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Abstract: Power system facility calibration is a compulsory task that requires in-site operations.
In this work, we propose a remote calibration device that incorporates edge intelligence so that
the required calibration can be accomplished with little human intervention. Our device entails
a wireless serial port module, a Bluetooth module, a video acquisition module, a text recognition
module, and a message transmission module. First, the wireless serial port is used to communicate
with edge node, the Bluetooth is used to search for nearby Bluetooth devices to obtain their state
information and the video is used to monitor the calibration process in the calibration lab. Second, to
improve the intelligence, we propose a smart meter reading method in our device that is based on
artificial intelligence to obtain information about calibration meters. We use a mini camera to capture
images of calibration meters, then we adopt the Efficient and Accurate Scene Text Detector (EAST)
to complete text detection, finally we built the Convolutional Recurrent Neural Network (CRNN)
to complete the recognition of the meter data. Finally, the message transmission module is used to
transmit the recognized data to the database through Extensible Messaging and Presence Protocol
(XMPP). Our device solves the problem that some calibration meters cannot return information,
thereby improving the remote calibration intelligence.

Keywords: remote calibration device; edge intelligence; text recognition; CRNN; power system

1. Introduction

Traditional calibration requires an expert to operate personally in a scene which
is rather inefficient. At the same time, the standard calibration equipment needs to be
transported to the site. Obviously, this consumes a lot of time and transportation costs.
Nowadays, most digital instruments and virtual instruments provide communication
interfaces that makes it possible to form a remote calibration system based on actual hard-
ware and computer units with network interconnection capabilities. In addition, with the
rapid development of Internet and bus technology, making full use of the worldwide
Internet for remote calibration has gradually received the attention of researchers [1–3].
Mellit A et al. [4] designed a novel prototype for remote monitoring of a greenhouse that
can offer real-time remote measuring and sensing services to farmers. Gunawan TS et al. [5]
designed a one power factor meter using Internet of Things and further discussed the
analysis of the smart meter IoT framework that can provide power factor improvement,
remote monitoring, and data logging.

In view of the above problem and cases, we propose a remote calibration device that
incorporates edge intelligence. We only need to bring the self-developed portable hetero-
geneous network-based edge devices and standard parts to the site. The heterogeneous
edge devices mainly include a wireless serial port module, a Bluetooth communication
module, a video acquisition module, a text recognition module, and a message transmis-
sion module. We introduce a wireless serial port and Bluetooth communication to realize
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networked remote calibration. In particular, for the data of some specific meters in the
remote calibration are not returned through the network, we introduce artificial intelligence
technology to complete the recognition of these meters, and then transmit recognized data
to the database of the central laboratory in real time through XMPP. We use a mini camera
to capture images of the meters. Then, we adopt the EAST-based text detection and the
CRNN-based text recognition to complete the recognition of meters. The experiments show
that it has high recognition accuracy for some specific meters. At the same time, to ensure
more efficient remote calibration, we use cameras to monitor the calibration laboratory.
Then, we pull video streams through the video capture module, and transmit the video and
dashboard pictures to the Android client of the central laboratory for inspecting whether
the data calibration is wrong.

The contributions of our work are three-fold:

• We propose a remote calibration device that incorporates edge intelligence to improve
the efficiency of calibration work and reduce costs;

• We combine a variety of heterogeneous edge devices to make remote calibration
better networked;

• We propose a smart meter reading method in our device that is based on artificial intel-
ligence to obtain information about calibration equipment and improves the intelligence.

This paper has the following structure and organization. Firstly, the previous cases
and work of remote calibration are discussed in Section 2. Section 3 describes the overall
architecture and functions of remote calibration that we designed. The main functional
modules include wireless serial port, Bluetooth, XMPP, text recognition, and so on, are
shown in Section 4. Section 5 presents the results of each functional module. In Section 6,
we discuss the reason of model choosing, analyze the challenges and describe prospects
for future work. Finally, in Section 7, we summarize our research results and the clarify
significance of the work.

