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Abstract: Sentinel lymph node (SLN) biopsy is an integral part of treatment planning for a variety
of cancers as it evaluates whether a tumor has metastasized, an event that significantly reduces
survival probability. However, this invasive procedure is associated with patient morbidity, and
misses small metastatic deposits, resulting in the removal of additional nodes for tumors with high
metastatic probability despite a negative SLN biopsy. To prevent this over-treatment and its associated
morbidities for patients that were truly negative, we propose a tissue oxygen imaging method called
Photoacoustic Lifetime Imaging (PALI) as an alternative or supplementary tool for SLN biopsy. As the
hyper-metabolic state of cancer cells significantly depresses tissue oxygenation compared to normal
tissue even for small metastatic deposits, we hypothesize that PALI can sensitively and specifically
detect metastases. Before this hypothesis is tested, however, PALI’s maximum imaging depth must
be evaluated to determine the cancer types for which it is best suited. To evaluate imaging depth, we
developed and simulated a phantom composed of tubing in a tissue-mimicking, optically scattering
liquid. Our simulation and experimental results both show that PALI’s maximum imaging depth
is 16 mm. As most lymph nodes are deeper than 16 mm, ways to improve imaging depth, such as
directly delivering light to the node using penetrating optical fibers, must be explored.

Keywords: head and neck cancer; imaging; oxygen imaging; photoacoustic; sentinel lymph
node biopsy

1. Introduction

Accurate assessment of tumor spread is essential for determining patient prognosis
and treatment planning. This is particularly true for head and neck cancer patients where
the presence of metastasis reduces 5 year survival by ~50% [1]. Initial evaluation of lymph
node metastases is done by palpating the neck to identify enlarged nodes. However, this
method is operator dependent and has a low sensitivity of 67% [2]. This low sensitivity
places patients at risk for distant tumor recurrence which is associated with a 5-year sur-
vival rate of 35% [3]. To better identify patients with metastasis, palpation is supplemented
with morphological and/or functional imaging. In morphological imaging, metastatic
nodes are identified by analyzing physical markers of metastasis, such as node size, shape,
and the presence of a necrotic core [4]. However, morphological characteristics are poor
predictors of metastasis. When imaging necks initially diagnosed as metastasis-free, one
meta-analysis found that CT, MRI, and US had a sensitivity of 52%, 65%, and 66%, respec-
tively [5]. Functional imaging can detect molecular changes in the tissue and is thus a
promising modality for improving the sensitivity of metastasis detection. However, PET, a
functional imaging modality commonly used for metastasis detection in head and neck
cancer, achieved a sensitivity of 66% due to its inadequate image resolution [5]. The lack of
sensitivity in both palpation and imaging leads some clinicians to remove all lymph nodes
in the tumor region for patients with aggressive cancer phenotypes despite negative palpa-
tion and imaging results. As metastasis occurs in 20–30% of cases, this treatment strategy
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overtreats 70–80% of patients [2] and unnecessarily puts them at risk for the morbidities
associated with surgery, such as lymphedema and reduction in shoulder functionality.

More accurate diagnosis can be achieved with sentinel lymph node (SLN) biopsy which
involves excising the nodes directly connected to the tumor and sending them to a lab for
immunohistochemical staining. However, this process cannot be done intraoperatively,
thus requiring positive biopsy patients to return to the hospital for a second surgery to
treat the metastasis [6]. Additionally, a prospective study of the effects of SLN biopsy for
29 early stage head and neck cancer patients found that 17% of SLN biopsy patients had
lymphedema [7].

To improve the sensitivity and specificity of nodal assessment and prevent over-
treatment, we propose a new functional imaging modality called photoacoustic lifetime
imaging (PALI) [8,9]. PALI is an optical, non-invasive technique that provides tissue oxygen
mapping and is thus sensitive to cellular metabolism. As numerous works have demon-
strated reduced tissue oxygenation in metastatic nodes compared to normal nodes [10–14],
we hypothesize that PALI’s tissue oxygen imaging capabilities can be used to sensitively and
specifically detect metastatic deposits. Further evidence of oxygen as a valuable identifier
of metastasis was shown by Luke et al. who demonstrated detection of metastases volumes
as small as 2.6 × 10−3 mm3 using blood oxygenation measurements in a metastatic mouse
model [15]. As tissue oxygen measurements are more sensitive to oxygenation changes
than blood oxygenation measurements, PALI may be able to detect similar volumes at a
higher sensitivity and specificity than reported by Luke et al. (sensitivity and specificity of
71% and 83%, respectively) [15]. Additionally, as a non-invasive lymph node monitoring
technique, PALI would enable longitudinal assessment of nodal status to ensure continued
locoregional control following treatment.

