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Abstract: Curved beam bridges, whose line type is flexible and beautiful, are an indispensable bridge
type in modern traffic engineering. Nevertheless, compared with linear bridges, curved beam bridges
have more complex internal forces and deformation due to the curvature; therefore, this type of
bridge is more likely to suffer damage in strong earthquakes. The occurrence of damage reduces
the safety of bridges, and can even cause casualties and property loss. For this reason, it is of great
significance to study the identification of seismic damage in curved beam bridges. However, there
is currently little research on curved beam bridges. For this reason, this paper proposes a damage
identification method based on wavelet packet norm entropy (WPNE) under seismic excitation. In
this method, wavelet packet transform is adopted to highlight the damage singularity information,
the Lp norm entropy of wavelet coefficient is taken as a damage characteristic factor, and then the
occurrence of damage is characterized by changes in the damage index. To verify the feasibility and
effectiveness of this method, a finite element model of Curved Continuous Rigid-Frame Bridges
(CCRFB) is established for the purposes of numerical simulation. The results show that the damage
index based on WPNE can accurately identify the damage location and characterize the severity
of damage; moreover, WPNE is more capable of performing damage location and providing early
warning than the method based on wavelet packet energy. In addition, noise resistance analysis
shows that WPNE is immune to noise interference to a certain extent. As long as a series of frequency
bands with larger correlation coefficients are selected for WPNE calculation, independent noise
reduction can be achieved.

Keywords: curved beam bridges; wavelet packet transform; damage identification; norm entropy;
numerical simulation; seismic excitation

1. Introduction

In interchange project and urban overpass traffic systems, due to the limitations of
the terrain environment and the requirements of line aesthetics, curved beam bridges are
frequently adopted for traffic interconnection in all directions, to ensure smooth road routes
and to ease traffic congestion [1]. However, China is an earthquake-prone country with a
wide distribution of earthquakes, because it faces the pacific rim seismic belt on the east
and boarders with the Eurasian seismic belt on the south. Furthermore, there is a significant
bending-torsion-shear coupling effect in curved beam bridges due to their bending charac-
teristics [2], with a complex and changeable force state. Thus, curved beam bridges will
inevitably be damaged to various extents when subjected to earthquakes, resulting in the
decay of the resistance of the structural system. If no timely damage detection and remedial
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maintenance measures are implemented, the damage may accumulate as time goes by,
eventually leading to serious bridge accidents. This not only hinders transportation and
threatens the lives of drivers and passers-by, it also results in huge losses to the national
economy [3]. Consequently, it is particularly important to effectively identify seismic
damage to bridge structures.

Damage identification is an important part of structural health monitoring (SHM). It
aims to detect the damage location by specific methods, to reasonably analyze the severity
of damage, to estimate the health condition and the residual life of the structure, etc. [4].
Damage identification has been widely used in various fields. Damage detection methods
based on the measured response data of advanced sensors have been a hot research topic
in recent years [5]. The basic methods based on measured response can be divided into
static damage identification and dynamic damage identification. Static damage identifica-
tion [6–9], which uses static test data, is commonly applied in structural model experiments
and field load tests. Nonetheless, the test conditions for static damage identification are
more stringent, and temporary traffic closures are required; therefore, it is generally difficult
to carry out on-the-spot tests at bridge sites. Dynamic damage identification [10–13] is a
more widely used identification method in the field of modern civil engineering, especially
dynamic damage identification based on modal changes. The principle of modal-based
damage identification methods is to identify the location of damage through changes modal
parameters (natural frequency [14,15], mode of vibration [16,17], curvature modal [18,19],
strain modal [20,21], etc.), and these modal parameters can generally be obtained using
the time domain decomposition technique (TDD) [22,23]. Nevertheless, in practical appli-
cations, it is difficult to tell whether the modal changes are caused by structural damage
or by changes in environmental factors (e.g., noise, temperature, humidity) [4]. Damage
identification based on time–frequency signal processing is also a method of dynamic
damage identification [24], including time domain, frequency domain, and time–frequency
domain. Digital signal processing is an important part of the engineering field, and the
main signal processing methods include Fourier Transform, Windowed Fourier Transform,
Short Time Fourier Transform, Wavelet Transform, and Hilbert–Huang Transform. Among
them, Wavelet Transform (WT) is the most representative in SHM, and the literature in-
cludes the following representative studies: Abdulkareem et al. [25] used two-dimensional
Continuous Wavelet Transform (CWT) to decompose the difference value of the first order
mode shape of the steel plate before and after the damage, and to detect whether the steel
plate was damaged according to the difference after decomposition. Xin et al. [26] pointed
out that Improved Empirical Wavelet Transform (IEWT) can effectively identify the modal
parameters of the structure in the operating state. They used an IEWT-based method to
successfully identify the modal parameters of a seven-story steel frame structure. Zhu
et al. [27] constructed a crack identification index based on WT to locate the opening crack
position of Functionally Graded Materials (FGMs). Furthermore, Guo et al. [28] reported
that the detail coefficients of WT were highly sensitive to damage. They applied these
coefficients to successfully detect the location and severity of structural damage.

However, due to the short duration and large energy of seismic excitation, the ex-
cited dynamic response therefrom is supposed to be highly non-stationary and nonlinear.
Damage information is often hidden in the high-frequency part of the response signal;
nonetheless, WT only subtly decomposes the low-frequency part of the signal. To achieve
continuous cascade decomposition in the high-frequency and low-frequency parts, an
increasing number of researchers are developing dynamic damage identification methods
based on wavelet packet transform (WPT). Zhang et al. [29] conducted research on the
defect identification of prefabricated structures. They proposed three defect identification
indexes based on WPT, and successfully identified the defects of prefabricated concrete
frame structures under noise conditions. Zhao et al. [30] combined digital image correlation
(DIC) and WPT, and perfectly realized the monitoring and early warning provision for
micro-damage in reinforced concrete beams. Naderpour et al. [31] put forward a two-step
algorithm to identify the modal parameters based on WPT. They verified the feasibility and
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validity of the algorithm on the basis of vibration experiments on a three-layer framework
model. Rajendran et al. [32] indicated that WPT is an advanced time–frequency analysis
tool that can effectively excavate and amplify the individual points in the signal. They
precisely identified minor damage to the composite plate structure by WPT. Chen et al. [33]
adopted WPT to construct the variation rate of variance (VRV) damage index. They carried
out numerical simulations and laboratory experiments on a damaged beam structure, and
the results showed that VRV could correctly locate crack damage in a simply supported
beam in a noisy environment. Zhang et al. [34] used WPT to decompose the dynamic
response; then they took the energy ratio of each node as the damage characteristic vector
and employed a neural network to identify the location of structural damage. The experi-
mental results indicated that WPT was able to effectively extract information on individual
instances of damage. Based on WPT, Wang et al. [35] presented an Energy Curvature
Difference (ECD) damage identification index. The results of the two numerical studies
showed that the damage position could be determined by observing sudden peaks in the
ECD curve. Additionally, a 5% degree of micro-damage could also be accurately identified.
Law et al. [36] first processed the response signal excited by impact loading using WPT,
then obtained the signal energy distribution according to wavelet packet energy, and finally
detected the single and multiple damage scenarios of the reinforced concrete beam on the
grounds of changes in energy distribution. Furthermore, Ren et al. [37] described a shear
connection part looseness (damage) identification method based on WPT. On the basis of
experiments, they revealed that the method was extremely sensitive to damage, and its
applicability and feasibility for application at bridge sites was demonstrated.

