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Abstract: In recent years, Human Activity Recognition (HAR) has become one of the most important 

research topics in the domains of health and human-machine interaction. Many Artificial intelli-

gence-based models are developed for activity recognition; however, these algorithms fail to extract 

spatial and temporal features due to which they show poor performance on real-world long-term 

HAR. Furthermore, in literature, a limited number of datasets are publicly available for physical 

activities recognition that contains less number of activities. Considering these limitations, we de-

velop a hybrid model by incorporating Convolutional Neural Network (CNN) and Long Short-

Term Memory (LSTM) for activity recognition where CNN is used for spatial features extraction 

and LSTM network is utilized for learning temporal information. Additionally, a new challenging 

dataset is generated that is collected from 20 participants using the Kinect V2 sensor and contains 

12 different classes of human physical activities. An extensive ablation study is performed over dif-

ferent traditional machine learning and deep learning models to obtain the optimum solution for 

HAR. The accuracy of 90.89% is achieved via the CNN-LSTM technique, which shows that the pro-

posed model is suitable for HAR applications. 

Keywords: human activity recognition; convolutional neural network; deep learning; long short-

term memory; machine learning; skeleton data. 

 

1. Introduction 

HAR gained more attention from researchers in video analysis and its different ap-

plications in various domains such as indoor gym physical activities [1], surveillance sys-

tems [2], and health care systems [3]. In the light of literature, activity recognition is per-

formed based on wearable sensors and vision sensors. In wearable sensors based HAR, 

many sensors are attached to a subject’s body for a prolonged period, which is cumber-

some for the subject’s body and the subject can’t move comfortably because of many wire 

connections, as well as it is expensive in terms of energy consumption and device config-

uration. Instead of focusing on wearable sensor based HAR, numerous studies incorpo-

rated video sensor technologies like RGB cameras to monitor and recognize human activ-

ity. The current literature studies focus to recognize activities using video sequences col-

lected by standard RGB cameras and surveillance cameras [4,5]. Recognition of activity 

through common cameras may be a problem of difficulty in recognition due to low light 

environment or darkness. To avoid the problem of light variation, a low-cost RGB-D cam-

era, such as Microsoft Kinect, has been made possible the recent advancement in activity 

recognition. Kinect-based action recognition tackles the light-environment problem and 

accurately tracks the skeleton joints during activity, and it also offers a variety of infor-

mation, such as depth and skeleton information, that a standard video camera failed to 

provide. In addition, RGBD data from the Kinect sensor may be utilized to create a human 
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skeleton model with body joints. However, human actions are the collection of various 

joints that move over time and these joint data can be used for the recognition of activity. 

Numerous studies demonstrated the positive influence of physical activities on peo-

ple’s quality of life, especially for elderly people. The involvement of the elder people in 

particular physical activities has positive effects on mental state, satisfaction, quality of 

life, and physical well-being. [6]. Due to the current situation of COVID-19, the govern-

ment of many countries-imposed lockdowns and home confinement which constrained 

the people to stay at home and avoid physical activities in public places. The outbreak of 

Coronavirus has begun in December 2019, and it spread out by human-to-human interac-

tion which results in huge loss of human life. According to the recent report of the World 

Health Organization (WHO), there are almost 270 million positive cases and 5.3 million 

deaths occurs till now due to COVID-19 disease [7]. To prevent the spread of Coronavirus 

infection, many safeties measure has been taken worldwide such as home confinement, 

banning gatherings and visiting crowded public places, and avoiding outdoor activities. 

Many countries enforced lockdown in the country to control the spread of COVID disease 

which limits the participation of people in healthy activities. People are recommended to 

stay at home and avoid going outside for exercises or other physical activities in these 

situations. Therefore, in this paper, we developed an indoor monitoring system for phys-

ical activity recognition. 

HAR is not a novel concept and several studies have been conducted in this domain. 

However, the current literature is mainly focusing on traditional machine learning algo-

rithms which required handcrafted features engineering with lower accuracy. Further-

more, some authors proposed deep learning based HAR systems by directly migrating 

these methods from other domains to the HAR domain without in-depth analysis. The 

current deep learning-based approaches are mainly focusing on CNN and RNN variant 

architectures. CNN-based architectures are designed for spatial information extraction 

while RNN-based architectures are specially designed for temporal features extraction. 

The HAR data is time-series data including spatial and temporal information which re-

quires a robust model with the potential to extract both information at a time. Therefore, 

in this work, we developed a hybrid model combining CNN with LSTM with the potential 

to extract both features at a time and to recognize several physical activities. Furthermore, 

we also contribute a new dataset collected from many participants who perform 12 types 

of different physical activities which helps in maintaining the strength, balance, and flex-

ibility of the human body. The techniques used in the research mainly use the skeleton 

joints data which is extracted through the Kinect V2. The process is mainly divided into 

many steps. The initial step is the collection and pre-processing of 2D joint data through 

the Kinect which are fed forwarded to 1D CNN layers for spatial features extraction. The 

output of CNN is then inputted to LSTM network LSTM for temporal features learning 

followed by the fully connected layer for final recognition. The main contributions of the 

proposed work are given below: 

1. We proposed an indoor activity recognition system to efficiently recognize different 

types of activities to improve the physical and mental health of an individual. 