Towards this goal, PALI’s imaging depth must first be evaluated to identify whether
the optics underlying PALI can penetrate the highly attenuating tissue medium to depths
relevant to cancers that use SLN biopsy. In this report, PALI’s applicability for head
and neck cancers is evaluated using both simulations and benchtop experiments. While
the scope of the paper was narrowed to head and neck cancers, this technique could be
extended to treat other cancers where SLN biopsy is done [16–20].

2. Materials and Methods
2.1. Photoacoustic Lifetime Imaging

PALI measures pO2 using a pump-probe approach where one laser “pumps” methy-
lene blue (MB) molecules to an excited state called the triplet state, and another laser
“probes” the density of molecules in this state as it decays to the ground state. The decay
rate of the triplet state is measured by varying the delay between the pump and the probe
to sample the triplet state density at different time points along its decay, as shown in
Figure 1a. The absorption of the probe laser pulse by the triplet state generates a photoa-
coustic wave whose magnitude is proportional to the triplet state density. The triplet state
decay rate is found by fitting the measured photoacoustic signals to a decaying exponential.
By assuming that triplet MB mainly reacts with oxygen, the Stern-Volmer equation can
be used to relate the triplet state decay rate with oxygen concentration: kQ[O2] + k0 = kt.
In this equation, kQ is the reaction rate between oxygen and triplet state MB, k0 is the
oxygen-independent decay rate, [O2] is the oxygen partial pressure, and kt is the triplet
state decay rate. By doing a calibration where [O2] is varied and the corresponding kt
is measured, kQ and k0 can be calculated and enable the conversion of future decay rate
measurements into an oxygen partial pressure.
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Figure 1. (a) Overview of PALI theory. The beige line shows the expected exponential decay of the 
triplet state. This decay is sampled by varying the delay between the pump and probe lasers and 
measuring the photoacoustic signal generated by the probe. (b) Implementation of PALI begins with 
the computer where a MATLAB script is used to program a delay into the synchronization box. This 
box then triggers the pump, the probe, and the Verasonics (VSX) system. Triggering VSX initiates 
data acquisition by the ultrasound (US) probe. The recorded signal is then transferred to the com-
puter for further processing. 

To implement PALI, two tunable, pulsed lasers (Phocus, Opotek, Carlsbad, CA, USA) 
connected via a bifurcated fiber bundle and a research ultrasound system called Verason-
ics (VSX) (Vantage 64 LE, Verasonics, Kirkland, WA, USA) are triggered by a synchroni-
zation box (Intel Max 10, Intel, Santa Clara, CA, USA) to control the timing of the pump 
pulse, probe pulse, and signal acquisition, as shown in Figure 1b. A single element ultra-
sound transducer (V309-SU, Olympus, Waltham, MA, USA) is used to sense the photoa-
coustic waves and the signal is then stored within VSX. The pump laser was tuned to 660 
nm and the probe laser was tuned to 830 nm as the ground and triplet state have a maxi-
mum absorption at these wavelengths [21]. 

Although only the photoacoustic signals generated by the probe laser are used for 
data analysis, both the pump and probe lasers generate a signal. The pump generates a 
signal due to ground state MB absorption while the probe signal is from the triplet state 
absorption. As a result, the probe photoacoustic signal is corrupted by the pump. To re-
move this artifact, for each delay, the pulsing sequence shown at the bottom of Figure 1a 
is repeated except the probe laser is not fired. The resulting signal is subtracted from the 
signal measured when both the pump and the probe are pulsed. For each delay, 100 
pumps and probe and 100 pump only photoacoustic signals were collected and averaged 
to improve the signal-to-noise ratio (SNR). All signals were normalized by pulse energy, 
and twelve delays evenly spaced between 0.5 and 1000 µs on the logarithmic scale were 
used to ensure even sampling of all regions of the decay. To remove the background signal 
originating from non-MB absorption, the PA signal at a delay corresponding to the com-
plete decay of the triplet state is subtracted from all other delays. 