In addition to the identification methods based on WPT, by combining WP and infor-
mation entropy theory, some scholars have developed a wavelet entropy-based method for
damage identification. Ren et al. [38] defined wavelet entropy, relative wavelet entropy, and
wavelet time entropy, and numerical simulation and laboratory experiments showed that
these three kinds of wavelet entropy could locate and identify damage; moreover, relative
wavelet entropy did not require pre-damage response data. Diao et al. [39] constructed a
kind of wavelet entropy to identify structural damage under seismic excitation. They veri-
fied the feasibility of wavelet entropy on the basis of model experiments using a numerical
simulation of an offshore platform structure and a vibration table. Lee et al. [40] proposed
a bridge structure damage identification method based on continuous relative wavelet
entropy. They concluded that the continuous wavelet entropy algorithm had a reliable
damage location ability. Li et al. [41] assessed building structure damage by establishing
Wavelet Singular Spectrum Entropy (WSSE). An experiment carried out using a 1/3-scale
wood structure model was performed, and verified the reliability of WSSE. In summary,
wavelet entropy not only inherits the advantage of high resolution from WT, it also inte-
grates the ability of information entropy to quantitatively characterize damage information.
With increasing decomposition scale, wavelet entropy becomes more sensitive to damage,
greatly improving the recognition accuracy and effectively avoiding noise interference.
Based on these advantages, wavelet entropy is particularly suitable for bridge structure
damage identification.

Existing damage detection methods mainly focus on linear bridges, and there are few
studies addressing damage identification in more complex special-shaped bridges under
seismic excitation. As a consequence, this paper takes Curved Continuous Rigid-Frame
Bridges (CCRFBs) as the research target and puts forward a wavelet packet norm entropy
(WPNE)-based method for the identification of damage to the bridge structure under seis-
mic excitation. WPNE is a kind of wavelet entropy. The information for the full frequency
band is highlighted by WPT, the damage information is extracted by the Lp norm character-
istic of wavelet coefficients, and the information characteristic is measured quantitatively
by the information entropy. The damage index therefrom combines the advantages of WPT,
Lp norm, and information entropy, which greatly improves the sensitivity and accuracy of
damage identification.
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Li et al. [42] investigated the damage detection problem in Curved Continuous Girder
Bridges (CCGBs) by using wavelet packet singular entropy (WPSE). The effectiveness of
WPSE was validated on the basis of numerical experiments, indicating that it is applicable
for the identification and localization of earthquake-induced damage in the piers of the
CCGB under noisy conditions. Following the work of Li et al. [42], this study focuses on
the SHM problem in another type of curved bridge, namely Curved Continuous Rigid-
Frame Bridges (CCRFBs). CCRFBs feature a rigid connection between the deck and the
piers that differs from that in the CCGB. Different from WPSE in nature, WPNE uses Lp
norm to extract damage information, endowing WPNE-based methods with new damage
characterization capabilities. In addition, WPNE adds a valid p value selection process
compared with WPSE, which strengthens the damage distinction ability of the index. In
terms of anti-noise performance, the WPNE-based method has stronger noise immunity.

The rest of this paper is organized as follows: Section 2 introduces the basic theory
of WPT, Lp norm and information entropy. Section 3 constructs a damage index based on
WPNE and introduces the identification steps of CCRFBs. Section 4 establishes a finite
element model of the CCRFB and carries out the dynamic analysis of the CCRFB. The
identification results of the CCRFB are in presented in Section 5. Section 6 analyzes the effect
of seismic excitation and compares the identification performance based on the WPNE and
tests the noise resistance of the damage index. The conclusions are presented in Section 7.

2. Basic Theory
2.1. Wavelet Packet Transform

WT can only break down the low-frequency part of the signal, and not the high-
frequency part (detail part), so the damage information in the high-frequency part cannot
be highlighted, while the WPT can achieve continuous cascade decomposition in the low-
frequency part and the high-frequency part of the signal. Compared with WT, WPT has
better time–frequency characteristics and local engraving capabilities, and therefore, WPT
can focus on any detail bands of the signal, fully abstracting the valid information on the
characteristics of the full frequency band. Any dynamic response signal x(t) after the
j-layer WPT can be written as [43]:

x(t) =
2j

∑
i=1

xi
j (1)

where xi
j is the dynamic response signal of each frequency band after decomposition and

can be expressed as:
xi

j = ∑
k

ci
j,k·ψj,k,i(t) (2)

where ψj,k,i(t) is a set of standard orthogonal wavelet basis functions. When r 6= s,

ψr
j,k(t)·ψ

s
j,k(t)= 0 (3)

ci
j,k is defined as the wavelet packet coefficient at the j decomposition scale and can be

expressed as:

ci
j,k =

∫ +∞

−∞
x(t)·ψj,k,i(t)dt (4)

The wavelet packet coefficient matrix, composed of the coefficient ci
j,k, reflects the

information of the response signal in each band. In 2j bands, some specific bands (especially
the high-frequency bands) conceal information on individual instances of damage.

