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Abstract: To expand the potential use of in-shoe motion sensors (IMSs) in daily healthcare or activity
monitoring applications for healthy subjects, we propose a real-time temporal estimation method
for gait parameters concerning bilateral lower limbs (GPBLLs) that uses a single IMS and is based
on a gait event detection approach. To validate the established methods, data from 26 participants
recorded by an IMS and a reference 3D motion analysis system were compared. The agreement
between the proposed method and the reference system was evaluated by the intraclass correlation
coefficient (ICC). The results showed that, by averaging over five continuous effective strides, all
time parameters achieved precisions of no more than 30 ms and agreement at the “excellent” level,
and the symmetry indexes of the stride time and stance phase time achieved precisions of 1.0% and
3.0%, respectively, and agreement at the “good” level. These results suggest our method is effective
and shows promise for wide use in many daily healthcare or activity monitoring applications for
healthy subjects.

Keywords: gait parameters assessment; gait event detection; foot motion; gait analysis; in-shoe sensor;
inertial measurement unit

1. Introduction

As a result of the rapid development of wearable device technologies, wearable smart
motion sensors have been used in various healthcare applications based on daily gait
analysis, with all data processing performed automatically on an edge device [1]. Recently,
a new type of wearable smart motion sensor for daily gait analysis, called an “in-shoe
motion sensor” (IMS), was developed. The IMS can be placed in various kinds of shoes or
insoles, and is less inconvenient to wear [2,3]. Thus, it shows promise for various healthcare
and activity monitoring applications, with the aim of improving the habits of healthy
subjects involving daily walking, by assessing temporal gait parameters or detecting gait
signal features through artificial intelligent technologies [4].

Common temporal gait parameters such as walking velocity, stride length, foot an-
gle, gait variability, cadence, and foot clearance can currently be obtained in real time by
automatic calculation in the microprocessor of an IMS [4,5]. In contrast, temporal gait
parameters concerning bilateral lower limbs (GPBLLs) play more important roles in health-
care or daily activity monitoring applications, such as evaluation of walking ability [4],
metabolic evaluation [6], daily fatigue monitoring [7], and alcohol use monitoring [8].
These parameters include the double support time (DST), which is defined as the dura-
tion when both bilateral lower limbs touch the ground in one gait cycle (GC), and the
symmetry index of stride time (SIStr) and symmetry index of stance phase time (SISta)
between the two limbs. These GPBLLs are important because they capture the interaction
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of the two feet and are essential predictors for estimating certain deep gait parameters,
such as gait asymmetry, lower limb muscle strength, and muscle strength transition ability
from one limb to the other [5,6,9]. Furthermore, these deep gait parameters are significant
predictors for metabolic monitoring, fatigue assessment, walking ability, body functions,
and alcohol monitoring [5–7,9–12]. To expand the potential use of IMSs in healthcare or
daily activity monitoring applications for healthy subjects, we believe it is necessary to
conduct automatic measurement of these GPBLLs by an IMS.

To obtain the temporal GPBLLs, which are illustrated in Figure 1, it is necessary
for foot motion signals to interact well with each other. The motions of both feet are
commonly detected by placing two independent sensors on them. Measurement then
requires the phase difference between the motions in the same GC to be correctly traced
on the same temporal axis. A common approach is to temporally synchronize the sensors
using external devices, i.e., via a hardware connection [13,14]. In a smart system, the
IMSs are synchronized with each other by timestamps that originate from a universal time
controller in the system, e.g., a smartphone. This may make the system more complicated
and subject to the uncertainty in the sensor network, clock drift, and packet delays in the
communication protocol [15,16].

Figure 1. Illustration of the definitions of a GC, gait phases, gait events, and certain temporal gait
parameters, and information on the foot acceleration in the anterior–posterior direction, the knee
joint angle, and the ankle joint angle in one GC.

Accordingly, in this study, by combining biomechanical knowledge with signal pro-
cessing, we propose a new approach to overcome these issues and provide a simpler
method with higher accuracy and precision for evaluation of temporal GPBLLs using only
a single sensor. Walking is a natural form of periodic movement. Moreover, during walking,
the motions of the two lower limbs intrinsically interact well with each other, according to
a musculoskeletal model in which the phase difference between the two limbs is locked by
the connection of the pelvis. Thus, once the motion of one foot is determined, the motion of
the opposite foot can also be known almost immediately [17].
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A GC is the time period or sequence of events or movements during locomotion from
when a foot contacts the ground, which is called a “heel strike” (HS), to when that same foot
again contacts the ground. The HS is one of seven defined gait events, i.e., special motions
during walking. A GC can be partitioned into stance and swing phases, which constitute
60% and 40% of the GC, respectively, as shown in Figure 1. Furthermore, a GC can be
divided into seven periods—loading response (LR), mid-stance (MSt), terminal stance (TSt),
pre-swing (PS), initial swing (ISw), mid-swing (MSw), and terminal swing (TSw)—by the
six gait events in addition to HS: opposite toe off (OTO), heel rise (HR), opposite heel
strike (OHS), toe off (TO), feet adjacent (FA), and tibia vertical (TV) [17]. Specifically,
taking the right foot as an example, the OHS and OTO events represent the respective
moments when the left heel strikes the ground and the left toe departs from the ground,
which suggests that the left foot’s exact temporal information for GPBLL estimation can be
obtained by detecting these two gait events from the right foot. Hence, as long as the HS,
TO, OHS, and OTO events of the right foot are appropriately detected from foot motion
signals, temporal GPBLLs such as DST, SIStr, and SISta can be captured well by a single
IMS mounted on the right foot. In this case, hardware connection of two sensors would
no longer be necessary to assess the interaction of two feet. We refer to this idea as the
“gait event detection approach”, which requires an IMS to have a real-time gait event
detection method.