2. Related Work

Remote calibration can effectively solve many problems of traditional calibration,
such as: high cost of sending inspection teams, long calibration period, inflexible sending
time, etc. At present, the application of remote calibration in instruments and meters has
received extensive attention. This section mainly focuses on works that are mostly relevant
to the proposed materials and methods.

First, there are many technical research cases for remote calibration of different instru-
ments. Wen Tian et al. [6] proposed a remote automatic detection method for AC energy
meters based on cloud technology, wireless communication technology, and automatic
control technology, which greatly saved the cost of manual calibration. Kai Han et al. [7]
proposed a NIMDO-based time-frequency calibration method. This paper used NIMDO as
the reference time-frequency source and calibrating NTP and rubidium atomic frequency
by remote calibration, which better solved the problem of time traceability in the trans-
portation field. Yuan-Long Jeang et al. [8] proposed a calibration method for servomotors
to prevent the servomotors from being out of control, in this paper, a calibration control
feedbacks system with remote monitoring features and parametric designs can be built
rapidly through FPGA.

At present, several international institutions have conducted research related to remote
calibration, for example, the US National Institute of Standards and Technology (NIST),
the Federal Institute of Physics and Technology (FIPT), the National Measurement Institute
of Japan (NMIJ), and the National Physical Laboratory (NPL) in the UK, etc. Their remote
calibration projects are shown in Table 1. We can find that most of these studies explore
non-physical signals (easily transmitted through the network) such as time, frequency, etc.
Therefore, our research uses the Internet of Things technology to calibrate some physical
signals and transmit them through the network, such as image information.
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Table 1. International existing remote calibration projects.

Institute Remote Calibration Projects

NIST measurement networks, electrical quantity calibration, high flow gas flow meters, etc.
FIPT electronic calibration, AC Josephson Voltage reference, high pressure gas flow reference, etc.
NMIJ temperature, pressure, optical frequency Coordinate measuring machine, radiation, etc.
NPL Standard resistance, voltage remote calibration, network analyzer, etc.

Second, scene text detection and recognition have been active research topics in
computer vision for a long period of time. In particular, we have introduced scene text
detection and recognition technology in the remote calibration process to enhance the
intelligence. Comprehensive reviews and detailed analyses about the application of the
scene text detection and recognition can be found in survey papers [9–11].

The traditional method of text detection and recognition is as follows: first, use bina-
rization, skew correction, character cutting, etc., to preprocess the image. Second, recognize
the cut characters by extracting artificially designed features, such as Histogram of Ori-
ented Gradient (HOG) features and Convolutional Neural Network (CNN) feature maps.
However, these methods fall behind those based on deep learning, in terms of both accu-
racy and adaptability, especially when dealing with challenging or complicated scenarios,
such as low resolution and geometric distortion. For example, Baoguang Shi et al. [12]
proposed a network structure: Convolutional Recurrent Neural Network (CRNN), which
combined a Deep Convolutional Neural Network (DCNN) with a Recurrent Neural Net-
work (RNN). It transformed image recognition into sequence recognition and achieved
good recognition results.

