
����������
�������

Citation: Tsai, W.-C.; Tsai, T.-H.;

Wang, T.-J.; Chiang, M.-L. Automatic

Key Update Mechanism for

Lightweight M2M Communication

and Enhancement of IoT Security: A

Case Study of CoAP Using Libcoap

Library. Sensors 2022, 22, 340.

https://doi.org/10.3390/s22010340

Academic Editors: Akhilesh Tyagi,

Himanshu Thapliyal and

Naveen Chilamkurti

Received: 10 November 2021

Accepted: 23 December 2021

Published: 3 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Automatic Key Update Mechanism for Lightweight M2M
Communication and Enhancement of IoT Security: A Case
Study of CoAP Using Libcoap Library †

Wen-Chung Tsai 1,* , Tzu-Hsuan Tsai 1, Te-Jen Wang 2 and Mao-Lun Chiang 3,*

1 Department of Information and Communication Engineering, Chaoyang University of Technology,
Taichung City 413310, Taiwan; s10930608@gm.cyut.edu.tw

2 Smart System Institute, Institute for Information Industry, Taipei City 10622, Taiwan; roytwang@iii.org.tw
3 Bachelor Degree Program of Artificial Intelligence, National Taichung University of Science and Technology,

Taichung City 40401, Taiwan
* Correspondence: azongtsai@cyut.edu.tw (W.-C.T.); mlchiang@nutc.edu.tw (M.-L.C.)
† This paper is an extended version of our paper published in Tsai, W.C.; Tsai, T.H.; Xiao, G.H.; Wang, T.J.; Lian,

Y.R.; Huang, S.H. An Automatic Key-update Mechanism for M2M Communication and IoT Security
Enhancement. In Proceedings of IEEE International Conference on Smart Internet of Things, Beijing, China,
14–16 August 2020; pp. 354–355.

Abstract: The ecosystem for an Internet of Things (IoT) generally comprises endpoint clients, network
devices, and cloud servers. Thus, data transfers within the network present multiple security concerns.
The recent boom in IoT applications has accelerated the need for a network infrastructure that
provides timely and safe information exchange services. A shortcoming of many existing networks
is the use of static key authentication. To enable the use of automatic key update mechanisms in
IoT devices and enhance security in lightweight machine-to-machine (M2M) communications, we
propose a key update mechanism, namely, double OTP (D-OTP), which combines both one-time
password (OTP) and one-time pad to achieve an IoT ecosystem with theoretically unbreakable security.
The proposed D-OTP was implemented into the Constrained Application Protocol (CoAP) through
the commonly used libcoap library. The experimental results revealed that an additional 8.93%
latency overhead was required to obtain an unbreakable guarantee of data transfers in 100 CoAP
communication sessions.

Keywords: Internet of Things; information security; machine to machine; constrained application protocol

1. Introduction

Business opportunities in the Internet of Things (c.f., IoT in Appendix A) industry
are increasing rapidly, and according to a report by International Data Corporation (IDC)
FutureScapes [1], among the 10 fields predicted to lead in the industry, security is ranked
highest. However, IoT security-related concerns must be carefully discussed and addressed.
Currently, the introduction of 5 G technology has accelerated the development of the IoT.
However, developing a network infrastructure that can adequately guarantee security and
meet the requirements of lightweight machine-to-machine (M2M) transmissions in wireless
networks remains a challenge for researchers and developers [2]. Furthermore, an increase
in potential applications of the IoT has necessitated acceleration in the development of a
network infrastructure to meet the demands of massive machine-type communication for
the tremendous number of IoT devices. Efforts toward achieving a secure IoT ecosystem
are moving toward development of an infrastructure that can support massive connections
and diverse applications without sacrificing information security.

As Figure 1 shows, an IoT ecosystem generally comprises endpoint clients (e.g., sens-
ing nodes), network devices (e.g., routers), and cloud servers (e.g., workstations); however,

Sensors 2022, 22, 340. https://doi.org/10.3390/s22010340 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22010340
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0699-0143
https://doi.org/10.3390/s22010340
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22010340?type=check_update&version=3


Sensors 2022, 22, 340 2 of 20

within this system, the data transfers that occur between clients and servers present mul-
tiple information security concerns. To address this, network security researchers have
worked to increase the robustness of encryption and decryption algorithms. Furthermore,
if the applied security mechanism can be improved to suit the characteristics of different
applications, it could achieve more optimal performance metrics for cost, speed, and se-
curity. For example, Adeel et al. [3] recently provided a lightweight chaotic encryption
scheme for transmitting information of audiovisual (AV) hearing aids in real time. Besides,
this study introduces secure IoT applications of sensor bracelets, heated socks, and foot
baths in Section 3.3. Therefore, establishing timely and safe information exchange services
among IoT devices is crucial.

Figure 1. Potential applications of IoT within 5 G networks.

The Constrained Application Protocol (CoAP) [4] is intended for use in IoT devices.
The CoAP was designed to meet specialized application requirements, such as low through-
put and low power, in lightweight M2M communications and IoT devices. Therefore, we
selected the CoAP as the protocol applied in our experiments. Several unique implementa-
tions of CoAP have been accomplished, such as with libcoap [5], a source code archive that
can be cloned from GitHub. In this study, we modified the designs of the CoAP server and
CoAP client provided in libcoap version 4.2.1. Moreover, we used OpenSSL version 3.0 [6]
to enable encryption in our implementation.

However, working from within an existing network may require researchers to use a
static key authentication structure, such as the pre-shared key (PSK) used in OpenSSL [6].
By contrast, a one-time password (OTP) [7] is a system in which a password is valid for
only one login session on a computer or for a single data transfer over a network. Therefore,
to avoid the shortcomings associated with static key authentication, we applied OTP with
CoAP in our previous work [8]. Another technique, one-time pad [9], refers to a key
that can only be used once (i.e., nonrepeating) for encrypted operations. One-time pad
is an encryption operation technique in classical cryptography and has been reported by
Shannon [10] to be theoretically unbreakable. Recent implementations of OTP, such as
those of [11–13] served as references for the implementation of our own proposed key
update mechanism in which we aimed to simultaneously execute both OTP and one-time
pad in IoT devices as a pair, namely, D-OTP (Double OTP).

This paper is organized as follows: in Section 2, the background of security-related
key systems is explained. In Section 3, the design methodology, including the proposed
key update mechanism of the applied IoT ecosystem, is introduced. In Section 4, the
experimental results with performance analyses are presented and described. In Section 5,
we discuss the results of our experiments, and a conclusion is drawn in Section 6.



Sensors 2022, 22, 340 3 of 20

2. Background

In this section, we review and evaluate existing network security issues, especially
those of key management methods. We next provide a basic explanation of cipher algo-
rithms. Finally, we discuss the application layer protocol and nonrepeating rule of the keys
used in this study.