2.2. PALI Simulation 
The PALI simulation consisted of two parts: a Monte Carlo and an acoustic wave 

simulation. An overview of the simulation workflow for each lymph node depth and the 
computational phantom setup is shown in Figure 2a,b, respectively. For the Monte Carlo 
simulation, the MCmatlab software package was used to design a phantom with the same 
optical properties as neck tissue at the pump and probe wavelengths [22]. The tissue was 
set to a µa of 0.22 and 0.235 ଵ௖௠ and 𝜇௦ᇱ  was set to 9.1 and 7.3 ଵ௖௠ for 660 nm and 830 nm, 
respectively. Within the optical phantom, a spherical lymph node was created containing 
400 µM MB. In solution, MB exists in equilibrium between a monomer and dimer state, 
where dimerization is favored at higher concentrations. While both species exhibit oxygen 
dependent decay, PALI aims to measure the monomer decay rate as only monomers de-
cay at a rate that falls within the measurement capabilities of our system for the full range 

Figure 1. (a) Overview of PALI theory. The beige line shows the expected exponential decay of the
triplet state. This decay is sampled by varying the delay between the pump and probe lasers and
measuring the photoacoustic signal generated by the probe. (b) Implementation of PALI begins with
the computer where a MATLAB script is used to program a delay into the synchronization box. This
box then triggers the pump, the probe, and the Verasonics (VSX) system. Triggering VSX initiates data
acquisition by the ultrasound (US) probe. The recorded signal is then transferred to the computer for
further processing.

To implement PALI, two tunable, pulsed lasers (Phocus, Opotek, Carlsbad, CA, USA)
connected via a bifurcated fiber bundle and a research ultrasound system called Verasonics
(VSX) (Vantage 64 LE, Verasonics, Kirkland, WA, USA) are triggered by a synchronization
box (Intel Max 10, Intel, Santa Clara, CA, USA) to control the timing of the pump pulse,
probe pulse, and signal acquisition, as shown in Figure 1b. A single element ultrasound
transducer (V309-SU, Olympus, Waltham, MA, USA) is used to sense the photoacoustic
waves and the signal is then stored within VSX. The pump laser was tuned to 660 nm
and the probe laser was tuned to 830 nm as the ground and triplet state have a maximum
absorption at these wavelengths [21].

Although only the photoacoustic signals generated by the probe laser are used for data
analysis, both the pump and probe lasers generate a signal. The pump generates a signal
due to ground state MB absorption while the probe signal is from the triplet state absorption.
As a result, the probe photoacoustic signal is corrupted by the pump. To remove this artifact,
for each delay, the pulsing sequence shown at the bottom of Figure 1a is repeated except
the probe laser is not fired. The resulting signal is subtracted from the signal measured
when both the pump and the probe are pulsed. For each delay, 100 pumps and probe
and 100 pump only photoacoustic signals were collected and averaged to improve the
signal-to-noise ratio (SNR). All signals were normalized by pulse energy, and twelve delays
evenly spaced between 0.5 and 1000 µs on the logarithmic scale were used to ensure even
sampling of all regions of the decay. To remove the background signal originating from
non-MB absorption, the PA signal at a delay corresponding to the complete decay of the
triplet state is subtracted from all other delays.

2.2. PALI Simulation

The PALI simulation consisted of two parts: a Monte Carlo and an acoustic wave
simulation. An overview of the simulation workflow for each lymph node depth and
the computational phantom setup is shown in Figure 2a,b, respectively. For the Monte
Carlo simulation, the MCmatlab software package was used to design a phantom with
the same optical properties as neck tissue at the pump and probe wavelengths [22]. The
tissue was set to a µa of 0.22 and 0.235 1

cm and µ′s was set to 9.1 and 7.3 1
cm for 660 nm and

830 nm, respectively. Within the optical phantom, a spherical lymph node was created
containing 400 µM MB. In solution, MB exists in equilibrium between a monomer and
dimer state, where dimerization is favored at higher concentrations. While both species
exhibit oxygen dependent decay, PALI aims to measure the monomer decay rate as only
monomers decay at a rate that falls within the measurement capabilities of our system for
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the full range of clinically relevant oxygenation values. 400 µM was chosen as this is the
maximal concentration where the photoacoustic signal from the monomers will be greater
than that of the dimers.
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Figure 2. (a) Overview of PALI Simulation. MC: Monte Carlo simulation (b). Computational phantom
to measure PALI imaging depth.