2. We developed a hybrid approach for the recognition of physical activity which inte-

grates CNN and LSTM, where CNN layers are utilized to extract spatial features fol-

lowed by the LSTM network for learning temporal information. 

3. We performed a detailed comparative analysis of various machine learning and deep 

learning models to select the best optimal modal for activity recognition. 

4. No publicly available dataset provides home base physical activities; therefore, we 

contribute a new dataset comprising 12 different physical activities performed by 20 

participants. 
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The remainder paper is arranged as; literature study of HARis discussed in Section 

2, proposed methodology, and dataset description are explained in Section 3. Experi-

mental results and evaluations of the proposed model are described in Section 4, and Sec-

tion 5 concluded the paper. 

2. Literature Review 

HAR is not a novel concept and numerous studies have been conducted in this area, 

however, in this section, we are focusing on the recent literature developed for HAR. The 

current literature of HAR is based on machine learning and deep learning. In machine 

learning Sumaira et al. [8] performed a comparative analysis of several models for HAR 

using 2D-skeletal data. The authors used the OpenPose library to extract appearance and 

motion characteristics from 2D landmarks of human skeletal joints and compared the re-

sult of five supervised machine learning approaches such as support vector machine 

(SVM), Naive Bayes (NB), linear discriminant (LD), K-nearest neighbors (KNNs) and feed-

forward backpropagation neural network to recognize four different activity classes such 

as sit, stand, walk, and fall, while the best performance was achieved through KNNs tech-

nique. Guangming et al. [9] conducted research based on an online Continuous Human 

Action Recognition (CHAR) algorithm which relies on skeletal data extracted through Ki-

nect depth sensor. An online classification technique using a variable-length maximum 

entropy Markov model (MEMM) based on likelihood probabilities is utilized for continu-

ous activity recognition. In contrast to previously reported CHAR approaches, the sug-

gested algorithm does not require prior detection of the start and finish points of each 

human activity. According to experimental findings on the MSR Daily Activity 3D dataset 

and Cornell CAD-60 dataset, their proposed method is very efficient for continuous hu-

man activities recognition. Another technique [10] uses skeletal data from a depth camera 

and developed a machine-learning algorithm to recognize the human activity. In compar-

ison to previous techniques, each activity is represented using a distinct number of clus-

ters that are retrieved independently from activity instances. These models are created 

using a multiclass SVM that has been trained on two publicly available datasets, the CAD-

60 and the TST using the SOM optimization. These numbers can change depending on the 

input sequence and activity, resulting in clusters that are dynamically generated. Youssef 

et al. [11] developed a skeleton-based technique to characterize the spatial-temporal fea-

tures of a human activity sequence utilizing Minkowski and cosine distances between 

joint data extracted through Microsoft Kinect. The model is trained and evaluated on two 

publicly available datasets such as MSR Daily Activity 3D and Microsoft MSR 3D Action 

datasets using the Extremely Randomized Tree technique. The results are highly encour-

aging, indicating that utilizing open-source libraries and a low-cost depth sensor, the 

trained model was utilized to construct a monitoring system for the elderly.  

Another group of researchers [12] proposed a pose descriptor for differential quanti-

ties encoders as well as for taking the information of human joint’s posture in a frame 

sequence efficiently. They utilized the k-nearest neighbor method to join the descriptor, 

but their results are non-parametric and low-latency recognition. In [13], the authors pre-

sented the sequence of most informative joints features, and represent the information of 

skeletal joints for each action. They choose the joints based on the mean and variance of 

the angular-joint trajectories for a given action sequence. The authors of [14] presented the 

Eigen Joints features which comprise 3D position contrasts in joints to describe activity 

data. The components were designed as a blend of three-element channels: the posture-

feature channel and the movement include a channel for encoding the spatial part of the 

grouping and the offset feature for addressing the posture contrast amongst frames. The 

principal component analysis (PCA) was applied to these three channels to figure the 

Eigen Joints features. They utilized the Naïve Bayes classifier for activity recognition. In 

[15], the authors combined 3D joint position differences inside a casing with the joint dif-

ferences from the initial frame of an action to produce outline features. The features of 

these frames are concatenated to make a frames sequence. In [16], every appendage of the 
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human skeleton is encoded into a state through a Markov random field by considering 

the spatial information and the fleeting setting data from the past outline. The encoded 

elements of individual appendages are then averaged for representing the skeleton infor-

mation. A covariance grid for skeletal joint areas over the long haul has been utilized in 

[17] as a discriminative descriptor for a sequence. Various covariance frameworks over 

aftereffects were sent to encode the connection amongst joint development and time. L. 