2.1. PSK

PSKs are designed for communication between devices and, therefore, do not require
an authentication server. For example, in a wireless network, such as Wi-Fi [14], each device
encrypts the traffic datagram by deriving its encryption key from a PSK. However, the same
PSK is repeatedly used for different data transfers, which can leave PSKs vulnerable to
password cracking if users have a weak password or passphrase. For example, as reported
in one study [15], the name and length of the service set identifier (SSID) are used to
seed Wi-Fi Protected Access (WPA) password hashes. However, rainbow tables have been
created for the top 1000 SSIDs and common passwords; such a table can thus be employed
to rapildy crack a WPA-PSK. Generally, PSKs should be replaced regularly, especially if a
device has been lost, or when a user’s right to use a network has recently been restored.
For IoT applications, an automatic key update mechanism is essential for enhancing the
security of lightweight M2M communications.

2.2. Key Exchange

To change keys for communication between devices, the Diffie–Hellman (DH) algo-
rithm [16] is a method of securely sharing a common cryptographic key for symmetric
encryption over a public channel. Relevantly, another asymmetric cryptographic system
that uses pairs of keys consisting of a public key and a private key, such as Rivest–Shamir–
Adleman (RSA) [17] in which each device requires keeping the private key and the public
key, can be distributed without compromising security [18]. Another key exchange method
is quantum key distribution (QKD), which allows two parties (commonly called Alice and
Bob) to share a common key for encryption via a quantum channel (i.e., QKD link) [19].
The first QKD protocol, which was known as BB84 [20]. By which, if an eavesdropper
(conventionally called Eve) tries to steal the key, the communicators (i.e., Alice and Bob)
will detect her using appropriate quantum laws [21]. Accordingly, the PSKs can be updated
frequently between devices by taking advantage of the mentioned key exchange methods.
As a result, transmission delays are required for the key exchanges, especially for the QKD
based system [22].

In comparison with our proposed D-OTP mechanism, the PSKs are updated in each
device without exchanging any information between each other. In brief, the keys are
generated by a pseudorandom number generator (PRNG) using a seed as the identical
serial number (SN) recorded in the read-only memory (ROM) of the communication devices.
Section 3.2 will provide a detailed introduction.

2.3. Ciphering Methods

In data encryption, a stream cipher is a type of algorithm that uses a symmetric key
or a single key that is used to both encrypt and decrypt. Generally, a stream cipher uses a
PRNG to generate a key data stream during encryption [23]. Through this, the key data
stream is sequentially encrypted with a plaintext data stream to obtain a ciphertext data
stream. For example, the Rivest Cipher 4 (RC4) sequentially performs an exclusive-OR
(XOR) operation on each byte of the plaintext data stream and each byte of the key data
stream; after the operation, one byte of ciphertext data can be obtained in sequence and
then used to produce a ciphertext data stream. Because implementation of RC4 is relatively
simple and direct, as was illustrated by [24,25], thus stream encryption is suitable for
real-time transmission of audio and video streaming data within a network.

Block encryption is another type of symmetric key encryption algorithm; it is used,
for example, in the Advanced Encryption Standard (AES), a popular specification for the



Sensors 2022, 22, 340 4 of 20

encryption of datagrams established by the National Institute of Standards and Technology
in 2001 [26,27]. The AES superseded the previous block cipher method, Data Encryption
Standard (DES) [28], and is now commonly used worldwide in many network and com-
munication standards. In terms of design, block cipher can also be used to encrypt data
stream. However, block encryption requires a certain amount of data to be collected as
a block before the encryption start. Thus, design and operation of block cipher are more
complicated than that of stream cipher. In general, block encryption can provide better
secure performance, it is more capable for encrypting data file transferred over the network.

2.4. TLS

TLS [29] is a cipher protocol designed to provide communications security over the
transport layer of a computer network. TLS is commonly used in network applications.
For example, it is typically used on websites to secure communication between servers
and browsers. TLS version 1.2 supports AES–CCM (i.e., counter with CBC–MAC mode)
and AES–GCM (i.e., Galois/counter mode) to provide privacy and data integrity between
two communication devices, which may be a server and a client. Furthermore, when
datagrams are secured using TLS, the connection becomes secure because of the symmetric
cryptography that is employed to encrypt the data transfer. For this type of encryption,
a public key is generated for each connection at the start of the session. The server and
client negotiate the public key before the first byte of data is transmitted. However, the
security mechanism for exchanging the public key between the server and the client is
problematic. For M2M applications, especially those in a fixed network configuration, the
public key can be preset in a communication pair of devices. Accordingly, we propose a
design methodology especially suited for IoT devices.

2.5. CoAP and Secure IoT Transmission

CoAP, defined in RFC 7252 [4], is intended for use in IoT devices, such as wireless
sensor nodes, that may be resource-constrained with low power consumption and low
computational capacity. CoAP can enable IoT devices to be accessed over the Internet
through the transfer of datagrams using Transmission Control Protocol (TCP) or User
Datagram Protocol (UDP) sockets. CoAP is designed to meet specialized application
requirements, such as low throughput and low power. Low overhead and simple design
are essential in lightweight M2M communications and IoT devices, both of which tend to
be deeply embedded, have low memory, and have a simple microprocessor, owing to the
Institute for Information Industry (III) that provided us with the narrowband Internet of
things (NB-IoT)-based [30] sensor application system [31] as shown in Figure 2, in which
CoAP is selected as the IoT communication protocol. The CoAP transmission service can
use Datagram TLS (DTLS) [5] in either raw public key (RPK) mode or PSK mode for data
encryption. However, both RPK and PSK are static. Therefore, we cooperated to develop
the proposed automatic key update mechanism of D-OTP. For this reason, we selected to
apply CoAP in this study. Section 3 “Design Methodology” will introduce the details.

2.6. CoAP Library of Libcoap

Some implementations based on the CoAP can be obtained from the Internet; lib-
coap [5] is easily available as a source code archive that can be cloned from GitHub. More-
over, libcoap is C implemented and supports TLS, including the GnuTLS, OpenSSL, and
tinydtls frameworks. In this study, we modified the designs of the CoAP server and CoAP
client provided in libcoap version 4.2.1. Furthermore, we used OpenSSL version 3.0 [6] to
enable encryption in our implementation.



Sensors 2022, 22, 340 5 of 20

Figure 2. The III NB-IoT sensor system employs CoAP as the IoT communication protocol.