2.2. Lp Norm

In mathematics, the norm is a function of the concept of length in vector space, and
meets three conditions: positive definiteness, homogeneity, and subadditivity. The most
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commonly used norm in normed linear space is the Lp norm. If X = [x 1, x2, x3, . . . , xn]
T ,

the Lp norm of vector X can then be written as [44]:

‖X‖p =

(
n

∑
i=1
|xi|p

) 1
p

(5)

Theoretically p value is [0,+∞], but when 0 ≤ p < 1, it does not meet the subaddi-
tivity condition, so strictly it is not Lp norm. Values of 1, 2 or +∞ are often taken as the p
value. When p = 1, the norm L1 is also known as the Manhattan Distance, which is capable
of characterizing the difference between different vectors and clearing the features without
information and meaning, thereby achieving the sparsity of the vector. When p = 2, the
norm L2 is also known as the Euclidean Distance, which can also express the difference
between different vectors, but L2 is generally used to optimize the regularization item of
the target function. The L∞ norm is able to extract the largest element in the vector.

2.3. Information Entropy

Information entropy is the average information integration after redundancy is re-
moved from the information, and is capable of quantifying the abstract concept of informa-
tion and characterizing the degree of uncertainty of events. If it is assumed that there are n
source signals with values, and the probabilities of their occurrence are p1, p2, . . . pn, the
degree of uncertainty of the source signal can be expressed as:

H =
n

∑
i=1
−pilog2(pi) (6)

Information entropy represents the expectation of the total amount of information in
a system. The more complex the system is, the higher the degree of uncertainty will be
and the greater the information entropy will be. Conversely, the simpler the system is, the
lower the degree of uncertainty will be and the smaller the information entropy will be.
In the field of SHM, many scholars have applied the theory of information entropy when
researching structural damage identification [45].

3. Damage Identification Method
3.1. Damage Identification Index

The dynamic response signal x(t) measured by the sensor is decomposed by WPT
with a decomposition scale of j. After decomposition, 2j frequency bands and wavelet
packet coefficients of each band

{
c1

j (t), c2
j (t), . . . , cn

j (t)
}

are obtained, where n = 2j, and

ci
j(t) is a multidimensional vector, which indicates wavelet package coefficients of node in

layer j of wavelet tree, and can be written as:

ci
j(t) =

[
ci

j,1, ci
j,2, . . . , ci

j,m

]T
(7)

For Lp norm of ci
j(t), its expression is:

‖ci
j(t)‖p =

(
m

∑
l=1

∣∣∣ci
jl

∣∣∣p) 1
p

(8)

For convenience of expression, ‖ci
j(t)‖p is denoted as Li

p. By combining Li
p with the

theory of information entropy, the damage characteristic factor WPNE can be constructed,
with a specific expression as follows:
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WPNE =
2j

∑
i=1
−λilog2(λi) (9)

where

λi =
Li

p

∑2j

i=1 Li
p

(10)

WPNE integrates the advantages of WPT, Lp norm and information entropy, which
are embodied in: (1) the high-resolution characteristics of the WPT are used to achieve
more detailed decomposition of nonlinear and non-stable response signals, highlighting
the information of the full band; (2) Lp norm is applied to the abstract effective damage
characteristics and the sparse useless interference feature; (3) the degree of uncertainty of
the information system is quantitatively characterized by information entropy. In summary,
WPNE is capable of highlighting detail, extracting features and quantifying information.
Based on WPNE, we can construct the structural damage identification index DIWPNE; the
index is defined as follows:

DIWPNE =

∣∣∣∣∣WPNEh −WPNEd

WPNEh

∣∣∣∣∣ (11)

where WPNEh and WPNEd are WPNE in the state of structural health and damage, respec-
tively. According to Formula (11), DIWPNE reflects the relative amount of the change before
and after the damage, moreover the size of the change represents different states of the
structure, that is, health or damage state. When the structure is not damaged or is slightly
damaged, DIWPNE is zero or close to zero and the DIWPNE curve is relatively flat. When the
structure is damaged to a certain extent, the value of DIWPNE at the damage position is a
positive number greater than zero, and the DIWPNE curve shows a significant mutation at
the damage position, displaying a sudden peak. The greater the severity of the damage,
the greater the value of the peak. Therefore, the DIWPNE index is capable of identifying the
location of the damage and characterizing the severity of the damage.

To further judge the damage location reasonably and accurately and provide a damage
warning, the damage threshold DITH

WPNE is introduced on the basis of the principle of the
unilateral confidence interval [38], and the damage warning index EWWPNE is established
on the basis of the difference between the DIWPNE index and the damage threshold DITH

WPNE:

EWWPNE = DIWPNE −DITH
WPNE (12)

where

DITH
WPNE = µ + uα

(
σ√
n

)
(13)

where n is the total number of measurement points, and µ and σ are the average and
standard deviation of the DIWPNE index value of all measurement points, respectively; uα

is the upper α quantile of the standard normal distribution, α is commonly referred to
as the significance level, which generally takes on 0.05, 0.02, 0.015 or other small values,
(1−α) is called confidence probability, where α has a value of 0.02 in this paper, and the
corresponding confidence probability is 98%. By checking the upper α quantile table of the
standard normal distribution, u0.02 = 2.06 can be found.

The advantages of setting the damage threshold are as follows: (1) when the DIWPNE
index value of the measurement point is greater than the damage threshold DITH

WPNE,
EWWPNE > 0, the health monitoring system will 98% believe that damage will appear at the
measurement point, and the system will provide an early warning; (2) when the DIWPNE
index value of the measurement point is not greater than the damage threshold DITH

WPNE,
EWWPNE ≤ 0, the health monitoring system will 98% believe that the structure is not
damaged, and the system will not provide a warning. Theoretically, a zero value of EWWPNE
can be used as the damage warning value. However, in the course of practical application,
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in order to reduce false reports caused by environmental factors (e.g., temperature, noise,
and humidity), initial micro-damage, and measurement errors, numbers greater than zero
are usually taken as the damage warning value.

3.2. Damage Identification Steps

This paper primarily investigates seismic damage identification for CCRFBs, and the
main identification steps are as follows:

Step 1. Select the appropriate measurement point location and lay sensors according
to the structural form of CCRFBs and test needs.

Step 2. Determine the seismic damage location and set reasonable damage scenarios
based on the results of the vulnerability analysis.

Step 3. Apply ground motion acceleration in the direction of the most unfavorable seis-
mic input of curved beam bridges and measure the dynamic response of each measurement
point before and after damage.

Step 4. Take the energy entropy as the cost function to determine the optimal wavelet
packet parameters (wavelet basis function and decomposition scale).

Step 5. Compare the damage identification effect of different dynamic responses and
select the best dynamic response.

Step 6. Select the p value of WPNE according to the damage identification accuracy
and calculation efficiency.