Arthi et al. [18] proposed a sample of fusion network (SFN). They employed an adaptive 

weighting approach to enhance the complementation amongst samples and new samples 

generated by utilizing a sample fusion network. SFN enhances the performance of the 

HAR network while training the network. For their findings, they attained 90.75% accu-

racy on the NTU data samples by utilizing cross-view protocol. However, these algo-

rithms are based on machine learning which required hand-crafted features extraction 

with limited generalization abilities which causes parameters non-convergence and net-

work instability. Hence, these challenges encourage the researchers and domain experts 

to reconsider HAR based on deep learning. 

Deep learning based HAR is already developed in the recent literature. For instance, 

Julieta et al. [19] focus on human motion by utilizing the recurrent neural network, the 

goal is time-dependent representations to perform tasks including short-term prediction 

as well as long-term human motion synthesis. For their finding, they also utilize other 

state-of-the-art approaches to compare the results of these approaches with the enhanced 

recurrent neural network approach. Chao li et al. [20] proposed a framework that is an 

end-to-end CNN features learning framework. They utilized a hierarchical approach to 

learned co-occurrence features having distinct contextual information. Initially, they en-

code point-level information independently and then present the semantic representation 

in spatial as well as temporal. In their findings, they proposed a global-spatial approach 

that can learn superior joint information. Maosen Li et al. [21] proposed two graphs scale 

to capture the relationships amongst body joints and parts. They presented a symbiotic 

neural network with a backbone, action recognition head, and motion prediction head. 

These two heads are connected and improve the joint recognitions. To extract the temporal 

as well as spatial features, they utilize multiscale CNN. The joint scale graphs and struc-

tural graphs capture the actions and physical constraints respectively. Comparatively the 

performance of the deep learning-based model is better than machine learning-based al-

gorithms however HAR data is time-series data that includes spatial and temporal infor-

mation which required a robust model with the ability to learn both information of human 

activity. Therefore, in this work, we developed a hybrid model for HAR with the potential 

of spatiotemporal feature extraction for effective HAR. 

3. Proposed Method 

In this work, we conduct a detailed ablation study, developed a new dataset, and a 

novel deep learning-based hybrid model to monitor and recognize human physical activ-

ity in an indoor environment. This section briefly describes the internal architecture of the 

proposed work, proposed dataset, and comparative study. 

3.1. Dataset Collection & Preparation 

This section provides a detailed analysis of the collection and refinement of data. In 

this paper, we have generated our dataset. The proposed dataset includes 12 different 

activities taken from 20 individuals aged between 25–35 years. For the collection of this 

data, we used Microsoft’s motion Kinect sensor V2 which can extract 25 different joints 

from the human body as shown in Figure 1.  
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Figure 1. The extracted skeleton of the human body while performing different activities. 

We extract the x-axis and y-axis values from all the joints of the human body and save 

them in CSV files. We collected a dataset from 20 different participants and every partici-

pant perform an activity for 10 s. There are 200 samples of each activity where every par-

ticipant performs each activity for 10 times (120 samples per participant). The human skel-

eton joints are extracted and stored in the following order shown in Figure 2. Each activi-

ties files are combined and labeled with their class as shown in Table 1. After labeling all 

activities data, all these files are further combined in a single training file. Table 1 shows 

the detailed description of the individuals and activities during data collection. 

 

Figure 2. Different skeleton joints of the human body are extracted through sensors. 

Table 1. Shows the dataset collection and activities details. 

Labels Activity Name 
Participa

nts 

Time/Activi

ty 

Samples/A

ctivity 

Frame/Per 

Sec 

1 Overhead Arm Raise 20 10 s 200 30 

2 Front Arm Raise 20 10 s 200 30 

3 Arm Curl 20 10 s 200 30 

4 Chair Stand 20 10 s 200 30 

5 Balance Walk 20 10 s 200 30 
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6 Side Leg Raise (Right, Left) 20 10 s 200 30 

7 Shoulder 20 10 s 200 30 

8 Chest 20 10 s 200 30 

9 Leg Raise (Forward, Backward) 20 10 s 200 30 

10 Arm Circle 20 10 s 200 30 

11 Side Twist (Right, Left) 20 10 s 200 30 

12 Squats 20 10 s 200 30 

3.2. Skeleton Joints Position 

Human skeleton joints are extracted using Kinect V2 sensor. We extracted the human 

joints by using Discrete Gestures Basics WPF SDK. We capture the joint data through the 

Kinect Body View script and save it in CSV files. The Kinect V2 can detects 25 joints of the 

body and it is stored in following order such as Head, Neck, Spine Shoulder, Spine Mid, 

Spine Base, Shoulder Right, Shoulder Left, Hip Right, Hip Left, Elbow Right, Wrist Right, 

Hand Right, Hand Tip Right, Thumb Right, Elbow Left, Wrist Left, Hand Left, Hand Tip 

Left, Thumb Left, Knee Right, Ankle Right, Foot Right, Knee Left, Ankle Left, and Foot 

Left. The joints are labeled as 1, 2, 3, 4…, 25 as given in Figure 2. 