2.7. Nonrepeating PRNG

Our proposed D-OTP is a secure mechanism that provides theoretically unbreakable
security, as reported by Shannon [10]. For this mechanism to be implemented, a nonre-
peating PRNG (NR-PRNG), as used in [32], is required. A nonrepeating key is created
by randomly selecting a nonrepeating element from a set of n elements. Most repeating
keys, such as that of [33], have been developed on the basis of the Fisher–Yates shuffle
algorithm [34]. However, this method places a heavy burden on computing performance
for generating high entropy random numbers, and providing nonrepeating checks through
the method requires a large amount of memory access [11]. Accordingly, we address this
concern in our proposed design.

3. Design Methodology

We first introduce the proposed D-OTP key update mechanism and provide a general
overview of different implementations of CoAP and PRNG. We then introduce the execution
flow, including the CoAP server and CoAP client communication pair. Finally, we provide
a description of the implemented key update mechanism and its operation flow.

3.1. OTP and One-Time Pad

An OTP is a password that is valid for only one login session on a computer or for a
single data transfer over a network [7]. Through implementation of an OTP ecosystem, the
static key authentication-related shortcomings of PSK can be avoided. OTP is commonly
used for credit card transactions. When a credit card payment is completed, an OTP is
randomly generated and sent to a user-registered mobile number or email address to
validate the transaction. In real applications, OTP can be repeating due to the limited
length of numbers. Furthermore, an one-time pad, is one in which a key can only be
used once (i.e., nonrepeating) for encrypted operations [9]. One-time pad is an encryption
method in classical cryptography and has been reported by Shannon [10] to be theoret-
ically unbreakable. Recent implementations of OTP, such as those of [11–13], served as
references for the implementation of our own proposed key update mechanism in which
we aimed to automatically execute both OTP (for changing password) and one-time pad
(for nonrepeating key) in IoT devices as a network communication pair, namely D-OTP.

3.2. D-OTP Secure Transmission Ecosystem

Figure 3 shows a deployment scheme applying D-OTP to realize a secure IoT ecosys-
tem. The operations of the system can be divided into three planes as follows.



Sensors 2022, 22, 340 6 of 20

Figure 3. A D-OTP deployment scheme for building a secure IoT transmission ecosystem.

1. Setup Plane

The proposed D-OTP IoT cybersecurity system basically comprises a D-OTP manager
and several D-OTP devices, and a D-OTP device shall contain at least one D-OTP module.
When deploying the devices, the user can preset two modules with an identical SN as a
communication pair, and the used SN is essentially nonrepeating in other communication
pairs (c.f., Step 0 in Figure 4). In operations, the SN is applied to generate a nonrepeating
key for each transmission (c.f., Step 3 in Figure 4). Compared with traditional PSK methods,
the SN is used as an initial PSK but not transmitted via public network. In practice, the
SN is recorded in a ROM, thus it can only be obtained by directly reading the ROM in the
module of device. In addition, even if the SN of a certain D-OTP module is known by a
third party, the SN cannot be used in hacking other device modules due to the one-time
use principle.

2. Control Plane

Control plane is for managements in the system operation stage. Before a data trans-
mission start between two paired modules, the modules must request the D-OTP manager’s
grants first (c.f., Step 1 to 2 in Figure 4). When the transmission is completed, the D-OTP
manager shall be informed again (c.f., Step 7 to 8 in Figure 4). The D-OTP manager
can record and monitor the times of grant transmissions between the communication
pair to detect any abnormal behavior such as brute-force (i.e., replay) attacks from crack-
ing the IoT ecosystem. The control plane can be optional in deploying a D-OTP IoT
cybersecurity system.

3. Data Plane

Data plane is for transfers in the system operation stage. After receiving (RX) the
grant to start a data transmission, the paired modules must individually generate a new
and nonrepeating key based on its SN (c.f., Step 3 in Figure 4). In the process of data
transmission, the paired modules use the key to perform encryption and decryption
operations, respectively (c.f., Step 4 to 6 in Figure 4). It is well known that there will
be massive IoT devices in the coming future and the designed data plane of D-OTP can
enable devices to directly transmit (TX) data between each other. By doing so, the D-OTP
IoT cybersecurity system can distribute computing and storage resources to the endpoint
devices, and switch datagrams at the network edge to reduce data transmission delays,
which can be a novel realization of fog computing [35]. The data plane is mandatory for
the D-OTP IoT cybersecurity system.



Sensors 2022, 22, 340 7 of 20

Figure 4. A D-OTP operation flow for activating the IoT secure transmission ecosystem.

3.3. Applications of D-OTP

In the proposed IoT ecosystem, a mechanism has been added that repeatedly tests
until a nonrepeted random number, which can be used as the key for D-OTP appications,
is obtained. In practice, D-OTP is a secure transmission system suitable for IoT devices. We
have applied D-OTP to several health-care devices, such as sensor bracelets, heated socks,
and foot baths, as illustrated in Figure 5.

Figure 5. Application scenarios for healthcare IoT devices using D-OTP [36] (Supplementary Materials).

Figure 6a illustrates a D-OTP data transmission example between two healthcare IoT
devices (device A and device B). Notably, as a communication pair, the identical SN of
“1234” is recorded in the ROMs of the paired D-OTP modules equipped in devices A and
B, respectively. As Figure 6b shows, device A can furthermore communicate to another



Sensors 2022, 22, 340 8 of 20

additional device (device C). Accordingly, device A shall be equipped with two D-OTP
modules, one for the original device B (with SN “1234”) and another for added device C
(with SN “5678”). In accordance with the OTP rule, the SN of device C is nonrepeating to
that of device B. Afterward, the two D-OTP modules in device A can be combined into a
single one with two SNs to reduce manufacturing costs.

Figure 6. D-OTP architectures for directly transmitting data between (a) two or (b) three healthcare
IoT devices.

As Figure 7 shows, we provided a Youtube video demonstration in [36] for the im-
plemented healthcare IoT devices using D-OTP. Through the use of this system, users
can benefit from the use of smart IoT devices without having their personal physiological
information intercepted by a third party.

Because the life of an IoT device is limited, the total length of data transfer is finite.
Therefore, in a practical design, the key blocks used to encrypt the data blocks would
be nonrepeating to ensure the size (i.e., the number of bits) of a key block can reach a
reasonable value. For example, a 32-bit key block can be used by D-OTP to generate
232 nonrepeating key blocks, which is more than sufficient for the application target of
IoT devices for healthcare purposes. If the mechanism detects that all random number
combinations have been used (under use conditions that are not reasonable), our design
suspends the operation of the D-OTP to prevent attempted brute-force (i.e., replay) attacks
from cracking the IoT ecosystem.



Sensors 2022, 22, 340 9 of 20

Figure 7. A demonstration for healthcare IoT devices using D-OTP [36].