In our previous study, we developed a rule-based real-time HS and TO detection
method [18]. As shown in Figure 1, we discovered that the foot acceleration signal in
the anterior–posterior direction exhibits a sharp valley next to the maximum, which can
be used for HS detection, while the first valley in a W-shaped wave pattern appearing
after a foot-flat state can be used for TO detection. The missing piece of this approach is a
method of real-time OHS and OTO event detection for an IMS. Currently, many gait event
detection methods for wearable sensor systems have been proposed [19,20]. Previously,
González et al. [21] proposed a method using a foot pressure sensor, and Liu et al. [22]
proposed a method based on fusion of data from multiple segments of the lower limbs
to detect OHS and OTO. However, these methods cannot be used in an IMS system that
only measures a single segment. For OHS and OTO detection using foot-mounted inertial
measurement units (IMUs), Mariani et al. [23] developed hidden Markov models, and
Kidziński et al. [24] proposed a deep learning method. Such methods that construct
complicated models from training data require considerable processing power and, thus,
they are difficult to implement in a microprocessor chip. In contrast, Rueterbories et al. [25]
developed a simpler, rule-based OHS and OTO detection method, which was considered
feasible for edge device processing. In their method, they determine gait events through
detection of peaks and valleys from three types of low-pass-filtered composite signals,
including a raw signal at 160 Hz and two moving-average raw signals with window
lengths of 50 and 200; then, they analyze the relationships between detected feature points.
However, their method was sensitive to individual walking velocity differences: when the
deviation of the velocities from the average increased, the precision of estimation decreased.
To achieve higher precision, improved OHS and OTO detection methods are thus needed.

According to modern kinesiology studies on walking, gait events correspond to the
timings of muscle and joint activity patterns transiting from one state to another [17,26].
Following these studies, we hypothesize that gait events should appear as characteristic
turning points, such as peaks, valleys, and zero-crossing points, in the foot motion signal
acquired by an IMS. In the current study, we developed a rule-based method for OTO
and OHS detection and applied it to GPBLL measurements. To do so, we first used
biomechanical knowledge to analyze how the lower limbs move near the moments of OHS
and OTO [17], and we then searched for possible feature points as candidates for OHS and
OTO detection based on the aforementioned hypothesis. Next, we evaluated the accuracy
and precision of our method through comparison with the measurement results obtained
by a 3D motion analysis system. Given the similarity in motion between the left and right
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feet, if the feasibility of our method is demonstrated by an IMS mounted on the right foot,
we assume that it should also be feasible for an IMS mounted on the left foot.

2. Materials and Methods
2.1. Participants

In this study, we recruited 26 participants, including 20 males and 6 females, and
collected data including their gender, age, height, weight, and shoe size. The average
age was 39.3 ± 9.5 years, the average height was 169.5 ± 7.7 cm, the average weight
was 67.2 ± 12.1 kg, and the average shoe size was 26.4 ± 1.0 cm. All subjects could walk
independently without any assistive device such as a cane, crutch, or orthotic device.
Participants had normal or corrected-to-normal vision, no history of neuromuscular or
orthopedic diseases, and no obstacles in communication. The experimental procedure
was explained to all subjects, and informed consent was obtained individually before the
experiment. The study was approved by the NEC Ethical Review Committee for the Life
Sciences (protocol number: LS2019-008) on 24 July 2019.

2.2. Experimental Setup

Figure 2 illustrates the experimental environment and setup. To prevent discomfort
during walking, the IMS was mounted in an insole that was placed under the foot arch. We
considered that, in practical use, compared with smart sensors fixed in/on the shoe, this
would allow the user to insert the insole into the shoes they preferred. The size of the IMS
was 3.0 × 3.5 × 0.6 cm3. (Figure 2a). It included a 6-axis IMU, microprocessor, Bluetooth
module, and control circuit. We assumed that the midfoot–hindfoot was a rigid body and
that the shoe fit tightly on the foot, so that the signal from the IMS could be treated as
the foot-motion signal. To verify the feasibility of the proposed estimation method, we
mounted the IMS on the right foot to estimate the motion of the left foot (Figure 2b). The
IMS signal comprised nine types of signal: the three directly measured axes of acceleration,
Ax (medial: +; lateral: −), Ay (posterior: +; anterior: −), and Az (superior: +; inferior: −); the
three angular velocity components, Gx (plantarflexion: +; dorsiflexion: −), Gy (eversion: +,
inversion: −), and Gz (adduction: +, abduction: −); and the three sole-to-ground angles
(SGAs), namely, the roll (Ex), pitch (Ey), and yaw (Ez). The SGA directions were defined in
the same way as for the angular velocity, and the SGAs were calculated internally using a
Madgwick filter [27]. The acceleration values from the IMS signal were corrected to inertial
coordinates (Figure 2c).

A 3D motion analysis system, the Track 3 (Vicon Motion Systems, Oxford, UK), was
used to obtain reference measurements. The motion analysis space was partitioned by
10 Bonita B10 motion-capture cameras (Vicon Motion Systems, Oxford, UK), with five
cameras on each side of a straight path. Optical reflection markers were attached to
the surfaces of the two shoes. One marker was located at the toe, and the others were
at the midfoot and hindfoot (Figure 2b). The markers on the other shoe were attached
symmetrically. The midfoot and hindfoot markers were combined to represent a rigid
body whose center of gravity was at the heel. As a result, first, all the SGAs could be
represented by the Euler angles of the rigid body; second, the trajectory of the rigid body
was equivalent to that of the heel, so that the minimum of the trajectory of one stride
specified the timestamp of an HS (THS). The traced trajectory of the toe marker was
used to specify the toe’s movement, so that the minimum of the trajectory specified the
timestamp of a TO (TTO) event. Finally, the timestamps of the minima of the left heel
trajectory (TOHS) and left toe trajectory (TOTO) were treated as the reference timestamps for
OHS and OTO detection.
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Figure 2. (a) Schematic of an IMS embedded in an insole. (b) Schematic of the insole inserted in an
athletic shoe. (c) Definition of the coordinate axes and corresponding planes.