3.3. Machine Learning Techniques 

We use many traditional machine learning classifiers for the experimental evaluation 

of our dataset. The data is divided into five different types of sequences such as 30 frames 

(1 s), 60 frames (2 s), 90 frames (3 s), 120 frames (4 s), and 150 frames (5 s) frames sequence. 

To capture the unique features of action or activity, complex machine learning-based 

models such as various flavors of SVM [22] (Linear SVM (LSVM), Quadratic SVM 

(QSVM), Cubic SVM (CSVM), Fine Gaussian SVM (FGSVM), Medium Gaussian SVM 

(MGSVM), Coarse Gaussian SVM (CGSVM)), KNN [23] ( Fine KNN (FKNN), Medium 

KNN (MKNN), Coarse KNN (CRSKNN), Cosine KNN (CSNKNN), Cubic KNN 

(CBCKNN), Weighted KNN (WKNN)), Decision Tree [24] (Fine Tree (FT), Medium Tree 

(MT), Coarse Tree (CT)), Linear Discriminant (LD) [25], Naïve Bayes [26] (Gaussian Naïve 

Bayes (GNB), Kernel Naïve Bayes (KNB)), Ensemble classifiers [27] (Ensemble Boosted 

Trees (EBST), Ensemble Bagged Trees (EBGT), Ensemble Subspace Discriminant (ESD), 

Ensemble Subspace KNN (ESKNN), RUSBoosted Trees (ERUSBT)), and Neural Networks 

(NN) [28] (Narrow Neural Network(NNN), Medium Neural Network(MNN), Wide Neu-

ral Network(WNN), Bilayered Neural Network (BNN), Trilayered Neural Net-

work(TNN)). The performance of these modes is evaluated on the proposed dataset to 

choose the best optimal model for HAR. The overall workflow of machine learning clas-

sifiers is shown in Figure 3. 

  

Figure 3. Activity recognition through different Machine learning algorithms. 
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SVM is a supervised learning model that strives for maximal margin separation with 

a little amount of training data. The training set is used to generate a plane and hyperplane 

for both the linear classification and for nonlinear classification respectively, that distin-

guishes data from various classes. The plane or hyperplane can clearly classify the data 

into their actual classes. The KNNs method is a supervised learning technique that classi-

fies the outcome of a new sample query based on the majority of K-Nearest Neighbor 

categories. It is one of the most widely used pattern recognition algorithms and its goal is 

to categorize a new item based on its characteristics and training data. The neighborhood 

classification was utilized as the prediction value of the new query sample using the K-

Nearest Neighbor method (classification approach that uses the feature space’s closest 

training samples). A Decision Tree is a supervised machine learning technique that can be 

utilized for both regression and classification problems and the main objective of decision 

trees is to construct a training model which is used to identify the testing variable’s class 

or value by learning basic decision trees gained from training data. The samples are cate-

gorized using decision trees by organizing them along the tree from the root to the leaf 

node, which classifies the samples. Each node in the tree represents a test case for a certain 

feature, and every descending edge from the node represents the test case’s possible pre-

diction. This is a cyclical process that happens for each subtree rooted at the new node. 

Another type of machine learning classifier is Linear Discriminant, which is devel-

oped based on finding a linear combination of variables (predictors) that best differenti-

ates two target classes. In this algorithm, the mean vector, covariance matrices, and prob-

ability of classes are calculated in the initial step while pooled covariance matrices and 

linear model coefficients are calculated in the second step thatcomputes the Mahalanobis 

distance. This distance shows the overlapping between classes which means the variation 

between classes via linear model. The Naïve Bayes algorithm is used for prediction where 

each class is independent of one another, however, it performs well in real even when this 

statement is imprecise. It divides data into two categories, first is the training step in which 

it calculates the parameters of a probability distribution using the training data, assuming 

that predictors are mutually independent of the class. In the second step, it calculates the 

posterior probability of a sample related to each class for any unknown test data. The test 

data is then classified using the highest posterior probability. Moreover, we use ensembles 

classifiers that integrate several models and improve the robustness and generalization 

ability of a classifier. In comparison to a single model, this method provides a higher pre-

dictive performance. The technique used by ensemble classifiers is mainly comprised of 

the majority voting method and finding the average of different predictors outputs. 

The Neural Network simulates a large number of interconnected processing units 

that look like complex structures of neurons. The processing units are arranged layers 

wise such as an input layer with units representing the input fields, single or multi hidden 

layers, and an output layer with a unit or units representing the final output. The compo-

nents are connected using a variety of weighted connections (or weights). The first layer 

receives input data, and values are transmitted from each neuron to the neurons in other 

layers and the last output layer will eventually give a result. 