3.4. Implementation of CoAP

We used a CoAP server C program example from libcoap [5] called CoAP server,
which can be used to communicate with IoT client devices using the CoAP, with a Internet
Protocol (IP) address or Uniform Resource Identifier (URI) given as an argument on the
operation system shell command line. The URI determines which protocol is employed:
CoAP+TCP, CoAPs, or CoAPs+TCP. Through this process, CoAPs and CoAPs+TCP are
only supported when the CoAP server is developed using a DTLS [5], with the DTLS being
based on TLS over the UDP socket to transfer datagrams. In our experiments, we applied
the PSK mode of the CoAP server by employing the DTLS library of OpenSSL [6].

3.5. Implementation of PRNG

PRNG is a deterministic random bit generator, meaning the number generated by the
PRNG is not truly random; it can be determined by using an initial value as a seed. For
example, Barker et al. [37] presented a software-implemented algorithm for generating
approximations of the properties of sequences of random numbers. Besides, Adeel et al. [3]
proposed a chaotic PRNG to enable a lightweight and secure IoT transmission. By contrast,
a hardware-implemented pseudorandom generator [38] was proposed that achieved a
more secure cryptographically secure pseudorandom number generator. Furthermore, for
an OTP to be applied and effective, a NR-PRNG such as that of [32] must be implemented.
Consequently, the overhead for the nonrepeating process should be considered carefully.

3.6. System Execution Flow

In the original design of the CoAP server, as well as in that of the CoAP client, the PSK
is assigned with a command with a “-k key” argument, where the key is the specified PSK.
Accordingly, the PSK is applied for all stages of data transfers between the CoAP server
and the CoAP client. As displayed in Figure 8, we use the key value assigned with the “-k
key” argument in the command instead of a serial number (SN). Notably, the same SN is
assigned to the session pair of the CoAP server and CoAP client. In the “start of the CoAP
session” stage, a new key is created or updated by the applied PRNG, and the SN is used
as a seed. For the operation of the CoAP session, the CoAP server is initiated first and waits
(the “RX process” stage) for a CoAP connection request to be issued from the CoAP client
(the “TX process” stage) as presented in Figure 8. For the CoAP session in our design, the
key update processes are similar in the CoAP server and CoAP client; both use an identical
SN as the seed of the applied PRNG or NR-PRNG to generate identical random numbers
for encryption and decryption.



Sensors 2022, 22, 340 10 of 20

Figure 8. Flowchart of key updating in CoAP session.

3.7. Key Update Flow

In this section, we explain the key update flow that follows the execution flow for
generating a new key (Figure 9). A similar execution flow was provided in our previous
work [8].

Figure 9. Execution flowchart of generating a new key in CoAP io.



Sensors 2022, 22, 340 11 of 20

First, the user sets an SN for the CoAP server and CoAP client. In libcoap, SNs are
stored as characters according to the American Standard Code for Information Interchange
(ASCII).

SN = “1234” (32-bit) (1)

The SN is subsequently changed to a 32-bit number.

SN = 1234 (32-bit) (2)

A random number (RN) is then generated by a PRNG, with the SN being used as a
seed for the PRNG.

RN = 1930134286 (32-bit) (3)

The 32-bit SN and the 32-bit RN are then concatenated as a new 64-bit key, as follows:

new key = SN << 32 + RN (64-bit) (4)

new key = 5299989643264 + 1930134286 = 5301919777550 (64-bit) (5)

Finally, the key can optionly be changed per CoAP io process. A CoAP io can be
regarded as one data transfer (using a UDP socket) between a CoAP server and a CoAP
client. By contrast, the CoAP session is defined as a basic transmission unit of the CoAP
protocol [4], one CoAP session comprises five CoAP io processes to finish the required
handshakings and data transfers for the CoAP server and CoAP client communication pair.
In our design, the key can be updated per CoAP session (i.e., one key is used five times for
the five CoAP io processes in a CoAP session) or for each CoAP io, which guarantees each
key is different in a continuing data transfer.

3.8. Key Synchronization Issue

As Figure 9 shows, the key can be updated per CoAP session or for each CoAP io in
the exchanges of CoAP messages between the CoAP server and client. Due to network
congestion, traffic load balancing, or unpredictable network behavior, IP packets may be
lost, duplicated, or delivered out of order. In an unreliable network, the proposed D-OTP
mechanism possibly encounters a problem that the keys might be asynchronous between
the two communication pairs as illustrated in Figure 10a, in which, the packet encrypted
by key #2 is lost in transmission. In case of unawareness of the packet loss, the receiver
applys key #2 to decrypt the third received packet thus leading to an error decoding result.
Therefore, in order to develop D-OTP using an unreliable transport such as UDP, a field
of packet serial number could be added in payload of the transmitted packets as a basic
solution depicted in Figure 10b. Consequently, each received packet can be decrypted by
its corresponding key.

Another key synchronization issue is how to deal with transmissions in different direc-
tions between the communication pair. As Figure 11a shows, at the first two transmissions,
the keys are changed sequentially. However, at the third transmission, device A and device
B transmit (TX) packets to each other simultaneously, such a race condition leads to the
error decoding results because both devices use key #3 to decrypt the received packet
encryped by key #2. As Figure 11b illustrates, to deal with this problem, a simple method is
that, a device shall use keys for TX and RX, separately. In other words, TX key #0 of device
A is different from TX key #0 of device B, but TX key #0 of device A is identical to RX key #0
of device B, and vice versa. Therefore, a device needs two SNs to generate independent TX
and RX keys. In practice, a proposal is that, to use a SN for TX and the ones’ complement
of the SN is for RX, where the ones’ complement of a binary number is the value obtained
by inverting all the bits in the binary representation of the number.



Sensors 2022, 22, 340 12 of 20

Figure 10. Scenarios where packets are transmitted through an unreliable transport (a) cause a key
synchronization problem or (b) are patched by a basic solution to skip the key of the lost packet.

Figure 11. Scenarios where packets transmitted simultaneously from both devices (a) cause a key
synchronization problem or (b) are patched by a basic solution to separate the keys used for TX
and RX.

In an unreliable network, a general method is to employ the TCP transport, which can
detect these problems, then requests re-transmission of lost data, or rearranges out-of-order
data. Once the TCP receiver has reassembled the originally transmitted sequence of data,
it then passes it to the receiving application. That is, TCP abstracts the communication of
the application from the details of the underlying network. Although CoAP is bound to
the unreliable transport of UDP, however, CoAP can still provide reliability by marking a
message to be transmitted as confirmable (CON). A CON message can be retransmitted
until the recipient sends an acknowledgement (ACK) message. Besides, in our experiments,



Sensors 2022, 22, 340 13 of 20

CoAP messages are secured using DTLS over UDP. In practice, DTLS is TLS with added
features to deal with the unreliable nature of the UDP transport [4].

4. Experimental Results

To verify the function and evaluate the performance of our proposed method, we
performed experiments in a workstation composed of one Intel Xeon E5-1620 processor
with 32 GB memory and an Ubuntu (version 18.04.3) operating system. Experimental items
and performance analyses are introduced and discussed in the following subsections.