2.3. Experimental Protocol

The participants were asked to walk at a self-determined, comfortable speed in an
8 m straight line along a pathway about 0.8 m wide, for four successive trials. Before data
collection, the participants were given a 2 min practice session to familiarize themselves
with the environment and procedure. The data sampling frequency (fs) was set to 100 Hz
for both the IMS and Vicon measurement systems. The measurement range was ±16 g for
acceleration and ±2000◦/s for angular velocity in the IMS.

2.4. Feature Selection for OHS and OTO Detection from Foot Motion through
Biomechanical Analysis

Because walking motions occur in the anterior–posterior direction, we mainly focused
on motion of the lower limbs in the sagittal plane. Figure 3 shows a schematic of the
motions of the right shank and foot before and after OTO and OHS gait events, in reference
to alterations of the hip, knee, and ankle joints in one GC [17] (also see Figure 1). Through
analysis based on the biomechanical knowledge explained in this section, we determined
how to select candidate feature points from the IMS signal.
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Figure 3. Foot motion analysis based on standard kinesiology knowledge: (a) foot motion near OHS,
and (b) foot motion near OTO.

2.4.1. Foot Motion near OHS

According to standard biomechanical knowledge [17,28], as shown in Figure 3a,
during TSt, i.e., before the OHS event, force is generated in preparation for forward limb
propulsion to accelerate the foot motion. Most of this force is supplied by concentric activity
of the gastrocnemius muscle, an important part of the calf muscles, which causes the ankle
to enter plantarflexion as the heel rises off the floor with the forefoot rocker, while the left
foot remains on the floor [28,29]. The hip and knee remain extended to support the body
when the heel leaves the ground. The hip flexor, mainly the iliopsoas, is stretched and thus
stores energy like a spring. In this phase, the changes in the knee and ankle joint angles
are small. We can thus assume that this part of foot motion is performed as low-rotation
motion (Aω_L).

Then, after entering PS, i.e., after OHS, once the left heel strikes the ground, the body
also obtains support from the left foot. The propulsive force continues during PS with
additional contributions from the soleus, another important part of the calf muscles, and
the iliopsoas. The energy stored in the iliopsoas starts to be released, and consequently, the
hip starts to enter flexion to prepare for swinging, while the foot progression continues
over the forefoot rocker. Knee flexion results passively from the combined motions of hip
flexion and ankle plantarflexion [28]. According to a model of the alignment of joints and
segments [29], the leg’s momentum is transferred through the knee joint and then causes
shank rotation (Aω_sh) in the anterior direction, which is appended to the foot through
the ankle joint. Combined with the existing foot rotation, the foot’s total rotation motion
suddenly becomes larger, and we can thus assume that this part of foot motion shifts to
high-rotation motion (Aω_H) during PS.

Based on the assumptions mentioned above, we hypothesized that at OHS, there
should be a sudden gradient alteration in the foot motion in the sagittal plane, which is
induced by the sudden increases in the absolute signal values between 40% of the GC and
TTO. Here, we refer to the points where the signal gradient suddenly changes as “gradient
turning points” (GTPs), and we decided to use these GTPs in the foot motion signals in the
sagittal plane, i.e., Ay, Az, and Gx, as the candidate feature points for OHS detection.

2.4.2. Foot Motion near OTO

As shown in Figure 3b, the musculoskeletal model [17,28] reveals that from the right
HS, the trunk moves toward the right foot until the body is erect, with only the right limb
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supporting the whole body along with the heel rocker. As shown in Figure 3b, before
OTO, the body is supported by both lower limbs, which allows the right foot to rotate and
finish the heel rocker motion; in contrast, after OTO, only the right foot supports the whole
body, which means that it must be flat to maintain balance. According to the traditional
subdivision of the gait cycle, a foot-flat event occurs at around 8% of the GC, whereas in
the modern subdivision of the gait cycle, OTO occurs at around 10% of the GC [17]. Hence,
as long as a foot-flat event is detected, OTO can also be detected by appending this 2%
difference. It is known that the foot motion signal almost returns to zero after the sole
completely touches the ground. We hypothesized that at a foot-flat event there should be
GTPs induced by the foot motion signal returning to zero after THS in the sagittal plane.
Accordingly, we decided to use these GTPs in the foot motion signals, Ay, Az, and Gx, as
the candidate feature points for OTO detection.

2.5. Data Processing for Analysis

Figure 4 shows the signal processing procedure used for real-time OHS and OTO
detection in this study.

Figure 4. Flowchart of the signal processing procedure in this study.

To identify which candidate point is the best for OHS and OTO detection and for
the evaluation of the proposed GPBLL estimation method, we first needed to completely
synchronize the signals from the Vicon system and the IMS (details in Supplementary
Materials). All the data processing and analysis were performed in MATLAB (Mathworks,
Natick, MA, USA).

After synchronization of each trial, we obtained a result like the example shown in
Figure 5. Here, the reference THS and TTO values could be detected by searching for local
minima in the trajectories of the heel and toe in the Z direction (black and blue curves,
respectively), while the HS and TO timestamps in the IMS signal Ay (orange curve) could
be detected by the peak detection algorithm described in our previous study [18]. Then,
the synchronized data were divided into strides at two reference THS points. We originally
obtained a total of 679 strides. Before applying the OHS and OTO detection methods, the
first and last two strides of each trial were excluded. Furthermore, some strides existed
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in the dataset that had a different waveform shape, which was probably induced by, for
example, sensor error or accidental events disturbing the walking motion. These outliers
may need to be removed from the dataset in order to retain the strides that can represent
the true gait characteristics of participants [30] from the remaining strides. We removed
these outliers, leaving a total of 342 effective strides that were recorded.