The light source used for this simulation was a circular beam perpendicular to the
surface of the tissue at an energy of 10 mJ

cm2 for the pump and 15 mJ
cm2 for the probe, which

matches the pulse energies of the lasers used in the experiment. The pump fluence distribu-
tion outputted from MCmatlab is used to calculate the triplet population within the lymph
node using Equation (1), whose derivation is relegated to Appendix A.

nt =
βn

α + β

(
1− e−(α+β)t

)
(1)

In Equation (1), nt is the concentration of triplet state molecules, β is the rate of
molecules entering the triplet state, n is the total concentration, α is the triplet state decay
rate, and t is the pulse duration. β =

ησgφ660
hν where η is the triplet quantum yield for MB,

σg is MB’s ground state absorption cross-section, φ660 is the fluence rate in units of W
cm2 , h is

Planck’s constant, and ν is the frequency of the light.
The calculated triplet concentration is then multiplied by its molar extinction coeffi-

cient [21] to calculate the triplet state’s absorption coefficient, and this is used to update
the absorption coefficient in the methylene blue filled lymph node. A second Monte Carlo
simulation determines the fluence distribution at the probe wavelength. This is used to
calculate the probe photoacoustic signal according to Equation (2), where Γ is the Grüneisen
parameter, a unitless parameter describing the conversion efficiency of heat into a photoa-
coustic signal, µa is the absorption coefficient of triplet state methylene blue, and φ830 is the
fluence in units of J

cm2 .
P = Γµaφ830 (2)

The initial pressure distribution from the probe is fed into an acoustic simulator called
K-Wave [23], a software that allows users to define the medium’s acoustic properties,
the acoustic source geometry, and the acoustic sensor geometry. The speed of sound of
the medium was set to 1540 m

s and the tissue was assumed to have negligible acoustic
attenuation. A 5 MHz, single element, focused ultrasound transducer was used as the
acoustic sensor and was placed directly above the lymph node. To obtain the radiofrequency
(RF) data for different time delays, the data was multiplied by a decaying exponential with
a rate that corresponded to the pre-defined oxygenation level of the lymph node. The
lymph node oxygenation was fixed to either 150 mm Hg or 0 mm Hg. This process was
repeated for lymph node depths from 4 to 25 mm in steps of 3 mm. The amount of additive
noise included in the simulation was approximated using the setup in Figure 3a where a
black disc was 3D printed and placed at the bottom of a water tank at the focal point of a
single element transducer. The photoacoustic signal generated by the disc was measured
with both a hydrophone and a single element transducer. Figure 3b shows the transducer
(left side) and hydrophone (right side) responses after being normalized by pulse energy
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(measured in µJ). Equation (3) calculates the noise equivalent pressure (NEP) and defines
the standard deviation of a zero mean Gaussian noise distribution. In Equation (3), Unoise is
the root mean square of the signal for samples before the arrival of the photoacoustic wave,
Hsig is the peak-to-peak value of the hydrophone response to the photoacoustic wave, and
Usig is the peak-to-peak value of the ultrasound transducer’s response.

NEP = Unoise ∗
Hsig

Usig
(3)
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Figure 3. (a) Setup for Noise Equivalent Pressure (NEP) measurements. A black disc is illuminated
and the photoacoustic signals (P(A) are first measured with an ultrasound (US) transducer and then
replaced with a hydrophone (H). (b) Example signals from the transducer and the hydrophone.
Signals were normalized according to the laser pulse energy.

2.3. Experimental Setup

An overview of the phantom system is shown in Figure 4a. Briefly, a peristaltic
pump (AE1207, Gikfun, Dongguan, Guangdong, China) pulled 400 µM MB from a room-
temperature, oxygen-controlled reservoir into the dissolved oxygen (DO) chamber where a
DO probe (ENV-40-DOX, Atlas Scientific, New York City, NY, USA) provided a reference
oxygen measurement. The oxygen in the MB reservoir was controlled by bubbling either
room air (for a high oxygen solution) or argon (for a low oxygen solution). The solution
then entered the PALI measurement chamber shown in Figure 4b which consisted of Tygon
(Saint-Gobain, Malvern, PA, USA) tubing running through the center of a 3D printed
box with a 5 MHz single element transducer located on the box’s bottom and a laser
fiber bundle at the top. The tubing was placed at the focal point of the transducer for
maximum sensitivity and a single element transducer geometry was chosen due to its
higher sensitivity compared to array transducers. The laser was placed perpendicular to
the tube to minimize specular reflection at the air-phantom interface. The box was then
filled with an Intralipid and India Ink mixture, shown on the right side of Figure 4b, that
approximated the optical properties of neck tissue. To design this mixture, first, the optical
properties of the Intralipid and the India Ink alone were measured. It was assumed that
the absorption in the Intralipid and scattering in the India Ink was negligible compared
to their scattering and absorption, respectively. To measure the dependence of scattering
and absorption on Intralipid and India ink concentration, respectively, varying dilutions
of these solutions were placed between a 660 nm laser source (Civil Laser, Hangzhou,
Zhejiang, China) and a photodetector (Det10A, ThorLabs, Newton, NJ, USA). The change
in transmittance was measured and fitted to a decaying single exponential. Since the
distance, the light traveled through the mixture was fixed and the concentration was
known, a constant could be calculated that related the scattering or absorption coefficient
to the concentration. This was then used to calculate the concentration necessary to achieve
the desired optical properties. Figure 4c shows the percent transmission in the Intralipid
and India Ink solution as the fractional concentration of the optical fluid is varied. In the
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plot, 100% transmission corresponds to the transmission through water. Transmission
measurements are shown by the blue round dots. The data was fit to a model of light
transport in diffusive media (e−µe f f d) where µe f f is the effective attenuation coefficient and
d is the distance the light travels through the medium. After fixing d to 1 cm, which is the
distance the light travels through the cuvette, µe f f was found by fitting the data. µe f f was
found to be 2.34 1