4.1. Executions of Libcoap

The implementation using libcoap includes two programs, one is CoAP server and
the other is CoAP client. First, we performed the initial functions, the implemented
CoAP server was enabled to await endpoint connections from multiple clients. Next, we
initiated the CoAP client to receive information from the CoAP server. A Copper CoAP
user-agent [39] was also applied as a graph user interface and obtained the time and date
information from the identical CoAP server, as presented in Figure 12, to further assess the
accuracy of the communication handshakes between the CoAP sever and CoAP client.

Figure 12. Initiation of Copper without DTLS enabled.

Furthermore, to investigate whether the security IoT ecosystem was functionally
supported by OpenSSL [6], the CoAP server was enabled using an example key value
of “1234” assigned with a “-k key” argument command. The CoAP client successfully
received the information with the same key value of “1234” assigned with the “-k key” and
“coaps” followed by an IP address as command arguments.

4.2. Automatic Key Update Mechanism

In operation, libcoap uses a PSK by setting an identical key for the CoAP server and
multiple CoAP clients; the key is used to encrypt datagrams for all transfers that involve
the CoAP server. This can lead to two security concerns: first, the identical key could be
learned and misused by a malicious third party. Second, the multiple ciphertext datagrams
encrypted by the identical key can enable hackers to uncover cipher rules.

To overcome these concerns, the “change key per CoAP io” phase (Figure 9) of our
designed mechanism can be optionally applied to update the value of the key through the



Sensors 2022, 22, 340 14 of 20

specifications “per CoAP session” or “per CoAP io” in a single CoAP session. The new key,
the 64-bit number of “5301919777550” presented in Equation (5), which is dynamically up-
dated, provides improved security compared with the original static key. The experimental
results are presented in the following sections.

4.3. Performance Analyses for PRNG

We followed the CoAP outlined in [4] to create a CoAP session in which we used
a CoAP client to obtain time and date informaton from a CoAP server; five CoAP io
processes were required for the data transfers (using a UDP socket) to occur (i.e., one CoAP
session contains five CoAP io processes). Accordingly, in our experiments, we implemented
three key update policies and compared the performance overheads of the transfer latency
performance that resulted from the different computing efforts of the policies. The first
policy was to update the key “per CoAP session” (Per-Session); the key is updated using
the PRNG once for each CoAP session. Therefore, one key is used five times for the five
data transfers (i.e., CoAP io processes) that occurr in a single session. The second policy
was to update the key “per CoAP io” (Per-IO) process. As with the per-session policy, a
key for the first CoAP io is generated using the PRNG. The key is then changed by simply
increasing the numbers by one for the next CoAP io (Per-IO-Inc1). However, to randomize
the key used for each CoAP io beyond a simple increase of 1, we created the third policy.
Through this policy, the key is updated using the PRNG once in the “per CoAP io” process
(Per-IO-Prng).

The latency performance overheads (i.e., additional transmission latency compared
with the primitive design of libcoap [5]) for the three key update policies required for
the CoAP server are displayed in Figure 13. The experimental number for each policy
is an average time value of the latency statistics for data transfers in 100 CoAP sessions
(i.e., 500 CoAP io processes) between the CoAP server and the CoAP client. The latency
overhead for Per-Session is relatively small at 1.27%. The overhead of Per-IO-Inc1 increases
to 5.50% because the key must change for each data transfer. Moreover, the overhead of
Per-IO-Prng is at 6.27%; notably, only 0.77% (6.27–5.50%) is added with the application of
the PRNG function to more randomly change the keys and improve security. A similar
experiment was provided in our previous work [8].

Figure 13. Latency performance comparisons among different key update policies.

4.4. Performance Analyses for NR-PRNG

To achieve the theoretical unbreakability reported by Shannon [10], our proposed D-
OTP applications required a NR-PRNG, as applied in [32]. To create performance overhead
for the key without repeats, we developed a fourth policy, in which the key is updated
by our designed NR-PRNG once “per CoAP io” process (Per-IO-NrPrng). The latency
performance overheads for Per-IO-Inc1, Per-IO-Prng, and Per-IO-NrPrng are presented in
Figure 14. The latency overhead for Per-IO-Prng is relatively small, at 0.77% (6.27–5.50%),
compared with that of Per-IO-Inc1. However, the overhead of Per-IO-NrPrng increases to



Sensors 2022, 22, 340 15 of 20

8.93%, with 2.66% (8.93–6.27%) added with the implementation of the applied NR-PRNG
function to change keys without repeating.

Figure 14. Latency performance comparisons among key update policies.

4.5. Performance Analyses for NR-PRNG in Mass Data Transfers

For the Per-IO-NrPrng, a mechanism was used to repeatedly check until a nonrepeti-
tive RN was obtained. Consequently, the overhead for the nonrepeating process warrants
careful consideration. The performance analyses for mass data transfers among the dif-
ferent key update policies are displayed in Figure 15. The tested number of transmission
ranged from 100 to 9100 CoAP sessions. The performance overhead is the percentage of
additional latency caused by the applied security mechanism (the different key update
policies) in the overall time period of the data transfers between the CoAP server and the
CoAP client.

Figure 15. Performance analyses for mass data transfers among different key update policies.

At 100 CoAP sessions, the performance overhead was identical to that displayed in
Figure 14. For a low number of sessions, the performance overhead of Per-IO-NrPrng was
higher than that of Per-IO-Prng by an acceptable 2.66% (8.93–6.27%). Notably, at 1100 CoAP
sessions, the performance overhead of Per-IO-NrPrng greatly increased to 41.80%, which
was considerably higher than that of Per-IO-Prng (21.83% (41.80–19.97%)). At 4100 CoAP
sessions, the performance overhead of Per-IO-NrPrng further increased to 82.22%, which
was 37.73% (82.22–44.50%) higher than that of Per-IO-Prng. At 9100 CoAP sessions, the
performance overhead of Per-IO-NrPrng reached 92.89%, which indicates that network
performance deteriorated substantially because of the NR-PRNG process. This is a critical
concern that must be addressed.



Sensors 2022, 22, 340 16 of 20

4.6. Performance Analyses for NR-PRNG with a Long Key

In cryptography, the key length refers to the number of bits in a key used by a
cryptographic algorithm; the degree of security in the cryptographic algorithm generally
correlates to its key length. Therefore, the key length should be long enough to ensure
that brute-force attacks that use all possible bit combinations as replay attacks would be
impossible. However, an implemented system with a longer key requires more time to
confirm whether the newly generated key is repetitive. As discussed in Section 3.6 of
the mansucript, the key applied in our proposed IoT ecosystem is 64 bit. To investigate
the performance overhead for different key lengths, we increased the key to 96 bit to
accommodate the needs of our nonrepeating key generation process.