Figure 5. Example showing how to divide data into strides. Black and blue curves represent the
trajectories of the heel and toe in the Z direction, and the orange curve represents IMS signal Ay.

In the next step, we recorded the reference TOHS and TOTO from the trajectories
measured by the Vicon system, and we obtained all the candidate points mentioned
in Section 2.4.1 from each effective stride. Because we did not previously know which
candidate point was the best for OHS and OTO detection, before calculating GPBLLs in
the final step, the candidate whose timestamp had the best synchronicity and agreement
with the reference was judged as the best one, by comparing the synchronicities between
the candidate points and the reference data. Then, the best candidates in the IMS signals
were chosen for constructing OHS and OTO detection algorithms. In the final step, the
GPBLLs were calculated from the Vicon and IMS signals as reference and estimated values,
respectively, and they were compared to evaluate the effectiveness of our proposed method.

2.6. Candidate Feature Points for OHS and OTO Detection

In this section, we explain the acquisition of candidate feature points from an IMS
signal. The OHS and OTO detection algorithm is customized according to the characteristics
of the best candidates.

Figure 6 shows examples of the foot motion signals, Ay, Az, and Gx, and the trajectories
of the markers in the superior–inferior (Z) direction on the left and right heels and toes,
which contain all the information in one GC. In this case, HS occurred around 1200 ms
and TO occurred around 1720 ms. The aforementioned candidate feature points for OHS
and OTO detection are indicated by red triangles. These GTPs are detected from the
waveform via the triangle thresholding algorithm (TTA) [31]. Please note that the TTA is
applied independently on each signal from the sensor and then validated using the Vicon’s
measurement. We use this algorithm because, if the reference points (PA and PB in the
figure) are appropriately chosen, a partial waveform in the region of interest can be treated
as a monotonic curve without inflection points when tiny fluctuations are ignored. This
type of curve is then suitable for application of the TTA.

For OHS detection, PA can be selected at the moment when the amplitude of the
foot motion signal exceeds the baseline level in a foot-flat state before TO, and PB can be
selected at the local maximum (or minimum for Ay) before TO. For OTO detection, PA
can be selected at 20% of the GC after HS, because most people are in a foot-flat state at
that time, and PB can be selected at the nearest local maximum to 20% of the GC after HS.
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Here, to obtain the length of a GC, the duration between an HS and the previous HS is also
recorded. HS and TO event detection in the IMS signal is performed by the peak detection
algorithm in our previous study [19].

Figure 6. Examples of the foot motion signals, (a) Ay, (b) Az, and (c) Gx, with candidate feature points
for OHS and OTO detection and the marker trajectories in the superior−inferior (Z) direction on the
left and right heels and toes.

To apply the TTA to a waveform, we first extract an appropriate set of reference
points, PA(t1, u1) and PB(t2, u2), which are located in front of and behind the target point,
respectively. Then, a straight line U(T) passing through PA and PB is constructed via
Equation (1):

U(T) =
(

u2 − u1

t2 − t1

)
(T − t1) + u1. (1)

The expected GTP, TGTP, is the furthest point on the curve of interest, Q(T), which is
the partial waveform between t1 and t2. The distance D(T) between the points on Q(T) and
the line U(T) is expressed by Equation (2), and the GTP is then obtained by Equation (3):

D(T) =

∣∣∣( u2−u1
t2−t1

)
(T − t1) + u1 −Q(T)

∣∣∣√
1 +

(
u2−u1
t2−t1

)2
, (2)

TGTP = argmax
t1≤T≤t2

D(T). (3)

Figure 7 shows a flowchart of OHS and OTO detection in one GC via our rule-based
gait event detection algorithm for IMS signals. This algorithm is feasible for installation on
an edge device. When the data stream arrives, the HS is first detected to specify the start
of one step. Next, according to the timestamp of the previous HS, the length of one GC
and 20% of that GC are calculated. Here, for OTO detection, the nearest local maximum
to 20% of the GC is selected as PB, and the 20% location is selected as PA. The waveform
between PA and PB is sent to a buffer, and TGTP for OTO detection is then obtained from
the calculated D(T). Next, within one GC after entering a foot-flat state, the data stream is
monitored to check whether it exceeds the baseline, as judged by a threshold. In this study,
the thresholds for Ay, Az, and Gx were 0.15 g, 1.15 g, and 30 deg/s, respectively, which
were considered higher than the noise levels. For OHS detection, the point exceeding the
threshold is selected as PA, and another local maximum is selected as PB. Finally, TGTP for
OHS detection is detected by the TTA.

To test the agreement between the IMS and Vicon measurements in all strides, we first
set a reference point, THS_ref, indicating the true HS timestamp in every stride as determined
by the Vicon system. Then, we express the Vicon and IMS measurements in terms of the
relative OHS and OTO time in one stride, TOHS_0 and TOTO_0, via Equations (4) and (5):

TOHS_0 = TOHS − THS_re f , (4)
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TOTO_0 = TOTO − THS_re f , (5)

where TOHS and TOTO are the OHS and OTO timestamps in the data stream, respectively.

Figure 7. Algorithm for OHS and OTO detection in one GC from the IMS signal.

2.7. Temporal GPBLL Estimation through Gait Event Detection Approach

As long as HS, TO, OHS, and OTO in one stride are detected through the flow shown
in Figure 5, temporal GPBLL estimation can be performed as follows.