In this paper, our main work is to apply different heterogeneous edge devices to
help the central laboratory communicate with the calibration laboratory through the
related network communication protocol. Firstly, we use a large camera to monitor the
calibration process in the calibration laboratory. Then, the video screen under monitoring is
transmitted to the server through the Real Time Messaging Protocol (RTMP) and displayed
on the android client we designed in the central laboratory. RTMP is an application
layer protocol, which based on TCP. It is an open protocol developed for audio, video
and data transmission between Flash players and servers [13]. Secondly, we use a mini
camera to face the meter to capture images, and then recognize it through our pre-trained
text recognition model. Finally, we use specific text filtering methods by observing the
image information of the meters to obtain useful data and transfer them to the database
in central laboratory through XMPP. We adopt XMPP because it is based on the Jabber
protocol, and Jabber is an open protocol commonly used in instant messaging. It inherits
the flexible extensibility of the Extensible Markup Language (XML) environment [14,15].
The recognition of meters is the main work of this paper, and it is also the work that
other researchers have not done before in the previous remote calibration. Thirdly, we
use Bluetooth to connect our camera with other edge devices and transfer the data to the
server, android client, and our computers. Bluetooth is a wireless data exchange technology,
which supports short-distance communication of devices (generally within 10 m). It can be
implemented between many mobile devices including mobile phones, wireless headsets,
notebook computers, and related peripherals [16]. Finally, in the actual test, we will also
encounter many difficulties and shortcomings. For example, the recognition effect of meters
with unclear screens is poor. In addition, for meters with complex data information, it
becomes very difficult to parse and extract useful data.

3. Overall Functional Architecture

The remote calibration service mode should be performed by the central laboratory
sending physical or non-physical standard signals to the calibrated laboratory and moni-
toring and operating the calibration process remotely, as shown in Figure 1.
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Figure 1. Remote calibration service system framework.

The purpose of this paper is to build a heterogeneous network-based edge device for
the remote calibration system to improve the intelligence of remote calibration work.

In practice, it is only necessary to bring our self-developed portable heterogeneous
edge devices to the site to realize remote operation. The main functional modules of the
edge device based on a heterogeneous network are shown in Figure 2.

Figure 2. Main modules of the edge devices.

These modules perform the following functions:

• Real-time video content transmission: video capture module needs to collect real-time
video information and send it to the expert guide, and supports many-to-one. One
expert guide can support multiple calibration processes based on it;

• Real-time sensor data transmission: the sensor information collected by heterogeneous
network equipment should be transmitted to the expert guidance terminal in real time
to facilitate the analysis of the calibration process. In this paper, it mainly refers to the
meter information collected by the camera. In addition, there is some temperature
and humidity information in the calibration laboratory;

• Character recognition of special electric meters: for the test data on some special
electric meters, the camera is used to read the meter, the text recognition technology is
used to identify the text and data in the meter, and the data need to be transferred to
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the database through XMPP. It communicates with the computer interactively and
sends it to the database to complete the real-time collection and recording of test data.

The realization of the overall function is carried out according to the following steps,
as shown in the following schematic diagram in Figure 3.

Figure 3. Step of remote calibration.

In order to complete the calibration process in various scenarios, various heteroge-
neous network nodes, such as NBIoT [17], LoRa [18], Bluetooth, Zigbee [19], etc., may be
required. In scenarios that require real-time data transmission, Bluetooth is more suitable
for sensor data transmission than LoRa in the lab because of its lowest transmission power
consumption and low latency. In addition, in scenarios where real-time video transmission
is required, we can use Wi-Fi transmission because of its higher bandwidth. However, these
heterogeneous nodes often use different communication front-ends and communication
protocol stacks. Obviously, it is difficult. For this reason, a coprocessor is introduced to
complete the protocol conversion. The coprocessor uses a unified interface to complete the
information exchange with the smart terminal. In this way, after the software development
of the smart terminal is completed, no additional adaptation work is needed. Adaptation
and protocol conversion can be done on a low-cost MCU to reduce development workload.

Figure 4 shows the heterogeneous nodes networking framework. The edge intelligent
terminal uses a unified TTL232 interface to communicate with various heterogeneous
network nodes. Since the communication interfaces of heterogeneous nodes are differ-
ent, a coprocessor is introduced into the network to bridge the edge intelligent terminal,
and various heterogeneous nodes complete the information exchange with the intelligent
terminal through the coprocessor. For an example, a Bluetooth module is introduced for
data collection at first, such as temperature data, and then these data are transmitted to
the corresponding coordinators. Second, these coordinators transmit the data to copro-
cessors through the corresponding communication interface, such as SPI, IIC, etc. Finally,
the coprocessors transmit the data to the intelligent terminal through a unified interface.
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Figure 4. Heterogeneous nodes networking framework.