The performance analyses for different key lengths among different key update policies
are presented in Figure 16. The tested number of transmissions, as with the 64-bit key,
ranged from 100 to 9100 CoAP sessions. For 100 CoAP sessions, the performance overheads
were trivial for both the Per-IO-Prng and Per-IO-NrPrng protocols, at 0.22% and 1.32%,
respectively. For 1100 CoAP sessions, the difference between the performance overhead of
the Per-IO-Prng (96-bit) and Per-IO-Prng (64-bit) was only 0.63% (20.60–19.97%); however,
the gap in the performance overhead between the Per-IO-NrPrng (96-bit) and Per-IO-
NrPrng (64-bit) was greater (6.61% (48.41–41.80%)). This was true for 2100 CoAP sessions
and beyond. This finding indicates that application of a longer key leads to a considerable
performance overhead caused by the process of the NR-PRNG.

Sensors 2022, 21, x FOR PEER REVIEW 17 of 21 
 

 

 
Figure 16. Performance analyses for 96-bit key compared with 64-bit key. 

5. Discussion 
In comparison with the conventional IoT secure methods based on the DH key 

exchange algorithm, the proposed D-OTP mechanism can be applied under the present 
condition as shown in Figure 6. That is, the communication pair of device must be 
equipped with the paired D-OTP modules, in which the ROMs contain the identical SN. 
In practice, the paired D-OTP modules can be manufactured in the factory or preset by an 
engineer during deployment. In general, D-OTP is suitable for a specific application in a 
fixed communication system, that is the pair of D-OTP modules will only communicate 
with each other during their lifetime. The is the major application limitation of D-OTP 
compared with the commonly used DH algorithm. 

However, an IoT device has a limited service life with a finite number of data 
transfers. In this study, we demonstrated that, when the total number of data transfers is 
less than 100 CoAP sessions, the poorest latency overhead incurred through application 
of our proposed D-OTP mechanism, which provides theoretically unbreakable security, 
is 8.93%. This situation is possible in several IoT applications, such as in the controls of 
sensor bracelets, heated socks, and foot baths (Figure 5). However, for mass data transfers, 
most IoT devices have limited hardware resources (e.g., microprocessors and memory). 
Thus, generating nonrepeating, usable D-OTP key streams in real time is challenging. The 
generation of the D-OTP key involves randomly selecting a nonrepeating element from a 
set of n elements. Our experimental results demonstrated that, as the number of 
transmissions increases, the latency performance deteriorates more rapidly. The reason 
for this is that, when more keys are used for transmissions, the newly generated key must 
be checked against all previously generated keys, which causes the time required to create 
a valid (i.e., nonrepetitive) key to increase exponentially. This is especially true when pure 
software methods, such as those of [33], are applied in experiments. Accordingly, for 
applications using long keys for mass data transfers, an alternative approach for hardware 
acceleration, such as that of [40], can offer a possible solution. The main innovations and 
contributions of this study are outlined as follows: 
1. We propose a D-OTP mechanism that combines both OTP and one-time pad to 

achieve theoretically unbreakable security. 
2. To the best of our knowledge, D-OTP is the first implementation of the theoretically 

unbreakable security in a real IoT ecosystem. 

Figure 16. Performance analyses for 96-bit key compared with 64-bit key.

5. Discussion

In comparison with the conventional IoT secure methods based on the DH key ex-
change algorithm, the proposed D-OTP mechanism can be applied under the present con-
dition as shown in Figure 6. That is, the communication pair of device must be equipped
with the paired D-OTP modules, in which the ROMs contain the identical SN. In practice,
the paired D-OTP modules can be manufactured in the factory or preset by an engineer
during deployment. In general, D-OTP is suitable for a specific application in a fixed
communication system, that is the pair of D-OTP modules will only communicate with
each other during their lifetime. The is the major application limitation of D-OTP compared
with the commonly used DH algorithm.

However, an IoT device has a limited service life with a finite number of data transfers.
In this study, we demonstrated that, when the total number of data transfers is less than
100 CoAP sessions, the poorest latency overhead incurred through application of our
proposed D-OTP mechanism, which provides theoretically unbreakable security, is 8.93%.
This situation is possible in several IoT applications, such as in the controls of sensor
bracelets, heated socks, and foot baths (Figure 5). However, for mass data transfers,
most IoT devices have limited hardware resources (e.g., microprocessors and memory).



Sensors 2022, 22, 340 17 of 20

Thus, generating nonrepeating, usable D-OTP key streams in real time is challenging. The
generation of the D-OTP key involves randomly selecting a nonrepeating element from a set
of n elements. Our experimental results demonstrated that, as the number of transmissions
increases, the latency performance deteriorates more rapidly. The reason for this is that,
when more keys are used for transmissions, the newly generated key must be checked
against all previously generated keys, which causes the time required to create a valid (i.e.,
nonrepetitive) key to increase exponentially. This is especially true when pure software
methods, such as those of [33], are applied in experiments. Accordingly, for applications
using long keys for mass data transfers, an alternative approach for hardware acceleration,
such as that of [40], can offer a possible solution. The main innovations and contributions
of this study are outlined as follows:

1. We propose a D-OTP mechanism that combines both OTP and one-time pad to achieve
theoretically unbreakable security.

2. To the best of our knowledge, D-OTP is the first implementation of the theoretically
unbreakable security in a real IoT ecosystem.

3. The proposed D-OTP mechanism can be implemented using the libcoap library, which
is a popular and commonly used open-source CoAP.

4. We demonstrated that the D-OTP mechanism can be a feasible solution that provides
guaranteed unbreakable security when a limited number of transmissions are being
made or when latency is not a concern in lightweight M2M communications.

5. The nonrepeating key generation process may have critical performance challenges in
mass data transfers, which may be a topic worth investigating in the future.

6. Conclusions

According to the experimental results, the traditional NR-PRNG implemented using
pure software calculation, as in [33], is not sufficiently efficient to meet the performance
requirements of real-time applications with mass data transmissions, as with our im-
plemented CoAP [4], which was developed using the libcoap library [5]. However, for
lightweight M2M communications in which latency is not a concern or which require a
limited number of transmissions, software-based implementation of D-OTP is a feasible
cost-free solution compared with the conventional security mechanisms that are not tailored
to such IoT applications. To overcome the problems encountered in our study, the use
of additional hardware, such as content-addressable memory (CAM), to accelerate data
comparison for nonrepeating key generation could be a feasible solution [41] for adapting
our mechanism for real-time applications. This may merit further investigation by future
studies. The proposed D-OTP method was developed using a software-based approach. In
future studies, we plan to apply a hardware-implemented acceleration to the NR-PRNG
and evaluate the results in real IoT devices.