Step 7. Decompose the response signal before and after structural damage with WPT,
calculate the damage characteristic factor WPNE to obtain DIWPNE index, introduce the
damage threshold DITH

WPNE to further obtain the damage warning index EWWPNE, determine
the damage position according to the sudden peak of the index curve, and identify the
severity of damage using the peak value.

Step 8. Compare with Der (wavelet packet energy ratio change rate index). Add white
Gaussian Noise with different signal-to-noise ratios to analyze the noise resistance of the
damage identification index.

The specific identification flowchart is shown in Figure 1.
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4. Dynamic Analysis of CCRFB
4.1. Establish a CCRFB Finite Element Model

The geometric dimensions of the CCRFB are shown in Figure 2. It has a structure with
a three-span single-box beam, with two bridge piers with a radius of 1.2 m at the edge span
and one pier with a radius of 1.5 m in the span; the finite element model of the CCRFB (see
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Figure 3) was established using the large-scale universal finite element software ANSYS,
and the model was discretized into 34,501 SOLID elements. The material parameters were
as follows: the upper structure uses C50 concrete (material density of 2500 kg/m3, elastic
modulus of 3.45 × 104 MPa, and Poisson’s ratio of 0.2). The lower structure of the CCRFB
uses C40 concrete (material density of 2500 kg/m3, elastic modulus of 3.25 × 104 MPa,
and Poisson’s ratio of 0.2). The boundary conditions were as follows: the rotational and
translational degrees of freedom of all nodes are constrained at the bottom of the pier.
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4.2. Set Damage Scenarios

On the basis of a large number of engineering examples and seismic vulnerability
analyses, it can be observed that the position of seismic damage in curved beam bridges
is generally located at the bottom of the bridge pier (lower damage; I) and the pier–beam
connection (upper damage; II). Furthermore, damage I and II do not appear at the same
time. If one appears, the other one will not appear, that is, the two are characterized by
mutual exclusivity. Therefore, in this paper, only a single instance of damage is considered,
and damage is set at bridge pier No. 3 (see Figure 3). Damage is simulated by reducing the
element stiffness (reducing Elastic Modulus) [46], with a damage severity of 5%–35% at
each damage location, including non-damaged scenario 1, for a total of 15 sets of scenarios,
as detailed in Table 1.
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Table 1. Damage scenarios of the CCRFB.

Damage
Location

Stiffness
Reduction Rate

Damage
Scenarios

Damage
Location

Stiffness
Reduction Rate

Damage
Scenarios

I, II 0% 1
I 5% 2 II 5% 9
I 10% 3 II 10% 10
I 15% 4 II 15% 11
I 20% 5 II 20% 12
I 25% 6 II 25% 13
I 30% 7 II 30% 14
I 35% 8 II 35% 15

4.3. Enter Ground Motion Acceleration

The entered angle of seismic excitation significantly affects the maximum dynamic
response of curved beam bridges. For this reason, the most unfavorable input angle of
seismic excitation for CCRFBs is θ = 45◦, in accordance with engineering examples and
our own experience. Therefore, the San Fernando (simplified SF) input ground motion
acceleration was entered in the direction of 45◦ by applying inertial force. The entered
direction and the time–frequency domain of SF are shown in Figure 4.
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4.4. Measured Dynamic Response

For each bridge pier, 31 measurement points are arranged from bottom to top, and
displacement sensors in the x and y directions are installed to measure the displacement
dynamic response data of the corresponding measurement points. See Figure 5 for the
measurement point layout, where the serial numbers of the measurement point of bridge
pier No. n range from 1 + 31(n − 1) to 31n. Figure 5 only shows the serial numbers of the
measurement points on the 3rd pier. In accordance with Section 4.2, damage is set on bridge
pier No. 3 only, so the serial numbers of the measurement points for damage I are (64,
65, 66) and the serial numbers of measurement points for damage II are (92, 93). Figure 6
shows the Ux (x-directional displacement) response and difference of No. 64 measurement
point in scenario 1 and scenario 2, and it is impossible to judge whether there is damage by
directly observing the difference in the response signal.
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Figure 6. Displacement response of No. 64 measurement point: (a) scenario 1; (b) scenario 2; (c) the
response difference.

5. Damage Identification for CCRFB
5.1. Choose Optimal Dynamic Response

There are many kinds of dynamic responses, such as displacement, velocity and accel-
eration response. Theoretically, vibration-based damage identification methods generally
universal for different dynamic responses, but different dynamic responses often vary with
respect to the accuracy and sensitivity of damage identification. Therefore, selecting a
damage-sensitive dynamic response can further improve the damage identification ability
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of the index. In Section 4.4, Ux and Uy response data for each point of the CCRFB were
extracted. The No. 63 measurement point of scenario 1 is taken as an example; Figure 7
presents the Ux and Uy response of the measurement point and the corresponding fre-
quency spectrum. Obviously there is no significant difference between Ux and Uy response
in the time frequency domain, so it is hard to judge the sensitivity of Ux and Uy response to
damage. To select a displacement response that is more sensitive to damage, according to
the existing damage identification index Der (wavelet package energy ratio change rate),
the damage identification effects of Ux and Uy response under scenario 2 are compared.
For a definition of Der, please see Formula (14) [47]. For the results of Der index damage
identification based on Ux and Uy response, please see Figure 8.

Der = ∑2j

i=1

∣∣∣Ih
i − Id

i

∣∣∣
Ih
i

(14)

where j is the decomposition level; Ih
i and Id

i are ratios between sub-band energy and
energy mean before and after damage, respectively.
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Figure 7. Displacement response of No. 63 measurement point under scenario 1: (a) Ux; (b) Uy;
(c) Fourier spectrum.
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The serial numbers of the measurement point of the damage elements under scenario
2 are (64, 65, 66). The following can be found from Figure 8: (1) the Der index value of
the damage identification based on Ux and Uy response is larger at the damage location,
and the Der curve shows a significant mutation in the damage area with an obvious peak,
but it is relatively flat and smooth in other non-damaged positions. (2) The Der index
value of damage identification based on Uy response at the No. 66 measurement point
of the damage is not much different from that of the Der index value at the non-damaged
measurement point. (3) Compared with the Uy response, damage identification based on
the Ux response is more prominent at the damage position. On the whole, the damage
identification effect based on the Ux response is better. Therefore, the Ux response is selected
below for structural damage identification research.