4. Materials and Methods

In order to realize remote calibrate work, we add some functional modules, such as
wireless serial port module, Bluetooth module, XMPP module, Text recognition module,
and so on.

4.1. Wireless Serial Port Module

The wireless serial port module is composed of a transmitter and a receiver. The trans-
mitter consists of an ESP32 as the master single-chip microcomputer. The ESP32 is respon-
sible for collecting information from sensors such as temperature sensors and cameras,
and then driving the wireless serial port transmitter module to send the sensor information
to the receiver. The received data will be transmitted in the form of a serial port protocol.
The main control development board AIO3339J of the monitoring system integrates a serial
port module, which can obtain the message sent by the sensors.

Because Java cannot directly read and write to the serial port of the android client, we
need to use c or c++ language to directly read and write the serial port of an Android device.
Therefore, JNI is used to bridge the part of the serial port. This paper uses Google’s serial
port communication interface -android-serial port-api to realize this function. The system
block diagram is shown in Figure 5.

Figure 5. Schematic diagram of wireless serial communication.

4.2. Bluetooth Module

Android integrates Bluetooth-related packages, and uses getDefaultAdapter() to ob-
tain an AIO3399J Bluetooth adapter, and then uses startDiscovery() to search for nearby
Bluetooth devices to complete the pairing to complete the Bluetooth communication.
The system implementation block diagram is shown in Figure 6.
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Figure 6. Bluetooth system framework communication.

4.3. XMPP Module

XMPP uses a distributed network architecture. It is based on the Client/Server
architecture [20]. XMPP uses Transport Layer Security (TLS) protocol as the encryption
method of the communication channel in Client-to-Server communication and Server-
to-Server communication. To ensure the security of communication, any XMPP server
can be independent of the public XMPP network (for example, in the corporate internal
network). This paper uses XMPP communication principles to implement hardware
devices and servers. The communication is mainly manifested in the completion of message
transmission through XMPP and finally transfers them to our database.

For the XMPP client, we use Smack. Smack is an open source, highly modular,
and easy-to-use XMPP client library [21]. For the XMPP server, we use Openfire and Spark
software to achieve message exchange.

4.4. Text Recognition Module

This part mainly realizes the automatic reading function of the electric meters to save
the cost of manpower. It includes four principal steps: camera image capture, image text
recognition, text analysis, and automatic data entry.

4.4.1. Image Acquisition

We used the Android device to collect pictures from the electric meters in real time,
and then call the camera of the Android device through the open-source library CameraKit
to take pictures at regular intervals. We can also use the AIO3399J development board, one
screen, and a camera to replace the Android device in experiments.

4.4.2. Meter Recognition

Meter recognition belongs to the technical category of Optical Character Recognition
(OCR). It is a science that enables translation of various types of documents or images
into analyzable, editable, and searchable data [22]. Traditional OCR is based on image
processing (binarization, connected domain analysis, projection analysis, etc., [23–25])
and statistical machine learning (Adaboot, SVM [26,27]) to extract the text content on the
picture. However, traditional OCR performs poorly at character recognition in complex
scenarios. Therefore, we use the deep learning approach to achieve text recognition. Text
recognition is also divided into two steps, text detection, and text recognition.

• Text detection.

In this paper, we use the Efficient and Accurate Scene Text Detector (EAST) method,
that is based on Fully Convolutional Networks (FCN), its network structure consists of
three parts: feature extraction branch, feature fusion branch, and output layer. The feature
extraction branch consists of a convolutional network, and this paper adopts the VGG-16
network structure [28], and the feature fusion branch uses the inverse pooling operation
to obtain features of the same size as the convolutional feature map of the previous layer,
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and then splice with it and send it to the next convolutional layer. Finally, the output
layer consists of two parts: one is the fractional map obtained with the convolution of a
single channel, and the other is the geometric shape map obtained with the convolution of
multiple channels, which can be a rotated box or quadrilateral. The network structure is
shown in Figure 7.