Artificial Neural Network (ANN) is an advanced type of machine learning inspired 

by the human nervous system. Multilayer perceptron (MLP) is a type of neural network 

which consists of input layers, hidden layers, and output layers. Every neuron of each 

layer is connected to each neuron in the previous layer and next layer. The value obtained 

from the earlier layers is added with weights for every neuron individually and an extra 

bias term is added. These values are summed up and multiplied with the activation func-

tion for the final output. Different types of activation functions are used in ANN such as 

“sigmoid”, “softmax”, Rectified Linear Unit “ReLU” and “Tanh”. Various types of opti-

mizers can be used in ANN adaptive moment estimation (Adam), “Adagrad” and 

RmsProp, etc., in our case we use Adam optimizer.  
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3.4. Convolutional Neural Network (CNN) 

Over the last two decades, CNNs have been actively used and achieved astonishing 

performance for various computer vision-related real-world problems that include activ-

ity recognition [29], object detection [30], speech recognition [31,32], and image enhance-

ment [33]. The key factor behind the betterment of CNNs for computer vision problems is 

their architectural design including convolutional, pooling, normalization, and fully con-

nected layers that extract progressive yet semantically rich features from the input data 

[34]. Generally, a convolutional layer processes the input image and produces a batch of 

2D feature maps containing spatial features, where the pooling layer simply scales down 

the extracted feature maps by applying down-sampling operations (i.e., max pooling, min 

pooling, or average pooling operations). Where the mathematical representation of a con-

volutional layer is given below. 

𝐶𝑖,𝑗,𝑘
𝑙 =  𝑓((𝑤𝑘

𝑙 )𝑇 𝑥𝑖,𝑗
𝑙  +  𝑏𝑘

𝑙   (1) 

where 𝑏𝑘
𝑙  is a bias term of a k𝑡ℎ CNN filter in the 1st layer, 𝑥𝑖,𝑗

𝑙  represents the input region 

in the 1st layer. The normalization layer is usually used before the activation function that 

normalizes the input values and leads to more accurate activation. The fully connected 

layer parses the extracted feature maps from 2D to 1D feature vectors, which are then 

forwarded to the classification layer or output layer (i.e., softmax) and results from the 

computed list probabilities. Inspired by the work presented in [35,36], we propose a One-

Dimensional (1D) CNN architecture for the problem under the observation test with dif-

ferent settings for efficient classification of predefined indoor activities. 

3.5. Long-Short Term Memory (LSTM) 

Despite the robustness and efficiency, CNN-based approaches can only be used for 

fixed and short sequence classification problems and are not recommended to use for long 

and complex time series data problems. Mostly a problem having sequential analysis over 

time such as anomaly recognition [37,38] speech recognition [39,40], person re-identifica-

tion [41], Energy forecasting [42–45], machine translation [46], and activity recognition 

from sensor data [47] used a special kind of neural network called Recurrent Neural Net-

work (RNN) specifically designed for sequential data analysis having the ability to extract 

the hidden pattern from sequential data. Generally, the RNN network analyzes the input 

hidden sequential pattern by concatenating the previous information with current infor-

mation from both spatial and temporal dimensions and predicting the future sequence 

[48]. Although RNN can extract the hidden time-series patterns in sequential data (i.e., 

sensor, audio, or video data), it is unable to remember/hold long information for a long 

time and usually fails to deal with the problems having long-term sequences [49,50]. Such 

a type of problem is referred to as gradient exploding or vanishing gradients, which can 

be overcome with a special kind of RNN named Long Short-Term Memory (LSTM) hav-

ing the capability to remember the information for a long period [51]. The internal archi-

tecture of LSTM includes several gates (including input, forget, and output gate), where 

each gate processes the input from the previous gate and forward it to the next gate 

thereby controlling the flow of information towards the final output [52] Figure 4 demon-

strates the standard unit of the (a) RNN and (b) LSTM. All gates are usually controlled by 

a sigmoid or tanh activation function, for instance, the input gate 𝑖𝑡 is responsible to up-

date the information. The forget gate process the input information from the input gate 𝑖𝑡 

and the state of previous cell 𝐶𝑡−1, it also removes the information from the current state 

𝐶𝑡 when needed. Whereas the output gate 𝑜𝑡 forwards the final output to the next LSTM 

unit and holds the output value for the next sequence prediction. On the other hand, re-

current unit Ċ𝒕 estimates the state of pervious cell 𝐶𝑡−1 and current input value 𝑥𝑡  using 

tanh activation function. Whereas the value of ℎ𝑡 can be computed by the scalar product 

of 𝑜𝑡 and tanh of 𝐶𝑡. Finally, the ultimate output can be obtained by passing ℎ𝑡 to the 
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softmax classifier. Mathematically, the operations of the above-mentioned gates can be 

expressed as follows:  

ƒ𝑡 =  𝛷 (Ŵ𝑓  ⋅  [ℎ𝑡−1, 𝑥𝑡]  +  𝐵𝑓) (2) 

𝑖𝑡 =  𝛷 (Ŵ𝑖  ⋅  [ℎ𝑡−1, 𝑥𝑡]  + 𝐵𝑖) (3) 