5.2. Select Optimal Wavelet Packet Parameters

Selecting the optimal wavelet packet parameters is a prerequisite for ensuring accurate
and reliable identification results. Before WPT, it is necessary to determine the wavelet
packet parameters, that is, the wavelet basis function and the decomposition scale. The
accuracy of the identification method will be reduced if the parameters are not selected
properly. At present, there is no unified theoretical method for the selection of the optimal
wavelet basis functions. In the field of damage monitoring, the most commonly used
selection method is to select a set of base functions to be determined first based on the
property of the base function (vanishing moment, support length, orthogonality) and signal
characteristics, then to construct a cost function M with energy entropy, next to calculate the
M value of the base function to be determined under the same signal, and finally to select
the basis function [48] with a relatively small M as the optimal wavelet base function. For
the decomposition scale, the larger the decomposition scale of the same wavelet packet base
function, the finer the frequency band division after decomposition, which can improve
the calculation accuracy, to a certain extent. However, an excessive decomposition scale
will lead to a great deal of information redundancy, as well as requiring a long calculation
time. Therefore, it is necessary to comprehensively consider the calculation results and
calculation efficiency in order to select the optimal decomposition scale. The cost function
M is defined as follows [49]:

M =
2j

∑
k=1
−Pklg(P k) (15)

where j is the decomposition scale and Pk is the energy ratio of frequency band No. k

after normalization, that is, Pk= Ek
j (t)/

2j

∑
k=1

Ek
j (t); after WPT, the 2j frequency bands can be

obtained, and Ek
j (t) is the wavelet packet energy of frequency band No. k.

dbN, bior Nr.Nd, rbio Nr.Nd and symN in the wavelet family, which have a unique
ability to extract features, can be used as the base function in the field of damage detection.
Therefore, in this paper, rbio3.9, rbio5.5, rbio6.8, bior3.9, bior5.5, bior6.8, db4, db8, db12,
sym10, sym13, and sym16 are selected as the wavelet basis function to be determined.
To select the optimal wavelet basis function, according to Formula (15), the Ux response
extracted from the No. 63 measurement point under scenario 1 under SF seismic excitation is
used to calculated the M value of the base function to be determined, with a decomposition
scale of 2–10. The results are shown in Figure 9, on the basis of which we can see that the
M value of sym13 in all the wavelet packet basis functions to be determined is relatively
small overall, so it is necessary to choose the sym13 wavelet as the optimal wavelet basis
function, compare the identification accuracy of the sym13 wavelet at different scales, and
consider the calculation efficiency; finally, an optimal decomposition scale of 7 was chosen.
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5.3. Select Valid p Values

The Lp norm is introduced in the construction of WPNE. According to Formula (8),
the damage identification indexes based on WPNE can be further determined only by
selecting the appropriate p value, but there is no uniform standard for the determination of
p values. When p is 2, the L2 norm of the band is essentially the square root of the wavelet
package energy. Theoretically, indexes of p greater than or equal to 1 are valid, but the
larger the p value is, the longer the corresponding calculation time will be. Therefore, under
the premise of ensuring the accuracy of damage identification, smaller values should be
taken for p to improve calculation efficiency. To select the most effective p values, it is
necessary to compare the damage identification effect under the conditions of scenario 2
when p = 0.2 × n + 0.8 (n = 1, 2, 3, . . . , 11). A comparison of the damage identification
results is provided in Figure 10, on the basis of which it can easily be found that when
p ≥ 1, DIWPNE shows a mutation in the damage position, with a peak; DIWPNE is always
able to accurately identify the location of the damage. Nevertheless, the larger the p value,
the smaller the peak value will be, and the longer the calculation time will be. Hence,
it is necessary to comprehensively consider calculation efficiency, damage identification
sensitivity, and damage positioning accuracy, and thus 1 is selected as a valid p value. The
following analysis is based on WPNE when p = 1.

5.4. Damage Identification Results

In accordance with Section 5.2, the sym13 wavelet basis function is selected, with
a decomposition scale of 7, the Ux response measured at the No. 63–93 measurement
points on bridge pier No. 3 of the CCRFB before and after the occurrence of damage is
decomposed by the wavelet packet, then DIWPNE is calculated when p is equal to 1, and the
damage early warning index EWWPNE is further calculated in combination with the damage
threshold DITH

WPNE. Figure 11 shows the identification results of the CCRFB under SF seismic
excitation. In the picture, scenarios 2–8 incorporate lower damage I, and scenarios 9–15
incorporate upper damage II.
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Figure 11. EWWPNE damage identification results: (a) damage I; (b) damage II.

According to Section 3.1, the area where EWWPNE > 0 is the damage position, and
the area where EWWPNE ≤ 0 is the non-damaged position. According to Figure 11, for
lower damage I, EWWPNE is greater than zero at the damage position, with a peak, and is
lower than zero at non-damaged locations. Furthermore, EWWPNE increases as the severity
of damage increases; therefore, EWWPNE can accurately locate the lower damage I and
characterize the severity of the damage. For upper damage II, although EWWPNE is greater
than zero at the location of the damage, with a peak, EWWPNE is also greater than zero in
some non-damaged positions close to the damage. Accordingly, EWWPNE is not suitable for
identifying upper damage II.

To further improve the ability of the EWWPNE index to identify upper damage II, it is
necessary to take into account the peak at the upper damage measurement point and good
curve continuity in non-damaged areas. According to the central difference principle, the
upper damage correction index SEWWPNE is constructed to magnify the curve mutation
and remove the holistic trend of the curve, further highlighting the damage position. The
definition of SEWWPNE is shown in Formula (16), below, and the damage identification
results of upper damage II using the correction index SEWWPNE are shown in Figure 12.
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SEWWPNE(i) = −
EWWPNE(i− 1)− 2EWWPNE(i)+EWWPNE(i + 1)

(∆x)2 (16)

where i is the serial number of the measurement points, ∆x is the difference of the serial
number of the adjacent measurement points, and here ∆x = 1. SEWWPNE essentially refers
to the second-order numerical differentiation of EWWPNE, through which the singular point
of EWWPNE is prominent in the form of numerical differentiation. Formula (16) can only
calculate the SEWWPNE value of non-endpoints. For the No. 63 and No. 93 measurement
points at the endpoint, Formulas (17) and (18) are used to calculate the SEWWPNE value.

SEWWPNE(63) = −2EWWPNE(63)− 5EWWPNE(64)+4EWWPNE(65)− EWWPNE(66)

(∆x)2 (17)

SEWWPNE(93) = −2EWWPNE(93)− 5EWWPNE(92)+4EWWPNE(91)− EWWPNE(90)

(∆x)2 (18)
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Figure 12. Modified identification results of damage II using index SEWWPNE.