• Text recognition.

The text recognition part adopts RCNN network structure: CNN + LSTM + CTC,
where CNN is principally responsible for feature extraction of text.

Figure 7. The network structure of FCN.

In this paper, we built the simple Residual Network (ResNet) to extract image features.
The core of ResNet introduces residual blocks on the basis of CNN [29]. We assume that
the output function of an ordinary CNN is y = F(x), where x is the input, then, the output
function after introducing the residual block becomes:

y = F(x) + x (1)

The structure of a simple residual block is shown in Figure 8.

Figure 8. Simple residual block structure.
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Long Short Term Memory (LSTM) is introduced to prevent gradient disappearance or
gradient explosion and solve the long-term dependency problem [30]. It is an improved
model based on the Recurrent Neural Network (RNN).

Connectionist temporal classification (CTC) is used to solve the problem of misalign-
ment of input features and output labels [31]. The core idea of the CTC algorithm is the
introduction of blank symbols. Due to the different styles of the electric meters, the gap
between each character in the training set image is different, so it is more appropriate for
us to calculate the loss using the CTC method.

After text detection using EAST in the previous step, a rectangular box of the text
region will be obtained. Then, we crop the original image according to the rectangular box
region to obtain the input of the text recognition model (CNN + LSTM + CTC).

The CNN network extracts the features of the original image (height, width, channels)
into a convolutional feature matrix of (N, T, D) as the input of the LSTM (2 layers), where
N is the number of samples of the data input, T is the time of the LSTM, and D denotes
the dimension of the input at each moment. For example, the original image (32, 100, 3)
goes through three convolutional layers (convolution kernel size is 5), two pooling layers
(pooling kernel size is 2), and the image size becomes the matrix of (1, 18, out-channels),
so, T is equal to 18, D is equal to out-channels. Finally, for the output of the LSTM, we use
CTC to calculate the loss.

The CTC computational loss method is a good solution to the problem of misaligned
input and output labels, and its training process is essential to adjust the LSTM model
parameters by a gradient to maximize the output probability. The overall network structure
of text recognition is shown in Figure 9.

Figure 9. The framework of CNN + LSTM + CTC.

4.4.3. Text Parsing

Not all the content in the picture taken by the camera is useful. We only need to parse
the useful recognized data and enter it into the database. For the same type of equipment
or test the same type of data such as voltage, current, phase, etc., we can distinguish and
analyze specific characters, such as “V”, “A”, “P”, and other characters based on the unit
in the image.
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4.5. Live Video Module

This part realizes the real-time monitoring function of the remote calibration system.
The live video module is composed of three parts: the push-stream SDK, the server-side
SDK, and the pull-stream SDK. The entire system can be abstracted as the push end is
the server of the live broadcast system, and the pull end is the client of the live broadcast
system. In order to improve the efficiency of transmission, the server adopts the method
of actively sending audio and video without the client sending a request, as shown in
Figure 10. Since the processing power of the Android system is inadequate to support
multiple video stream transmissions from the server to the client, a third-party server is
added, and the video streaming is handled by the third-party server. This is the business
server in the picture. There are currently a variety of servers on the market to choose
from. Considering the demand and price, this paper selects the instant server as the
business server.

Figure 10. Live video framework.