Ċ𝑡 =  𝑡𝑎𝑛ℎ (Ŵ𝐶  ⋅  [ℎ𝑡−1, 𝑥𝑡]  + 𝐵𝐶) (4) 

𝐶𝑡 =  𝑓𝑡  𝑥 𝐶𝑡−1 +  𝑖𝑡  𝑥 Ċ𝑡 (5) 

𝑜𝑡 =  𝛷(Ŵ𝑜  ⋅  [ℎ𝑡−1, 𝑥𝑡]  +  𝐵𝑜) (6) 

ℎ𝑡 =  𝑜𝑡  x tanh( 𝛷(𝐶𝑡) (7) 

𝑂𝑢𝑡𝑝𝑢𝑡 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(ℎ𝑡) (8) 

 

Figure 4. (a) Represents the standard RNN unit, (b) represents the standard LSTM unit. 

3.6. Proposed CNN-LSTM Model 

We propose the hybrid approach in which features are extracted from the layers of 

the first model and then forward to another model for learning and modeling. As 1D CNN 

acquired consideration of researchers due to its performance by extracting the spatial and 

discriminative feature from data. However, LSTM has been used by many researchers 

which shows its efficiency in sequential and time-series data. By combing these two mod-

els, we extract features through 1D CNN and then forwarded these features to LSTM for 

learning and modeling. The first two layers of 1D CNN has different filter size such as in 

the first layer, the filter size is 64, while in the second layer the filter size is 128. Other than 

filter size, the kernel size of both layers is 3 and the activation function used in both layers 

is the ReLU activation function. These two layers are followed by the Max pooling layer 

with a pool size of 2. These features form the CNN layers are passed through two LSTM 

layers with the same cell size of 64 in each layer. The LSTM layer is followed by the flatten 

layer and dense layer with a softmax activation function. The optimizer used in this ap-

proach is Adam with a learning rate of 0.0001. Themain framework of the proposed model 

is shown in Figure 5. The parameter setting of the proposed model is given in Table 2. 

Table 2. Parameters setting of our proposed model. 

Layer (Type) Kernel Size Filter Size No. of Param. 

1D CNN Layer 1 3 64 9664 

1D CNN Layer 2 3 128 24,704 

MaxPooling 1D - - - 
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LSTM(64) - - 46,408 

LSTM(64) - - 33,024 

Flatten - - - 

Dense(12) - - 780 

Total parameters - - 117,580 

 

Figure 5. The overall framework of the proposed hybrid CNN-LSTM approach. 

4. Experimental Results 

In this section, we perform several experiments to evaluate the performance of a ma-

chine learning classifiers and deep learning models on a different sequence of data. All 

the machine learning classifiers are analyzed in MATLAB 2021a, while deep learning ex-

periments are performed in python, using Keras framework with backend TensorFlow 

and Scikit-learn in this research implementation. Five different types of experiments are 

performed on the various frames sequence of data such as 30 frames sequence, 60 frames 

sequence, 120 frames sequence, and 150 frames sequence using both machine learning 

classifiers and deep learning models. 

4.1. Dataset Descriptions 

To evaluate the performance of our technique, we create our dataset which consists 

of 12 activities collected from 20 different participants. Every participant is directed to 

perform 12 different physical activities which include different exercises related to 

strength exercises, balance exercises, and flexibility exercises that can be also helpful in 

maintaining the mental health of an individual. More specifically these physical activities 

include Overhead Arm Raise, Front Arm Raise, Arm Curl, Chair Stand, Balance Walk, Side Leg 

Raise (Right, Left), Shoulder, Chest, Leg Raise (Forward, Backward), Arm Circle, Side Twist 

(Right, Left), Squats. Every individual performs an activity for 10 s with a 30-frame rate and 

the Kinect V2 extracts the joint data from the human skeleton and saves it in CSV files. 

After completing the data collection, the data is arranged in such a format where all the 

individual’s data of the same activity is appended in one file. Moreover, the data is di-

vided into different sequences such as 1 s (30 frames), 2 s (60 frames), 3 s (60 frames), 4 s 
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120 frames), and 5 s (150 frames), and all the activities data are then labeled according to 

their classes. 

4.2. Evaluation Metrics 

In this work, we used three types of evaluation matrics such as Accuracy, Precision, 

and Recall to evaluate the performance of each model. Activity can be classified as True 

Positive (TP) and True Negative (TN) in case of correctly recognized while in case of in-

correct classification, it can be False Positive (FP) or False Negative (FN). Other perfor-

mance matrices are derived from TP or TN. Given 𝑇𝑃 = ∑ 𝑇𝑃𝑘
𝑛
𝑘=1  represents the addition 

of all true positive samples, 𝑇𝑁 = ∑ 𝑇𝑁𝑘
𝑛
𝑘=1  represents the addition of all true negative 

samples, 𝐹𝑃 = ∑ 𝐹𝑃𝑘
𝑛
𝑘=1  denotes the addition of false positive, 𝐹𝑁 = ∑ 𝐹𝑁𝑘

𝑛
𝑘=1  repre-

sents the addition of False Negative. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (9) 

Accuracy shows the performance of the model by calculating the sum of true positive 

and true negative samples and then dividing it by the sum of all samples i.e., TP, FP, TN, 

and FN as given in Equation (9). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 =  
𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑃𝑘

 (10) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑡 =
1

𝑁
 (∑

𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑃𝑘

𝑛

𝑘=1

) (11) 

Precisionk is a ratio that measures the accurateness of the model based on a negative 

instance fraction while Precisiont calculates the total precision, which is the average of the 

Precisionk for each class. The precision score can be obtained by the calculation of true pos-

itive samples divided by a true positive and false positive. Equation (10) shows the preci-

sion of each class while Equation (11) represents the average precision of total classes. 