As shown in Figure 1, the DST actually consists of two sub-phases in the stance phase:
LR (DST1) and PS (DST2). Here, DSTt is defined as the total of DST1 and DST2 and can be
expressed by Equation (6):

DSTt = (TOTO − THS) + (TTO − TOHS). (6)

The stance phase time (Tsta_l) and stride time (Tstr_l) of the left foot and the stance phase
time (Tsta_r) and stride time (Tstr_r) of the right foot can be expressed by Equations (7)–(10):

Tsta_L = TOTO − TOHS, (7)

Tstr_L = T′OHS − TOHS, (8)

Tsta_R = TTO − THS, (9)

Tstr_R = T′HS − THS, (10)

where T’HS and T’OHS denote the timestamps of HS and OHS in the next stride, respectively.
Additionally, the symmetry indexes of the stance phase time (SISta) and the stride time
(SIStr) can be expressed by Equations (11) and (12), which are modified from the definitions
given in [5,11]:

SISta =
Tsta_L − Tsta_R

0.5(Tsta_L + Tsta_R)
, (11)

SIStr =
Tstr_L − Tstr_R

0.5(Tstr_L + Tstr_R)
. (12)
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Here, we retain positive and negative values instead of using absolute values in the
calculated results for SISta and SIStr to express both the symmetry and the magnitude
relationship of the temporal gait parameters between the left and right feet.

Note that the THS in Equations (6), (9), and (10) is different from that in Equations (4)
and (5). For the Vicon measurements, THS was equivalent to THS_ref, whereas for the
IMS measurements, THS was determined from the IMS signal using the peak detection
algorithm [18].

2.8. Statistical Analysis

Because the temporal resolution of measurement systems (IMS and Vicon) is 10 ms,
the measured data performed as discrete values. To evaluate our method appropriately,
we used statistical analysis, whose flowchart is shown in Figure 8. The Kolmogorov–
Smirnov (KS) test was used to test the normality of the distributions of the Vicon and IMS
measurements of gait event timing, the temporal GPBLLs, and the differences between the
measurements. When normality was confirmed, the average and standard deviation (SD)
were used; otherwise, the median and quartile were used. The accuracy and precision were
respectively expressed as the average and SD or the median and quartile deviation (QD)
of the differences between the relative timestamps of gait events and the temporal gait
parameters measured by the two systems. In evaluating the gait event detection, the
synchronicities of candidate feature points were represented by the average or median of
the differences between points.

Figure 8. Flowchart of the statistical analysis in this study.

Bland–Altman plots [32] were used for evaluating the limit of agreement (LoA) be-
tween the measurement systems. When the differences followed a normal distribution,
the t-test was applied to test whether there was a fixed bias between the two systems,
and the LoA of the 95% confidence interval was determined from the average difference
±1.96 × SD. Otherwise, the Wilcoxon signed-rank test was applied instead, and the LoA
was determined by the 2.5th and 97.5th percentiles (P2.5% and P97.5%) [33]. Next, the signifi-
cance of the correlation coefficient r between the differences (D) and averages (A) of the two
systems’ measurements was used to check for proportional bias. When both the differences
and the averages followed a normal distribution, Pearson’s correlation test was applied,
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and the LoA was corrected by a parametric approach via linear regression, as expressed by
Equations (13)–(16) [33]:

D̃ = b1 A + b0, (13)

R = D− D̃, (14)

ULoA = D̃ + 1.96
√

π/2R, (15)

LLoA = D̃− 1.96
√

π/2R, (16)

where D̃ denotes the fitted perfect agreement (PA) line, and R denotes the residual between
the difference of the two system measurements and the fitted PA line.

When the differences and averages of the systems’ measurements were not both
normally distributed, Spearman’s correlation test was applied, and the LoA was corrected
by a nonparametric approach via quantile regression [34]. We define (τ) as the τth quantile
regression. For each τ, (τ) has a pair of coefficients (cτ0 , cτ1 ) for regression. Then, the PA line,
ULoA, and LLoA can be expressed by Equations (17)–(19):

D̃ = c50%
1 A + c50%

0 , (17)

ULoA = c97.5%
1 A + c97.5%

0 , (18)

ULoA = c97.5%
1 A + c97.5%

0 , (19)

where (c2.5%
0 , c2.5%

1 ), (c50%
0 , c50%

1 ), and (c97.5%
0 , c97.5%

1 ) correspond to (2.5), β(50), and β(97.5),
respectively. Note that, in this study, D was calculated as the IMS measurements minus the
Vicon measurements; thus, positive D indicates that the IMS values were bigger than the
Vicon values, and vice versa.

The agreement between the measurements of the two systems was also assessed. When
both measurements followed a normal distribution, intraclass correlation coefficients (ICCs)
of types (2, 1) and (2, k) were used for evaluating the levels of agreement between one-
stride measurements and multiple-stride measurements, respectively. Otherwise, Kendall’s
coefficient of concordance (Kendall’s W) was used. The guidelines for interpreting the ICC
as an inter-rater agreement measure were as follows: excellent, >0.750; good, 0.600–0.749;
fair, 0.400–0.599; and poor, <0.400 [35]. The guidelines for interpreting Kendall’s W as
an inter-rater agreement measure were as follows: strong, >0.600); moderate, 0.300–0.599;
weak, 0.100–0.299; and almost no agreement, <0.100 [36]. The level of significance was
p < 0.05 for all tests.

3. Results
3.1. Evaluation of Signal Features for Gait Event Detection

For all candidate features, the measurements and the differences in the measurements
between the two systems were judged as not following a normal distribution. Accordingly,
the median and quartiles were used for analysis, and the Wilcoxon signed-rank test was
applied to check the fixed bias between the two systems. The results are summarized in
Table 1, and agreement plots for all the candidate features are shown in Figure 9. The
detailed characteristics and Bland–Altman plots of the best candidates for OHS and OTO
detection are shown in Figure 10. As described above, the LoAs were determined by P2.5%
and P97.5%. Note that, because the temporal resolution was 10 ms, the graphs include many
overlapping points.
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Table 1. Summary of the synchronicity evaluation results for candidate features.