The main function of the streaming SDK is to send audio and video data to the service
server, using the RTMP protocol as a transmission tool. Among them, the push stream SDK
is divided into audio and video acquisition modules, which are responsible for calling the
camera to obtain the original camera data, the encoding compression module can ensure
human visual and auditory effects while reducing the amount of data in the audio and
video streams. The data are encapsulated according to the RTMP packet format. The server-
side SDK needs to receive the audio and video streams transmitted by the push-side SDK.
Then, we use the scheduling algorithm to transmit the audio and video streams to the
responding node. The node here refers to the client connected to the business server.
At the same time, the server-side SDK will also integrate flow calculation, data statistics,
and recording and playback functions. The receiving end SDK needs to connect to the
service server, and then receive the audio and video streams transmitted by the service
server. At the same time, the receiving end SDK also needs to integrate the two modules
of high-efficiency decoding and video display. High-efficiency decoding is equivalent to
the reverse process of the previous audio and video stream compression, and finally the
decoded audio and video stream is displayed on the android control.

5. Results
5.1. Part of Live Video

First, we initialize the SDK for streaming and pulling, establish a connection with the
service server through this SDK. Then we create a room, set the room number and the ID of
the audio and video stream. Finally, push the audio and video stream to the service server.
The streaming end needs to initialize an SDK first, join the corresponding room, and pull
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the video stream corresponding to the ID in the room. In the app, a local preview is set on
the push end, which corresponds to the screen on the left, and the pulled audio and video
will be displayed on the screen on the right.

After testing, even in a weak network environment, this system still has good stability.
It can guarantee a 100% entry into the room and successful push-pull streaming, without the
phenomenon of failure of entry and push-pull streaming due to network packet loss.
As shown in Tables 2 and 3, the end-to-end delay does not exceed 600 ms in a weak network
environment with 50% packet loss, and the delay can be controlled within 1000 ms in a
weak network environment with 70% packet loss. The stability and real-time performance
of this live streaming system ensure timely response when unexpected situations occur in
monitoring scenarios.

Table 2. Network performance test.

Lossless Network None None

Up weak network Up packet loss 30%, 50%, 70%
Up weak network Up delay 200, 400, 700 (ms)

Down weak network Down packet loss 30%, 50%, 70%
Down weak network Down delay 300, 500, 1000 (ms)

Table 3. Room login and pull stream situation.

Packet Loss Room Login Stream Pulling

Up packet loss 30% 100% 100%
Up packet loss 50% 100% 100%
Up packet loss 70% 100% 100%

Down packet loss 30% 100% 100%
Down packet loss 50% 100% 100%
Down packet loss 70% 100% 100%

5.2. Part of Text Recognition

For the specific scenario of text detection and recognition, the data samples are
lightweight, and for the specific digital meter recognition in this paper, the types of char-
acters are also lightweight. We compare the open-source datasets for text detection and
recognition which are shown in Table 4, and we find that the EAST model can achieve
good results in the specific scenario of this paper.

Table 4. Detection results in different datasets based on EAST.

Datasets Accuracy (%) Recall (%) F-Measure (%)

ICDAR2013 [32] 88.0 74.0 81.0
ICDAR2015 [33] 83.27 78.33 80.72

Ours 93.3 87.5 88.0

We selected some pictures of electric meters for testing, and the test results are shown
in Figure 11.
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(a) (b)

(c) (d)

Figure 11. Part result of testing. (a) sample1, (b) sample2, (c) sample3, (d) sample4.

For the scenario in this paper, we only need to recognize the meter data useful for
calibration, so there is no need to recognize Chinese characters, and we only need to set
a certain rectangular box area threshold to recognize the digital part of the meter, which
reduces the complexity of the model and only supports the recognition of numbers and
English characters. Some digital power equipment meters are collected on the Internet as
the training set to train the model of text recognition.

Then, we build a CNN + LSTM + CTC model to train our dataset (some raw samples of
our dataset are shown in Figure 12), and record the training process as shown in Figure 13.
We set some hyper parameters as follows: learning rate is 0.001, epoch is 50, batch-size is 64,
8000 images for training and 2000 images for testing.

Figure 12. Some raw samples of our dataset.
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(a) (b)

Figure 13. Process of model training. (a) Loss curve, (b) Accuracy curve.