𝑅𝑒𝑐𝑎𝑙𝑙𝑘 =  
𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑁𝑘

 (12) 

𝑅𝑒𝑐𝑎𝑙𝑙𝑡 =
1

𝑁
 (∑

𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑁𝑘

𝑛

𝑘=1

) (13) 

Recallk is the percentage of positive samples that are correctly identified out of all 

positive samples while Recallt represents the total recalls score which can be obtained from 

the average of Recallk for each class. Equation (12) shows the recallof each class while Equa-

tion (13) represents the average recall score of total classes. 

4.3. Detailed Ablation Study 

We perform extensive experiments on different machine learning models to choose 

the most accurate model for HAR. We evaluate the performance of different models such 

as FT, MT, CT, LD, GNB, KNB, LSVM, QSVM, CSVM, FGSVMMGSVM, CGSVM, FKNN, 

MKNN, CRSKNN, CSNKNN, CBCKNN, WKNN, EBST, EBGT, ESD, ESKNN ERUSBT, 

NNN, MNN, WNN, BNN, TNN, whereas the detailed performance of each model is given 

in Table 3 and graphical representation is demonstrated in Figure 6. 



Sensors 2022, 22, 323 12 of 17 
 

 

 

Figure 6. Comparison graph of different machine learning classifiers various types of sequences. 

4.4. Deep Learning Techniques 

In this section, we performed different experiments using deep learning approaches. 

We evaluate the performance of these models on our proposed dataset with different 

frames sequences. Our proposed CNN- LSTM model achieved the highest accuracy for all 

sequences of frames compared to other models. The experimental results of different deep 

learning models are shown in Table 4. For instance, the average accuracy of MLP for all 

types of sequences is 82.224, CNN is 84.78, LSTM is 77.53, BiLSTM is 82.624, and proposed 

CNNLSTM achieved 86.95 average accuracy. The proposed model achieved the highest 

accuracy as compared to solo deep learning-based models and traditional machine learn-

ing models as given in Table 3. The main reason behind the highest performance of the 

proposed model is learning spatial and temporal information from the input data while 

other models only extract one type of feature at a time. 

Table 3. Shows the accuracy of different machine learning classifiers on different sequences. 

No. Classifiers 
Frames Sequence 

30 60 90 120 150 

1 FT 45.2 60.3 47.0 69.0 46.8 

2 MT 32.3 41.0 31.4 48.1 32.7 

3 CT 20.8 27.7 21.4 27.2 19.5 

4 LD 38.9 45.0 23.4 17.9 18.7 

5 GNB 44.7 45.2 47.7 58.3 46.9 

6 KNB 62.3 67.0 62.0 76.6 59.3 

7 LSVM 53.5 73.6 53.5 78.0 48.9 

8 QSVM 79.4 81.2 78.4 80.9 70.5 

9 CSVM 81.3 82.0 78.3 82.4 71.9 

10 FGSVM 82.4 81.1 79.5 80.8 72.9 

11 MGSVM 80.0 82.2 76.1 82.2 70.1 

12 CGSVM 51.1 63.9 43.4 77.9 41.8 

13 FKNN 79.8 80.8 79.5 81.0 70.0 

14 MKNN 79.2 80.3 77.6 81.8 69.1 

15 CRSKNN 65.9 66.4 50.5 70.5 43.4 

16 CSNKNN 81.6 82.1 75.1 79.4 69.8 

17 CBCKNN 78.6 81.6 68.2 80.6 65.3 

18 WKNN 79.0 81.1 72.3 80.9 65.6 

19 EBST 45.0 57.3 46.3 64.4 48.8 
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20 EBGT 80.8 82.3 76.2 82.4 70.4 

21 ESD 41.1 54.2 37.8 66.5 25.2 

22 ESKNN 80.7 82.1 76.6 82.2 67.8 

23 ERUSBT 42.5 46.1 47.1 57.4 43.2 

24 NNN 70.9 76.1 70.8 81.4 63.4 

25 MNN 76.3 81.6 77.9 82.8 70.9 

26 WNN 80.6 82.2 79.2 81.8 75.1 

27 BNN 73.9 79.0 71.3 80.0 62.2 

28 TNN 70.6 81.3 72.3 82.2 58.6 

Table 4. Shows the accuracy of our hybrid approach as compared to other deep learning models. 