Gait
Event

Feature

Relative Time to HS (ms) Temporal Difference (ms)

Kendall’s
W

Vicon
(Median

(Lower–Upper
Quartile))

IMS
(Median

(Lower–Upper
Quartile))

Accuracy
(Median)

Precision
(QD)

Fixed Bias?
(p-Value)

Proportional Bias?
(r, p-Value)

OHS

Fy1

550
(520–590)

620
(570–670) 60 20 p < 0.001 r = 0.279, p < 0.001 0.943

Fz1
570

(530–605) 10 15 p < 0.001 r = 0.095, p = 0.028 0.963

Fgx1
560

(520–590) 0 15 p < 0.001 r = −0.022,
p = 0.614 0.966

OTO

Fy2 + 2%GC

120
(100–140)

110
(90–120) −10 20 p < 0.001 r = −0.049,

p = 0.250 0.618

Fz2 + 2%GC 110
(100–130) −10 20 p < 0.001 r = −0.589,

p < 0.001 0.727

Fgx2 + 2%GC 120
(110–130) 0 10 p = 0.151 r = −0.372,

p < 0.001 0.837

Figure 9. (a) Agreement plots for the candidate features for OHS detection, and (b) agreement plots
for the candidate features for OTO detection. The red dotted lines represent the PA lines.
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Figure 10. Detailed characteristics and Bland–Altman plots of the best candidates for (a) OHS and
(b) OTO detection. The upper and lower LoAs (ULoA and LLoA, black dotted lines) are shown
around the PA (black dashed line) for comparison of the IMS and Vicon gait event detection results.
The LoAs for OTO were corrected by a nonparametric approach via quantile regression.

3.1.1. Best Candidate Signal Feature for OHS Detection

The Vicon reference measurements suggested that OHS occurred around 550 ms
after HS. Comparison of the median difference between the two systems’ measurements
for all candidates showed that Fgx1 had the best synchronicity with the reference OHS
value, with a median difference of 0 ms. However, according to the Wilcoxon signed-
rank test, the null hypothesis that the median value was 0 was rejected (p < 0.001). This
result indicated that there was still a fixed bias between Fgx1 and the reference OHS value.
Additionally, we compared the precisions between the two sets of measurements in terms
of the QD and Kendall’s W. From this comparison, Fgx1 had the best performance for
OHS detection (better than Fz1 and Fy1), with the best Kendall’s W value of 0.966. This
result suggested almost perfect agreement when using this feature to detect OHS. The Fgx1
were the concave GTPs in a monotonically increasing waveform that appeared after heel
rise in Gx, which suggested that, at the moment of OHS, the foot rotation shifted from
a low angular acceleration to a high angular acceleration in the plantarflexion direction.
According to the Spearman’s correlation analysis for the Bland–Altman plots, there was
no correlation between the averages and differences of the two systems’ measurements
(r = −0.022, p = 0.614). Therefore, there was no proportional bias between the two systems.

3.1.2. Best Candidate Signal Feature for OTO Detection

The Vicon reference measurements suggested that OTO occurred around 120 ms after
HS. Comparison of the median difference between the two systems’ measurements for all
candidates showed that the feature Fgx2 + 2% GC most closely approached the reference
OTO value, with a median difference of 0 ms. Moreover, the Wilcoxon signed-rank test
suggested that there was no fixed bias between the two systems (p = 0.151). Additionally, the
Kendall’s W of Fgx2 + 2% GC was 0.837, the best value among the three candidates, which
suggested strong agreement. Accordingly, this feature was considered the most suitable
for OTO detection. Specifically, it indicated that OTO occurs at 2% GC after the foot ends
its rotation motion and has landed completely. According to the Spearman’s correlation
analysis for the Bland–Altman plots, there was a correlation between the averages and
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differences of the two systems’ measurements (r = −0.372, p < 0.001). Moreover, the Bland–
Altman plots showed a tiny proportional bias between the two systems, such that when the
average became larger, the difference became larger in the negative direction. This result
suggested that when the average becomes larger, the IMS value of OTO becomes earlier
than the reference OTO value.

3.2. Evaluation of Using GPBLL Measurements for Gait Event Detection
3.2.1. Results for One-Stride Measurement

The results of the GPBLL measurements from one stride are listed in Table 2. All of
these GPBLLs were judged as not following a normal distribution. As a result, instead of us-
ing the average and SD, we used the median and quartiles to represent the data distribution,
and the median and QD of the differences between the two systems’ results to represent
the accuracy and precision, respectively. Figure 11a,b show the agreement plots and Bland–
Altman plots, respectively. The LoAs of the parameters that were judged as having a
proportional bias were corrected by a nonparametric approach via quantile regression.

The Kendall’s W values of the GPBLLs suggest that the IMS measurements of all these
parameters had strong agreement with the Vicon measurements. In particular, Tstr_L, Tstr_R,
Tsta_L, and Tsta_R had very high values near the “perfect agreement” level. All the temporal
parameters had precisions no higher than 25 ms, i.e., a deviation of no more than 3 units of
100 Hz measurement, although some of them had a slight proportional bias. Moreover, the
precisions of the two symmetry indexes, SIStr and SISta, were 0.014 and 0.032, respectively.
The Wilcoxon signed-rank test showed no fixed biases in DST2, Tstr_L, Tstr_R, SIStr, and
SISta, and the Spearman’s correlation test showed no proportional biases in Tstr_L and Tstr_R.

Table 2. Summary of the synchronicity evaluation results for candidate features.

Gait Parameter

Median (Lower–Upper Quartile) Temporal Difference

Kendall’s W
Vicon (ms) IMS (ms)

Accuracy and
Precision

(Median (QD), ms)

Fixed Bias?
(p-Value)

Proportional
Bias?