It can be concluded from Figure 12 that the correction index SEWWPNE is only greater
than 0 at damage measurement points (30, 31), and increases with increasing damage
severity, while SEWWPNE ≤ 0 at other non-damaged measurement points. Therefore,
for upper damage II, the SEWWPNE index has a strong capacity for damage identification
and positioning, as well as the ability to characterize the severity of structural damage.
Unfortunately, due to the introduction of the second-order central difference algorithm to
the calculation of SEWWPNE, computational noise may be introduced, thereby reducing the
immunity of the SEWWPNE index to noise interference. The noise resistance of the EWWPNE
and SEWWPNE indexes will be discussed in detail in the next section.

From the practical application of the dynamic damage detection method, it can be
found that the initial minor damage, environmental noise and measurement errors of the
structure will have a certain impact on the identification process. Therefore, the zero value
in the ideal state will not be taken as the damage warning value. Instead, values greater
than zero are commonly taken. To identify minor damage below 5%, 80% of EWWPNE and
SEWWPNE index values at the 5% damage severity are taken as the damage warning value
for damage I and II, respectively. The damage warning values for the CCRFB are shown in
Table 2.
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Table 2. Damage warning values for the CCRFB.

Lower Damage I
(EWWPNE)

Upper Damage II
(SEWWPNE)

Damage warning value 3.8000 × 10−2 5.9645 × 10−4

On the basis for a comparison of Figures 11 and 12, the EWWPNE index value of the
lower damage and SEWWPNE index value of the upper damage are not on the same order
of magnitude. Furthermore, Table 2 shows that the value of the lower damage warning is
about 60 times that of the upper damage warning value, so it is necessary to separate the
upper damage identification from the lower damage identification and to consider them
individually. The damage warning value of Table 2 is applied to the identification of all the
CCRFB bridge piers (P1–P6). The damage I identification results are shown in Figure 13,
and the damage II identification results are shown in Figure 14. The black dashed line in the
figure refers to the damage warning value. According to Section 4.2, the damage position
of the CCRFB is only set on the P3 pier, the serial numbers of the measurement points for
damage I are (64, 65, 66), and the serial numbers of the measurement points for damage
II are (92, 93). It is not difficult to see from the figure that both EWWPNE and SEWWPNE at
the damage measurement point of the P3 pier exceed the damage warning value, and the
damage index value increases with increasing damage severity. In other non-damaged
piers, EWWPNE and SEWWPNE do not exceed the damage warning value, which is consistent
with the actual situation. In summary, the WPNE-based damage identification index can
accurately identify the damage position of the CCRFB and quantitatively characterize the
severity of damage, thereby achieving structural damage detection, positioning and early
warning.
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6. Discussion
6.1. Compare Identification Index Der

To compare and describe the identification performance of the damage index based
on WPNE, it is necessary to compare it with the Der index. The definition of Der is detailed
in Formula (14) in Section 5.1. Der identifies the damage position by means of the energy
change of each band before and after the damage takes place. Similarly, according to
Formulas (12) and (13), the damage threshold based on Der is set to further obtain the
damage warning index EWer. The identification results of EWer are shown in Figure 15.
The identification results of EWer resemble those of EWWPNE. EWer can accurately identify
lower damage I in the CCRFB. For upper damage II, the area where EWer > 0 is far
beyond the damage measurement points, and EWer possesses a poor ability of detect
damage II. Likewise, in accordance with the characteristics of the EWer curve changes,
Formulas (16)–(18) were used to construct a correction index SEWer and introduce the
damage warning value. EWer and SEWer were applied in the damage identification for all
bridge piers in the CCRFB. The results of damage I identification with EWer are shown in
Figure 16, and the results of damage II identification with SEWer are shown in Figure 17.
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Figure 15. EWer damage identification results: (a) Damage I; (b) Damage II.
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Figure 17. SEWer identification results of damage of 6 bridge II piers.

From Figures 16 and 17, it can be seen that the damage indexes EWer and SEWer based
on Der both show large mutations at the damage position, and the index values at the
damage position are all greater than the damage warning values. However, the index
values at non-damaged bridge pier boundary (the solidification of the pier bottom) and the
pier-beam connection are also greater than the damage warning values, which does not
conform to the actual situation, so the damage identification effect of EWer and SEWer is
not good. In summary, compared with Der, the index based on WPNE has a stronger ability
of damage identification and higher damage positioning accuracy.

6.2. Noise Resistance Analysis

With the practical application of the damage identification method based on measured
response, it can be found that the measured dynamic response signal inevitably introduces
noise due to environmental (temperature, humidity) changes or equipment limitations,
and the presence of noise will affect the accuracy of the damage identification method.
Therefore, the damage identification method based on measured response requires a certain
degree of noise immunity. To test the noise resistance of the WPNE-based identification
method under noisy (or even highly noisy) conditions, the Ux response measured in a
noise-free environment is superimposed with zero white Gaussian noise. The Ux response
containing the noise is used for CCRFB damage identification. The noise level is measured
by the physical signal-to-noise ratio (SNR), defined as follows [50]:

SNR = 10lg ∑ x2(t)
∑ y2(t)

(19)

where x(t) is the noiseless signal, y(t) is the noise signal, SNR is the ratio of signal strength
to noise intensity, and dB is a unit. SNR and noise level are inversely proportional, that
is, the smaller the SNR is, the greater the noise level will be. The Ux response of the
CCRFB measured at the No. 63 measurement point under scenario 2 is taken as an example.
Figure 18 shows the time domain and frequency spectrum before and after superimposing
60 dB noise onto the Ux response of the measurement point. The figure shows that there
is no obvious difference in the Ux response before and after adding noise in the time
domain, but there are significant differences in the frequency domain, especially in the
high-frequency band (12–24 Hz). Because white Gaussian noise is a random noise, one
test cannot fully evaluate the noise resistance of the damage index. Therefore, 10 separate
tests were carried out under the same noise intensity, and the average of 10 test results was
taken as the damage identification result under each noise level. Owing to the fact that
there is a numerical difference between EWWPNE and SEWWPNE of an order of magnitude,
the noise resistance of EWWPNE and SEWWPNE will be discussed separately below.
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Figure 18. Time–frequency diagram before and after adding 60 dB noise: (a) no noise signal; (b) addi-
tional 60 dB noise signal; (c) frequency spectrum.