No. Model Name 
Frames Sequence 

30 60 90 120 150 

1 MLP 85.45 83.64 83.47 87.05 71.51 

2 CNN 88.82 88.22 87.65 83.74 75.47 

3 LSTM 83.31 80.64 74.69 82.92 66.09 

4 BiLSTM 90.15 85.39 89.30 82.02 66.26 

5 CNN-LSTM 90.89 88.98 90.44 87.94 76.50 

 

From the results shown in Table 4, we can declare that the hybrid approach shows 

the best accuracy compared to other deep learning models. Tables 5 and 6 show the other 

popular evaluation metrics i.e., precision score and recall score of our proposed tech-

niques on different frame sequences. Figure 7 demonstrates the confusion metrics of 

CNN-LSTM on all five types of frames sequences and shows the TP, TN, FN and FP values 

of each activity.  The frames sequence also depends on the accuracy of the model, if we 

select a very large frames sequence then it can decrease the model accuracy and perfor-

mances as shown in Figure 8, for example, the performance of all models on the 150 frames 

sequence in Table 4 is lower than other. We used different optimizers and after investigat-

ing all optimizers we select the “Adam” Optimizer for our experiments. All the experi-

ments are performed using the same hyperparameters such as batch size = 32, learning 

rate = 0.0001, and epoch = 50. These optimal parameters are selected after performing a 

large number of experiments on different parameters. Our model gave an excellent per-

formance on these parameters, so we choose these parameters. The highest accuracy of 

90.89% is achieved by the CNN-LSTM hybrid model on 30 frames sequence. The second 

highest accuracy is achieved on the 90 frames sequence.  

Table 5. The precision score of proposed techniques and other DL models on different sequences. 

No. Model Name 
Frames Sequence 

30 60 90 120 150 

1 MLP 86.18 84.37 85.12 88.54 74.97 

2 CNN 89.20 88.48 88.37 83.93 78.04 

3 LSTM 83.94 82.51 74.95 84.04 64.01 

4 BiLSTM 90.74 85.90 89.62 82.52 70.35 

5 CNN-LSTM 91.11 89.31 91.13 88.82 76.13 

Table 6. Recall Score of the proposed method and other DL models on different sequences. 

No. ModelName 
Frames Sequence 

30 60 90 120 150 

1 MLP 85.39 83.43 83.58 86.86 71.92 
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2 CNN 88.86 88.07 87.77 83.50 75.36 

3 LSTM 83.24 81.23 74.15 82.84 65.89 

4 BiLSTM 90.05 85.24 89.41 82.11 67.16 

5 CNN-LSTM 90.84 88.79 90.56 88.10 75.82 

 

Figure 7. Confusion of CNN-LSTM on different frames sequences. 

 

Figure 8. Comparison graph of the proposed model with other DL models. 

5. Conclusions 

Human activity recognition through visual sensor data is a very challenging area of 

research from the past decades. In this paper, we propose a hybrid approach that com-

bines CNN and LSTM to effectively recognize human activity with higher accuracy. The 

main purpose of using this hybrid approach in activity recognition is that human activity 

is actually the sequence of action that contains temporal information. CNN architecture 

has the advantage of extracting the discriminative features while LSTM can extracts the 

temporal information in time-series data. We used our own dataset which is collected 

from 20 participants where each participant performs 12 physical activities. This dataset 

contains different physical activities which can improve the individual’s health. We con-

ducted extensive experiments on both machine learning classifier and deep learning mod-

els. We performed experiments on various machine learning classifiers such as SVM, 

KNN, Decision Tree, Naïve Bayes, Linear Discriminant, Ensemble classifiers (Boosted 



Sensors 2022, 22, 323 15 of 17 
 

 

Trees, Bagged Trees, Subspace Discriminant, Subspace KNN, RUSBoosted Trees) and 

Neural Network (Narrow, Medium, Wide, Bi-layered, Tri-layered) on five different type 

of frames sequences (30 frames, 60 frames, 90 frames, 120 frames, 150 frames). We also 

conducted experiments on various deep learning models such as CNN, LSTM, Bidirec-

tional LSTM, and CNN-LSTM on five different frames sequences discussed above. 

In machine learning classifiers, the high accuracy is 82.4% which is achieved by three 

classifiers i.e., FGSVM, CSVM, and EBGT. In deep learning models, our hybrid CNN-

LSTM method achieved high accuracy of 90.89% on 30 frames as compared to other deep 

learning approaches. The proposed hybrid model shows excellent performance on activ-

ity recognition of one-person activity, and it may not be able to perform better in the case 

of multiple people. In the future, we aim to increase the number of more complex physical 

activities and improve our model which can recognize the activity of more than one per-

son at a time. Furthermore, we will explore advanced deep learning-based techniques 

such as reinforcement learning, lifelong learning, incremental and active learning for ac-

tivity recognition. Additionally, we are planning to develop a huge HAR dataset that will 

include several daily life and physical activities. 
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