(r, p-Value)

DST1 (ms) 120
(107.5–140)

110
(100–130)

−10
(15)

Y
p < 0.001

r = −0.279,
p < 0.001 0.687

DST2 (ms) 120
(110–140)

120
(110–130)

0
(10)

N
p = 0.608

r = −0.410,
p < 0.001 0.814

DSTt (ms) 240
(210–270)

230
(210–250)

0
(25)

Y
p < 0.001

r = −0.485,
p < 0.001 0.794

Tstr_L (ms) 1080
(1020–1170)

1070
(1020–1160)

0
(10)

N
p = 0.529

r = 0.033,
p = 0.549 0.985

Tstr_R (ms) 1070
(1020–1160)

1070
(1020–1160)

0
(10)

N
p = 0.612

r = 0.069,
p = 0.206 0.988

Tsta_L (ms) 650
(600–690)

640
(610–690)

0
(20)

Y
p = 0.032

r = −0.182,
p < 0.001 0.925

Tsta_R (ms) 665
(620–710)

665
(620–700)

0
(15)

Y
p = 0.022

r = −0.172,
p < 0.001 0.967

SIStr
0.000

(−0.011–0.010)
0.000

(−0.017–0.017)
0.000

(0.014)
N

p = 0.379
r = 0.250,
p < 0.001 0.698

SISta
−0.017

(−0.046–0.000)
−0.026

(−0.060–0.014)
0.000

(0.032)
N

p = 0.708
r = 0.359,
p < 0.001 0.708
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Figure 11. Cont.
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Figure 11. (a) Agreement plots between the IMS and Vicon results for gait parameters measured from
one stride, including DST1, DST2, DSTt, Tstr_L, Tstr_R, SIStr, Tsta_L, Tsta_R, and SISta. (b) Bland–Altman
plots and LoAs of the 95% confidence interval around the PA line for comparison of the one-stride
IMS and Vicon gait parameter measurement results. The black dashed lines are the PA lines, and
each pair of black dotted lines represents the ULoA and LLoA. The LoAs of the parameters judged as
having a proportional bias were corrected by a nonparametric approach via quantile regression.

3.2.2. Results for Multiple-Stride Measurement

Because walking a distance of 5 m is one of the suggested criteria for an assessment of
walking [37], the results of the GPBLL measurements from the average of five continuous
effective strides are listed in Table 3. Because all of these GPBLLs were judged as normally
distributed, we could use the average and SD to represent the data distribution, and
to represent the accuracy and precision, respectively, for the differences between the
two systems’ results. Figure 12a,b show the agreement plots and Bland–Altman plots,
respectively. The LoAs of the parameters that were judged as having a proportional bias
were corrected by a parametric approach via linear regression.

The ICC(2, k) values of the five-stride GPBLLs suggest that the IMS measurements of
all these parameters had good or excellent agreement with the Vicon measurements. In
particular, DST2, DSTt, Tstr_L, Tstr_R, Tsta_L, and Tsta_R had excellent agreement. Although
there were fixed biases for DST1, DSTt, and Tsta_R, the precisions of all the temporal param-
eters were no higher than 10 ms, i.e., a deviation of less than 1 unit of 100 Hz measurement;
accordingly, we concluded that there were no fixed biases under the condition of 100 Hz
measurement. In contrast, there were still proportional biases for DST1, DST2, DSTt, Tsta_R,
and SISta. Moreover, the precisions of the two symmetry indexes, SIStr and SISta, were
0.010 and 0.030, respectively. Comparison of the SD with the QD suggests that there was
no obvious improvement in precision from averaging five continuous effective strides;
however, the Bland–Altman plots show that the LoA ranges of SIStr and SISta became
narrower, which means that their precision was improved through averaging.
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Figure 12. (a) Agreement plots between the IMS and Vicon results for gait parameters measured
from five continuous effective strides, including DST1, DST2, DSTt, Tstr_L, Tstr_R, SIStr, Tsta_L, Tsta_R,
and SISta. (b) Bland–Altman plots and LoAs of the 95% confidence interval around the PA line for
comparison of the multiple-stride IMS and Vicon gait parameter measurement results. The black
dashed lines are the PA lines, and each pair of black dotted lines represents the ULoA and LLoA.
The LoAs of the parameters judged as having a proportional bias were corrected by a parametric
approach via linear regression.

Table 3. Accuracy and precision evaluation results for temporal gait parameters obtained by averag-
ing five strides.

Gait Parameter Accuracy (Average, ms) Precision (SD, ms) Fixed Bias?
(p-Value)

Proportional Bias?
(r, p-Value) ICC(2,k)

DST1 (ms) −6.9 18.9 Y
p = 0.003

r = −0.530,
p = <0.001 0.665

DST2 (ms) −1.3 15.4 N
p = 0.493

r = −0.410,
p = <0.001 0.835

DSTt (ms) −8.2 30.1 Y
p = 0.027

r = −0.596,
p = <0.001 0.800

Tstr_L (ms) 2.0 8.0 N
p = 0.707

r = 0.160,
p = 0.238 0.998

Tstr_R (ms) 0.1 6.5 N
p = 0.935

r = −0.024,
p = 0.864 0.998

Tsta_L (ms) −5.4 21.8 Y
p = 0.045

r = −0.216,
p = 0.075 0.957

Tsta_R (ms) −2.8 13.3 N
p = 0.081

r = −0.273,
p = 0.023 0.984
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Table 3. Cont.

Gait Parameter Accuracy (Average, ms) Precision (SD, ms) Fixed Bias?
(p-Value)

Proportional Bias?
(r, p-Value) ICC(2,k)

Tsta_R (ms) −2.8 13.3 N
p = 0.081

r = −0.273,
p = 0.023 0.984

SIStr 0.002 0.010 N
p = 0.186

r = 0.250,
p = 0.063 0.654

SISta −0.004 0.030 N
p = 0.297

r = 0.263,
p = 0.029 0.602

4. Discussion

In this study, we focused on the basic concept of temporal gait parameters that combine
different gait events, which are significant points in a gait cycle. Through foot motion
analysis based on biomechanical knowledge, the OHS and OTO can be determined from
IMS signals by simple algorithms that are feasible for installation on an edge device such as
the IMS in this study. Such OHS and OTO detection enables monitoring of the conditions
of both feet with a sensor mounted only on a single foot.