Figure 19 shows the results of EWWPNE and SEWWPNE damage identification in an
environment with 60 dB of noise. It can be seen from the figure that EWWPNE is able to
accurately identify the lower damage location in a noisy environment where SNR = 60 dB,
with a strong noise robustness; however, for the upper damage identification, SEWWPNE
suffers from many false reports and missing reports. This means that SEWWPNE with the
interference of 60 dB of noise is unable to precisely locate the damage, offering poor noise
resistance. The reason for this is that the construction of SEWWPNE is combined with the
central difference operator (Formula (16)), indirectly introducing computational noise,
thereby reducing the noise immunity SEWWPNE.
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Figure 19. The identification results of the damage indexes when SNR = 60 dB: (a) EWWPNE;
(b) SEWWPNE.

Figure 20 shows the wavelet packet energy of each sub-band of the Ux response
(the No. 63 measurement point under scenario 2) before and after adding 60 dB noise.
According to Figures 18c and 20, the noise signal, which generally has low energy and
high frequency, mainly affects the high-frequency part of the response signal. After WPT,
the effective information of the response is mainly in the low-frequency band, and noise
information is mainly distributed in the high-frequency band, that is, the noise has a larger
impact on wavelet coefficients of the high-frequency band. Therefore, selecting the top
n low-frequency bands with high energy for the calculation of WPNE can avoid noise
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interference to a certain extent. According to Formulas (9) and (10), WPNE of the top n
low-frequency bands can be expressed as:

WPNE =
n

∑
i=1
−λilog2(λi) (20)

where

λi =
Li

p

∑n
i=1 Li

p
(21)

Sensors 2022, 22, 239 22 of 28 
 

 

low-frequency bands with high energy for the calculation of WPNE can avoid noise inter-
ference to a certain extent. According to Formulas (9) and (10), WPNE of the top n low-
frequency bands can be expressed as:  

 
Figure 20. Sub-band energy ratio before and after adding 60 dB noise. 

WPNE= −λilog2 λi

n

i=1

 (20)

where  

λi=
Lp

i∑ Lp
in

i=1
 (21)

The selection of n will affect the accuracy of damage identification. If n is too large, 
noise information will not be effectively removed, and if n is too small, individual damage 
information will be lost. To select an appropriate n value, scale correlation technology is 
introduced. According to the randomness of the noise and the irrelevance of the frequency 
band coefficients, the effective information (including individual damage information) 
band and the noise band are screened by analyzing the correlation of wavelet coefficients 
in each sub-band, that is, the effective information is mainly concentrated in frequency 
bands with large correlation coefficients, while noise information is concentrated in fre-
quency bands with small correlation coefficients, and the correlation coefficient R between 
band No. i and band No. (i+l) is defined as follows [51]: 

R=
∑ cj,m

i − cj
i t cj,m

i+l − cj
i+l tN

m=1∑ cj,m
i − cj

i t
2

N
m=1 ∑ cj,m

i+l − cj
i+l t

2
N
m=1

 (22)

where N is the number of wavelet coefficients in the sub-band. In this paper, 𝑁 = 36, cj,m
i  

is the wavelet coefficient No. m in band No. i under the decomposition scale of j; cj
i t  and 

cj
i+l t  are averages of cj,m

i  and cj,m
i+l . The greater the correlation coefficient |R|, the greater 

the possibility of individual damage information being carried by a series of frequency 
bands. By synthesizing Figure 20 and the size of the correlation coefficient, in this paper, 
the top n = 64 bands are chosen to construct WPNE, and EWWPNE and SEWWPNE are re-
calculated. In environments with 60 dB of noise, the CCRFB damage identification results 
based on n = 64  are shown in Figure 21, where the noise resistance of SEWWPNE  is 

16 32 48 64 80 96 112 128
−0.6

0.0

0.6

1.2

1.8

2.4

3.0 ×10−11

Su
b-

ba
nd

 e
ne

rg
y 

Sub-band ID 

 No noise signal
 Add 60dB noise signal

Figure 20. Sub-band energy ratio before and after adding 60 dB noise.

The selection of n will affect the accuracy of damage identification. If n is too large,
noise information will not be effectively removed, and if n is too small, individual damage
information will be lost. To select an appropriate n value, scale correlation technology is
introduced. According to the randomness of the noise and the irrelevance of the frequency
band coefficients, the effective information (including individual damage information)
band and the noise band are screened by analyzing the correlation of wavelet coefficients in
each sub-band, that is, the effective information is mainly concentrated in frequency bands
with large correlation coefficients, while noise information is concentrated in frequency
bands with small correlation coefficients, and the correlation coefficient R between band
No. i and band No. (i + l) is defined as follows [51]:

R =
∑N

m=1

(
ci

j,m − ci
j(t)
)(

ci+l
j,m − ci+l

j (t)
)

√
∑N

m=1

(
ci

j,m − ci
j(t)
)2
√

∑N
m=1

(
ci+l

j,m − ci+l
j (t)

)2
(22)

where N is the number of wavelet coefficients in the sub-band. In this paper, N= 36,
ci

j,m is the wavelet coefficient No. m in band No. i under the decomposition scale of j;

ci
j(t) and ci+l

j (t) are averages of ci
j,m and ci+l

j,m . The greater the correlation coefficient |R|,
the greater the possibility of individual damage information being carried by a series of
frequency bands. By synthesizing Figure 20 and the size of the correlation coefficient,
in this paper, the top n = 64 bands are chosen to construct WPNE, and EWWPNE and
SEWWPNE are recalculated. In environments with 60 dB of noise, the CCRFB damage
identification results based on n = 64 are shown in Figure 21, where the noise resistance of
SEWWPNE is significantly improved, so the upper damage position in noisy environments
can be accurately identified and the number of false reports can be greatly reduced. In
this way, automatic noise cancellation can be achieved without additional noise reduction
algorithms.
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Figure 21. Results of the damage indexes when SNR = 60 and n = 60: (a) EWWPNE; (b) SEWWPNE.

To perform quantitative analysis of the noise resistance of EWWPNE and SEWWPNE at
different SNR levels, according to the Monte Carlo simulation theory, the noise resistance
performance quantification index NII (Noise Immunity Index) was defined. NII is com-
posed of Missing Report Rate (MRR) and False Report Rate (FRR), and NII is defined as
follows [52]:

MRR =
∑N

i=1 ai

N
×100% (23)

FRR =
∑N

i=1(1 −
bi
ci

)
N

×100% (24)

NII =(1−MRR)× (1− FRR)×100% (25)

where N is the total number of tests, ai is the number of missing reports in each test, bi is
the number of times damage is indicated correctly in each test, ci is the number of times the
damage warning value is exceeded in each test, and i = 1, 2, 3, . . . , N. NII essentially refers
to the possibility of the damage index identifying the damage in the case of no missed or
false reports. The greater the value of NII, the higher the accuracy and the better the noise
resistance the EWWPNE and SEWWPNE will have when positioning the damage location in
noisy environments.