Supplementary Materials: The following is available online at https://youtu.be/HnX-qpJNHjw,
Application scenarios for healthcare IoT devices using D-OTP [36].

Author Contributions: Methodology, implementation, and writing, W.-C.T.; device application,
T.-H.T.; supervision, T.-J.W.; editing and corresponding, M.-L.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This work is supported by the MOST, ROC, under grant number of MOST 109-2221-E-324-018.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

https://youtu.be/HnX-qpJNHjw


Sensors 2022, 22, 340 18 of 20

Appendix A

Table of acronyms.

Acronym Explanation

µP Microprocessor
AES Advanced Encryption Standard
ASCII Information Interchange
AV Audiovisual
BB84 A quantum key distribution scheme by Bennett and Brassard in 1984
CAM Content-addressable memory
CoAP Constrained Application Protocol
C-SGN Cellular Serving Gateway Node
DES Data Encryption Standard
DH Diffie–Hellman
D-OTP Double OTP
DTLS Datagram TLS
eNB Basestation of 4G-LTE
FPGA Field-programmable gate array
gNB Basestation of 5G
IDC International Data Corporation
III Institute for Information Industry
IoT Internet of Things
IP Internet Protocol
M2M Machine-to-machine
NAS Non-access stratum
NB-IoT Narrowband Internet of Things
NIC Network interface controller
NR-PRNG Nonrepeating PRNG
OTP One-time password
Per-IO Update the key per CoAP io
Per-IO-Inc1 Update the key per CoAP io by just increase of 1
Per-IO-NrPrng Update the key per CoAP io by nonrepeating PRNG
Per-IO-Prng Update the key per CoAP io by PRNG
Per-Session Update the key per CoAP session
PRNG Pseudorandom number generator
PSK Pre-shared key
QKD Quantum key distribution
RC4 Rivest Cipher 4
RN Random number
ROM Read-only Memory
RPK Raw public key
RSA Rivest–Shamir–Adleman
RX Receive
SN Serial number
SSID Service set identifier
SSL Secure sockets layer
TCP Transmission Control Protocol
TLS Transport Layer Security
TX Transmit
Ubuntu An open source operating system on Linux
UDP User Datagram Protocol
UE User equipment
URI Uniform Resource Identifier
Uu Wireless interface specification of 4G-LTE
WPA Wi-Fi Protected Access
XOR Exclusive-OR



Sensors 2022, 22, 340 19 of 20

References
1. Turner, V.; MacGillivray, C. IDC FutureScape: Worldwide IoT 2018 Predictions; International Data Corporation: Needham, MA,

USA, 2017.
2. Biral, A.; Centenaro, M.; Zanellan, A.; Vangelista, L.; Zorzi, M. The Challenges of M2M Massive Access in Wireless Cellular

Networks. Digit. Commun. Netw. 2016, 1, 1–19. [CrossRef]
3. Adeel, A.; Ahmad, J.; Larijani, H.; Hussain, A. A Novel Real-Time, Lightweight Chaotic-Encryption Scheme for Next-Generation

Audio-Visual Hearing Aids. Cogn. Comput. 2020, 12, 589–601. [CrossRef]
4. Shelby, Z.; Hartke, K.; Bormann, C. The Constrained Application Protocol (CoAP); RFC 7252; Internet Engineering Task Force:

Wilmington, DE, USA, 2014.
5. Libcoap, C-Implementation of CoAP. Available online: https://libcoap.net/ (accessed on 21 December 2021).
6. OpenSSL, Cryptography and SSL/TLS Toolkit. Available online: https://www.openssl.org/ (accessed on 21 December 2021).
7. Lamport, L. Password Authentication with Insecure Communication. Comm. ACM 1981, 24, 770–772. [CrossRef]
8. Tsai, W.C.; Tsai, T.H.; Xiao, G.H.; Wang, T.J.; Lian, Y.R.; Huang, S.H. An Automatic Key-update Mechanism for M2M Communica-

tion and IoT Security Enhancement. In Proceedings of the IEEE International Conference on Smart Internet of Things, Beijing,
China, 14–16 August 2020; pp. 354–355.

9. Bellovin, S.M. Frank Miller: Inventor of the One-Time Pad. Cryptologia 2011, 35, 203–222. [CrossRef]
10. Shannon, C.E. Communication Theory of Secrecy Systems. Bell Sys. Tech. J. 1949, 28, 656–715. [CrossRef]
11. Malikovich, K.M.; Turakulovich, K.Z.; Tileubayevna, A.J. A Method of Efficient OTP Generation Using Pseudorandom Number

Generators. In Proceedings of the International Conference on Information Science and Communications Technologies, Tashkent,
Uzbekistan, 4–6 November 2019; pp. 1–4.

12. Imamah, One Time Password (OTP) Based on Advanced Encrypted Standard (AES) and Linear Congruential Generator (LCG).
In Proceedings of the Electrical Power, Electronics, Communications, Controls and Informatics Seminar, Batu, Indonesia,
9–11 October 2018; pp. 39–394.

13. Wu, L.; Cai, H.J.; Li, H. SGX-UAM: A Secure Unified Access Management Scheme with One Time Passwords via Intel SGX. IEEE
Access 2021, 9, 38029–38042. [CrossRef]

14. Wi-Fi Alliance. Available online: https://www.wi-fi.org/ (accessed on 21 December 2021).
15. Church of Wifi WPA-PSK Rainbow Tables, The Renderlab. Available online: https://www.renderlab.net/projects/WPA-tables/

(accessed on 21 December 2021).
16. Diffie, W.; Hellman, M.E. New Directions in Cryptography. IEEE Trans. Inform. Theory 1976, 22, 644–654. [CrossRef]
17. Ronald, L.; Shamir, A.; Adleman Leonard, M. The Original RSA Patent as filed with the U.S. Patent Office by Rivest.