Ultimately, for the lightweight model in the specific scenario of this paper, good
recognition results can be achieved, and the model metrics are shown in Table 5.

Table 5. Model metrics.

Model Name Train Loss Test Loss Train acc Test acc Recall F1 Score

CNN + LSTM + CTC 0.1117 0.1122 0.9713 0.9343 0.932 0.9307

It should be noted that the data for these indicators are the result of taking the
mean value.

5.3. Part of XMPP

We test the message transmission effect with two XMPP accounts, as shown in
Figure 14, and find that the delay is almost the same when the length of the string is
below 8130, between 100 to 300 ms, and the sending time increases steeply to more than
14 s when the length exceeds 8130, and the delay is positively correlated with the length of
the sent string.

Figure 14. Testing of XMPP.
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The time delay depends on the type of transmitted message, such as character string,
voice, picture, etc. Our current work is only limited to the string message type, in the future
work, we will test other types of delay performance.

6. Discussion

The purpose of the work in this paper is to improve the intelligence of networking
and informatization of remote calibration. In terms of networking, we use some edge
devices with networking capability, and as the results in the paper show, the video cali-
bration process has good performance in terms of delay and packet loss rate. In terms of
informatization, we principally use technology related to artificial intelligence to realize
image recognition and automatic data recording of instruments and meters.

We selected the EAST model for text detection because it was found to have good
detection performance for text, and by observing the results of the study in Table 6, we
decided to use the EAST model.

Table 6. Text detection results on ICDAR 2015 incidental text dataset.

Methods Accuracy (%) Recall (%) F-Measure (%)

Zhang et al. [34] 70.8 43.0 53.6
SegLink [35] 73.1 76.8 75.0

EAST [33] 83.3 78.3 80.7
SSTD [36] 80.0 73.0 77.0

He et al. [37] 82.0 80.0 81.0

We selected the CRNN model (CNN + LSTM + CTC) for text recognition also because
it was found that it showed good performance in text recognition and was suitable for
various more complex scenarios, and by observing the results of the study in Table 7, we
decided to use it.

Table 7. Recognition results on ICDAR 2013.

Methods Accuracy (%)

Bissacco et al. [38] 87.6
Jaderberg et al. [39] 81.8

CRNN [12] 89.6

In the actual recognition process, the biggest challenge encountered is that for the
screen blurred instrument recognition effect is very bad, so our future major work is to
reduce fog and noise of images.

In addition, in the actual calibration process, there will inevitably be data errors. There
exists strict a data error range in standard calibration device, for example, the calibration
index of lightning arrester is shown in Table 8.

Table 8. The calibration index of lightning arrester.

Items Index Description

Current Measuring range (0.1–50) mA
Maximum allowable error ± (0.2% for reading + 2 µA)

Phase Measuring range (0–90 degree)
Maximum allowable error ±0.1 degree

In order to automatically detect the wrong data, one of our future jobs is to perform
anomaly detection on the data of the measurement process.
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7. Conclusions

With the development of smart instrument technology and Internet communication
technology, we propose a remote calibration device that incorporates edge intelligence
to improve the degree of intelligence and efficiency in remote calibration. The remote
calibration scheme proposed in this paper uses Internet technology to combine software
and hardware, and uses certain network protocols to connect various heterogeneous
edge devices to complete the functional combination of modules. The live video module
completes calibration monitoring well no matter if the network is good or bad. The text
recognition module completes the recognition of meters and the experiment shows that
our model can achieve over 90% recognition accuracy for some meters. The message
transmission module completes the transmission of the data and information between
the calibration laboratory and the central laboratory through XMPP. The overall remote
calibration task is completed satisfactorily by using our remote device so that the calibration
crosses the boundary of time and space, which can not only effectively reduce the cost of
manpower but also improve the intelligence and efficiency of our remote calibration.
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