According to the analysis above, there is a big difference between EWWPNE and
SEWWPNE with respect to noise resistance, so EWWPNE and SEWWPNE were each tested
with respect to their noise robustness. EWWPNE was tested 500 times in environments
where SNR = {50 dB, 40 dB, 30 dB, 20 dB}, and the results of EWWPNE noise resistance
analysis are presented in Table 3. Similarly, SEWWPNE was tested 500 times with SNR =
{70 dB, 60 dB, 50 dB, 40 dB}, and the results of the noise resistance analysis are presented
in Table 4. The following conclusion can be drawn on the basis of an observation of the
two tables: (1) MRR of the EWWPNE index is generally less than 5%, so the damage position
can be easily identified. In terms of damage identification accuracy, in environments with
30dB of noise, each NII of EWWPNE is greater than 90%, indicating that EWWPNE is suitable
for identifying lower damage of the CCRFB in noisy environments where SNR ≥ 30 dB;
(2) SEWWPNE is much worse than EWWPNE in terms of noise resistance. Both MRR and FRR
under the scenario of slight damage are greater than those of EWWPNE. In environments
with 50 dB of noise, each NII of SEWWPNE is larger than 90%, so it is suitable for identifying
upper damage to the CCRFB in noisy environments where SNR ≥ 50 dB. In summary,
the damage identification method based on WPNE has high noise robustness, and other
filtering algorithms are not required. By selecting the top n = 64 bands to calculate WPNE,
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independent noise reduction can be achieved, and the location of structural damage in
noisy environments where SNR ≥ 50 dB can be identified.

Table 3. EWWPNE noise resistance analysis results.

Scenario

MRR(%) FRR(%) NII(%)

SNR(dB) SNR(dB) SNR(dB)

20 30 40 50 20 30 40 50 20 30 40 50

2 8.92 2.03 0.00 0.00 14.42 7.76 2.56 0.00 77.95 90.37 97.44 100.00
3 5.21 1.70 0.00 0.00 10.27 5.47 0.80 0.00 85.06 92.92 99.20 100.00
4 1.09 0.04 0.00 0.00 8.71 3.28 0.10 0.00 90.29 96.68 99.90 100.00
5 0.02 0.00 0.00 0.00 3.55 1.29 0.00 0.00 96.43 98.71 100.00 100.00
6 0.00 0.00 0.00 0.00 1.08 1.06 0.00 0.00 98.92 98.94 100.00 100.00
7 0.00 0.00 0.00 0.00 0.53 0.25 0.00 0.00 99.47 99.75 100.00 100.00
8 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 99.91 100.00 100.00 100.00

Table 4. SEWWPNE noise resistance analysis results.

Scenario

MRR(%) FRR(%) NII(%)

SNR(dB) SNR(dB) SNR(dB)

40 50 60 70 40 50 60 70 40 50 60 70

9 12.34 4.55 1.07 0.48 17.29 3.34 2.45 1.12 72.50 92.26 96.51 98.40
10 9.28 2.29 0.02 0.00 13.70 1.46 0.43 0.20 78.29 96.28 99.55 99.80
11 7.90 1.15 0.00 0.00 10.55 0.83 0.02 0.00 82.38 98.03 99.98 100.00
12 3.89 0.05 0.00 0.00 7.01 0.46 0.00 0.00 89.37 99.49 100.00 100.00
13 0.77 0.00 0.00 0.00 4.96 0.01 0.00 0.00 94.31 99.99 100.00 100.00
14 0.06 0.00 0.00 0.00 3.01 0.00 0.00 0.00 96.93 100.00 100.00 100.00
15 0.00 0.00 0.00 0.00 2.11 0.00 0.00 0.00 97.89 100.00 100.00 100.00

6.3. Effect of Seismic Excitation

To illustrate that the proposed method is not affected by the type of seismic excitation,
the measured dynamic response is normalized in the following way [52]:

ITFm/n= iFT

(
FT(U m

x
)

FT(U n
x
) ) (26)

where Um
x and Un

x represent the displacement response of the m-th and the n-th measure-
ment points in the x direction, respectively. FT stands for Fourier Transform and iFT stands
for inverse Fourier Transform. The essence of FT(U m

x
)

/FT(U n
x
)

is the transmissibility func-
tion (TF), and the essence of ITFm/n is the inverse transmissibility function (ITF); ITFm/n
(a temporal signal) obtained using Equation (26) eliminates the effect of the excitation force.

Uniformly selecting U78
x as the reference response, damage identification of CCRFB

under WN (Whittier Narrows) seismic excitation was carried out using ITF63/78, ITF64/78,
. . . , ITF93/78 after eliminating the effect of excitation force. The accelerogram of WN is
shown in Figures 22 and 23 presents the identification results of damage I and II. It can be
clearly seen from the figure that EWWPNE and SEWWPNE can still accurately identify the
damage position, indicating that the method based on WPNE is not affected by seismic
excitation type. The proposed method is universally applicable for different types of seismic
excitation.
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Figure 23. Damage identification results of the CCRFB under WN seismic excitation: (a) EWWPNE;
(b) SEWWPNE.

7. Conclusions

In this paper, the seismic damage identification indexes EWWPNE and SEWWPNE are
constructed based on WPNE and applied in the study of seismic damage identification of
CCRFBs under seismic excitation. The numerical simulation results show that EWWPNE
and SEWWPNE are able to accurately identify the location of the damage and have good
monotonicity with damage severity. Moreover, the advantages of the WPNE-based method
are further illustrated through comparison with the Der-based method. The noise robustness
analysis shows that when the first 64 bands are selected to calculate the WPNE, the damage
index does not require other noise reduction algorithms to identify structural damage in
noisy environments with SNR≥ 50dB. In addition, we find that the proposed method is not
affected by the type of seismic excitation and that the damage index still accurately indicates
the location of damage to CCRFBs even when structural damage identification is performed
using responses with the effects of the excitation forces removed. Therefore, when combined
with advanced sensing techniques, the WPNE-based method holds significant promise in
civil engineering for damage detection in special-shaped bridges.
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