U.S. Patent 4,405,829, 14 December 1977.
18. Merkle, R.C. Publishing a New Idea. Available online: http://www.merkle.com/1974/ (accessed on 21 December 2021).
19. Sasaki, M. Quantum Key Distribution and Its Applications. IEEE Secur. Priv. 2018, 16, 42–48. [CrossRef]
20. Bennett, C.H.; Brassard, G. Quantum Cryptography: Public Key Distribution and Coin Tossing. In Proceedings of the IEEE

International Conference of Computers, Systems, and Signal Processing, Bangalore, India, 9–12 December 1984; pp. 175–179.
21. Zhang, H.G.; Ji, Z.X.; Wang, H.Z.; Wu, W.Q. Survey on quantum information security. China Comm. 2019, 16, 1–36. [CrossRef]
22. Amer, O.; Garg, V.; Krawec, W.O. An Introduction to Practical Quantum Key Distribution. IEEE Aerosp. Electron. Syst. Mag. 2021,

36, 30–55. [CrossRef]
23. Vadhan, S.P. Pseudorandomness. In Foundations and Trends in Theoretical Computer Science; Now Publishers: Norwell, MA, USA,

2012; Volume 7, pp. 1–336.
24. Call for Stream Cipher Primitives, ECRYPT. Available online: https://www.ecrypt.eu.org/ (accessed on 21 December 2021).
25. The eSTREAM Portfolio in 2012. Available online: https://www.ecrypt.eu.org/ecrypt2/documents/D.SYM.10-v1.pdf (accessed

on 21 December 2021).
26. Daemen, J.; Rijmen, V. AES Proposal: Rijndael. Available online: https://csrc.nist.gov/csrc/media/projects/cryptographic-

standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf (accessed on 21 December 2021).
27. Daemen, J.; Rijmen, V. The Design of Rijndael: AES. In The Advanced Encryption Standard; Springer: Berlin/Heidelberg, Germany,

2002.
28. Coppersmith, D. The Data Encryption Standard (DES) and its Strength Against Attacks. IBM J. Res. Dev. 1994, 38, 243–250.

[CrossRef]
29. Barnes, R.; Thomson, M.; Pironti, A.; Langley, A. Deprecating Secure Sockets Layer Version 3.0; RFC 7568; Internet Engineering Task

Force: Wilmington, DE, USA, 2015.
30. 3GPP Standardization of NB-IOT Completed. Available online: http://www.3gpp.org/news-events/3gpp-news/1785-nb_iot_

complete (accessed on 21 December 2021).
31. NB-IoT Solution Provided by Institute for Information Industry. Available online: https://www.iii.org.tw/Files/FileManager/03

-nbiot-190524FFINAL).pdf (accessed on 21 December 2021).
32. Preshing, J. A Random Number Generator Which Outputs A Unique 32-Bit Integer Each Time It’s Called. Available online:

https://github.com/preshing/RandomSequence (accessed on 21 December 2021).

http://doi.org/10.1016/j.dcan.2015.02.001
http://doi.org/10.1007/s12559-019-09653-z
https://libcoap.net/
https://www.openssl.org/
http://doi.org/10.1145/358790.358797
http://doi.org/10.1080/01611194.2011.583711
http://doi.org/10.1002/j.1538-7305.1949.tb00928.x
http://doi.org/10.1109/ACCESS.2021.3063770
https://www.wi-fi.org/
https://www.renderlab.net/projects/WPA-tables/
http://doi.org/10.1109/TIT.1976.1055638
http://www.merkle.com/1974/
http://doi.org/10.1109/MSP.2018.3761713
http://doi.org/10.23919/JCC.2019.10.001
http://doi.org/10.1109/MAES.2020.3015571
https://www.ecrypt.eu.org/
https://www.ecrypt.eu.org/ecrypt2/documents/D.SYM.10-v1.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
http://doi.org/10.1147/rd.383.0243
http://www.3gpp.org/news-events/3gpp-news/1785-nb_iot_complete
http://www.3gpp.org/news-events/3gpp-news/1785-nb_iot_complete
https://www.iii.org.tw/Files/FileManager/03-nbiot-190524FFINAL).pdf
https://www.iii.org.tw/Files/FileManager/03-nbiot-190524FFINAL).pdf
https://github.com/preshing/RandomSequence


Sensors 2022, 22, 340 20 of 20

33. Lin, Y.T.; Huang, Y.H.; Hsiao, Y.H.; Cheng, Y.J.; Chang, J.S.; Wang, S.W.; Lin, F.P.; Wang, C.M. An Implementation of The Efficient
Huge Amount of Pseudo-random Unique Numbers Generator and The Acceleration Analysis of Parallelization. In Proceedings
of the International Conference on Data Science and Advanced Analytics, Shanghai, China, 30 October–1 November 2014;
pp. 1237–1248.

34. Fisher, R.A.; Yates, F. Statistical Tables for Biological, Agricultural and Medical Research; Oliver and Boyd: Edinburgh, UK, 1963.
35. El-Latif, A.A.A.; Abd-El-Atty, B.; Venegas-Andraca, S.E.; Elwahsh, H.; Piran, M.J.; Bashir, A.K.; Song, O.Y.; Mazurczyk, W.

Providing End-to-End Security Using Quantum Walks in IoT Networks. IEEE Access 2020, 8, 92687–92696. [CrossRef]
36. Health-Care IoT Devices Using D-OTP. Available online: https://youtu.be/HnX-qpJNHjw (accessed on 21 December 2021).
37. Barker, E.; Kelsey, J. Recommendation for Random Number Generation Using Deterministic Random Bit Generators; NIST SP800-90A;

National Institute of Standards and Technology: Gaithersburg, MD, USA, 2012.
38. Bakiri, M.; Guyeux, C.; Franc, J.; Couchot, O.; Marangio, L.; Galatolo, S. A Hardware and Secure Pseudorandom Generator for

Constrained Devices. IEEE Trans. Ind. Inform. 2018, 14, 3754–3765. [CrossRef]
39. Kovatsch, M. Copper (Cu) CoAP User-Agent for Chrome. Available online: https://github.com/mkovatsc/Copper4Cr (accessed

on 21 December 2021).
40. M’Raihi, D.; Bellare, M.; Hoornaert, F.; Naccache, D.; Ranen, O. HOTP: An HMAC-Based One-Time Password Algorithm; RFC 4226;

Internet Engineering Task Force: Wilmington, DE, USA, 2005.
41. Mujahid, O.; Ullah, Z. High Speed Partial Pattern Classification System Using a CAM-Based LBP Histogram on FPGA. IEEE

Embed. Syst. Lett. 2019, 12, 87–90. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.2992820
https://youtu.be/HnX-qpJNHjw
http://doi.org/10.1109/TII.2018.2815985
https://github.com/mkovatsc/Copper4Cr
http://doi.org/10.1109/LES.2019.2956154

	Introduction 
	Background 
	PSK 
	Key Exchange 
	Ciphering Methods 
	TLS 
	CoAP and Secure IoT Transmission 
	CoAP Library of Libcoap 
	Nonrepeating PRNG 

	Design Methodology 
	OTP and One-Time Pad 
	D-OTP Secure Transmission Ecosystem 
	Applications of D-OTP 
	Implementation of CoAP 
	Implementation of PRNG 
	System Execution Flow 
	Key Update Flow 
	Key Synchronization Issue 

	Experimental Results 
	Executions of Libcoap 
	Automatic Key Update Mechanism 
	Performance Analyses for PRNG 
	Performance Analyses for NR-PRNG 
	Performance Analyses for NR-PRNG in Mass Data Transfers 
	Performance Analyses for NR-PRNG with a Long Key 

	Discussion 
	Conclusions 
	Appendix A
	References