Nevertheless, some aspects of our results require discussion, as follows. First, the
agreement test results described in Section 3.2 demonstrated the reliability of GPBLL
measurement by our method. Kirtley indicated that the DST correlates with the walking
velocity [38]. It would thus be possible to construct a linear regression model based on
the correlation between the walking velocity and the DST from reference data. However,
such a constructed model would depend on the data distribution and be sensitive to
individual differences. In contrast, our method can detect musculoskeletal status changes
during walking, which better reflects the essence of human walking and makes our method
more robust against individual differences. Furthermore, the detection and combination
of different gait events makes various gait parameters available on the same device and
enables them to be evaluated on the same scale.

Here, we acknowledge that this study was limited in that the data were collected only
from healthy participants whose walking motions were nearly symmetric. If a walking
motion is ideally symmetric, the OHS and OTO should be located halfway between two HSs
and two TOs, respectively. Here, we denote the timestamps of these positions as THS_half
and TTO_half. Because the OHS and OTO of a healthy person are very near these halfway
points, it may be doubtful that the best candidate IMS signal features for OHS and OTO
detection, as described above, may have only matched THS_half and TTO_half occasionally,
rather than representing the true OHS and OTO points.

In actual cases, even a healthy young person’s walking motion should have asymme-
try [39], such that the OTO and OHS should more or less deviate from the halfway points
between two TOs and HSs. In this study, Fgx1 had a median of 560 ms and an upper-to-
lower quartile range of 520–590 ms, whereas the reference THS_half had a median of 540 ms
with an upper-to-lower quartile range of 510–580 ms. Similarly, Fgx2 had a median of 120 ms
with an upper-to-lower quartile range of 110–130 ms, whereas the reference TTO_half had a
median of 130 ms with an upper-to-lower quartile range of 110–150 ms. According to the
Wilcoxon signed-rank test, the null hypotheses that the IMS system’s measured OHS and
OTO timings were similar to THS_half and TTO_half, respectively, were both rejected (p < 0.001,
p < 0.001), which means that our proposed features from IMS signals did not represent
THS_half and TTO_half.

By comparison, according to the agreement tests, Fgx1 and Fgx1 + 2% GC had Kendall’s
W values of 0.966 and 0.837, respectively. Moreover, the Kendall’s W of 0.602 for SISta,
which relied on the precision of both the OTO and OHS measurements, suggested that even
if only weak asymmetries were found in the healthy participants, they were still evaluated
well. Accordingly, we conclude that our proposed feature points could capture changes in
the participants’ gait asymmetry well, which further suggests that the proposed method is
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reliable for detection of OHS and OTO events from IMS signals. Nevertheless, the method
still requires testing on participants whose gait is obviously asymmetric.

Table 4 lists the other examples of daily healthcare or activity monitoring applications
for users without neurological/orthopedic problems, references to modern studies of
those applications [10,12,40–42], and the required estimation precisions. The estimation
precisions that we obtained in five-stride measurements suggest that the proposed method
may have potential for those applications, such as fall prediction, the detection of fatigue,
obesity, mild cognitive impairment, or depression.

Table 4. Potential applications and required estimation precisions for gait parameters measured by
an IMS.

Potential Application Gait Parameter Required Precision Achieved Precision Reference

Fall DSTtotal 80 ms 18.9 ms [10]

Fatigue DSTtotal 2.00%GC or 17–26 ms 18.9 ms [12]

Obesity
Tsta_L or Tsta_R 1.70%GC or 15–24 ms 8.0 or 6.5 ms

[40]
DSTtotal 3.48%GC or 30–45 ms 18.9 ms

Mild cognitive impairment DSTtotal 30 ms 18.9 ms [41]

Depression
DSTtotal 54 ms 18.9 ms

[42]
Tsta_L or Tsta_L 65 ms 8.0 or 6.5 ms

OHS detection strongly depends on the knee flexion that passively results from the
combined motion of hip flexion and ankle plantarflexion before TO, and OTO detection
strongly depends on dorsiflexion motion and the heel rocker function [17,28]. However,
if we expand our method to medical applications in the future, we must address another
issue: the substantial motions required for OHS and OTO detection are significantly
weakened in subjects with ankle osteoarthritis [43], subjects with drop foot induced by
tibialis anterior and fibula muscle weakness [44], and hemiplegic subjects [45]. Accordingly,
our method may be difficult to apply in such cases, or it may show a significant decrease in
precision. Further clinical studies will thus be necessary to validate the applicability of our
method in medical applications.

5. Conclusions

In this study, we successfully established a method for estimating temporal GPBLLs
of healthy subjects by detecting OHS and OTO from foot-motion signals.

OHS can be determined by searching for a feature consisting of a concave GTP in
the monotonically increasing waveform for the Gx signal, which appears after a foot-flat
state, with a precision of 15 ms. OTO can be specified by a concave GTP induced by the Gx
waveform returning to zero after HS in one GC, with a precision of 10 ms.

By averaging over five successive effective strides, an IMS can estimate all GPBLLs
and achieve “good” or “excellent” agreement with the measurements from a reference
Vicon system. All time parameters achieved precisions of no more than 30 ms, and the
symmetry indexes of the stride time and stance phase time achieved precisions of 1.0% and
3.0%, respectively. These results suggest that our method shows promise for expanding the
potential use of IMSs in daily healthcare or activity monitoring applications with the target
to improve habits for healthy subjects. Furthermore, because the proposed method can
detect motion of the opposite foot, our method may enable monitoring of the conditions of
both feet with a sensor worn only on one foot.

In the future, we will test the applicability of the proposed method for subjects with
musculoskeletal ambulation problems, older subjects, and subjects whose gaits are obvi-
ously asymmetric.
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