.dsp.2020.102943
http://doi.org/10.1023/A:1007379606734

	Introduction 
	Related Works 
	Proposed Method 
	Overview 
	Spectrograms Generation 
	Basic Model 
	Super-Class Labels Construction 
	Multitask Learning Model 

	Experiments and Results 
	Experiment Setup 
	Selection of Super-Class Number 
	Evaluations on the TUT Acoustic Scenes 2017 Dataset 
	Evaluations on the LITIS Rouen Dataset 
	Ensemble Results 

	Discussion 
	Similarity Relationship of Acoustic Scenes 
	Advantages of the Super-Class Construction Method 
	Foundation of Self-Organized Multitask Learning 
	Regularization by Similarity Relation 

	Conclusions 
	References