cm , close to the desired effective attenuation of 2.5 1
cm . The fit is shown as

a dashed blue line in Figure 4c.
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Figure 4. (a) Overview of phantom setup. Fluid from O2 controlled reservoir was pumped into a
box where oxygen measurements were collected with PALI using an ultrasound (US) transducer and
laser. These measurements were verified using a dissolved oxygen probe (DO). (b) Picture of PALI
chamber. Phantom consisted of 3D printed box with holders for the laser and ultrasound transducer.
Tubing containing 400 µM MB was placed at the focal point of the transducer. (c) Measurement of
the effective attenuation coefficient of scattering fluid. Dots represent the measured transmission of
660 nm light through the medium. The dashed line represents the exponential fit whose rate is in
units of 1

cm∗ f where f is the fractional volume of the scattering fluid relative to the final fluid volume.
Since the fluid was not diluted further (i.e., the fractional volume is 1) the effective attenuation
is 2.34 1

cm .

To simulate acquiring measurements at varying tissue depths, the height of the In-
tralipid/India ink mixture above the tubing was varied from 1 mm to 16 mm in steps of
3 mm and each measurement was repeated seven times. Measurements were collected for
high and low oxygen solutions. The ground truth PALI measurement was found by replac-
ing the scattering fluid with water and acquiring seven measurements. For each depth, the
mean, standard deviation, and percent error from the ground truth were calculated. The
clinical imaging depth was defined as the depth where the average PALI measurement had
an error greater than 10 mm Hg. 10 mm Hg was chosen as the error threshold as it provided
95% confidence in classifying 90% of metastatic nodes as not normal and 95% of normal
nodes as not metastatic based on the data provided by Becker et al. [10]. The measurement
depth limit was defined as the depth where 0% error was beyond two standard deviations
from the average error.

To validate PALI-derived decay rates, flash photolysis measurements were collected.
Flash photolysis involves measuring the change in transmission of a continuous wave
probe laser as ground state MB molecules are pumped to the triplet state. A top view of
the flash photolysis setup is shown in Figure 5. A photodetector is placed (PD) (Det10A,
ThorLabs, Newton, NJ, USA) opposite a laser diode (L840P200, ThorLabs, Newton, NJ,
USA) set to the probe wavelength, and a fiber bundle, delivering the pump wavelength,
is placed perpendicular to the probe trajectory. The dark red dashed line denotes the
trajectory of probe light through the sample and the light red, blurred triangle represents
the broad beam pump illumination. Pumping the MB molecules to the triplet state results
in a drop in the transmission percentage which recovers over time as triplet molecules
decay to the ground state. By connecting the photodetector to the oscilloscope, the decay
can be recorded and the decay rate measured.
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the data was expected to follow a single exponential but, for the low oxygen MB solution, 
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Figure 5. Setup for flash photolysis experiment. Photodetector (PD) measures the change in trans-
mission of the continuous wave probe laser following a pulse excitation by the pump laser. When
the pump excites the methylene blue (M(B), the transmission of the probe laser decreases and
transmission recovers as the triplet state density goes to 0.

3. Results and Discussion

Figure 6a,b show the results from the PALI simulation at varying depths for low and
high oxygen solutions along with black dashed lines indicating the decay rate that results in
10 mm Hg error. The average decay rate with one standard deviation error bar is shown for
each depth. The clinical imaging depth for low and high oxygen solutions is below 19 and
beyond 25 mm, respectively. Figure 6c,d show that the measurement depth limit is below
22 and beyond 25 mm for deoxygenated and oxygenated solutions, respectively. As the
average lymph node depth for head and neck cancer is 25 mm [24], methods of improving
signal from the node, such as delivering light directly to the node using optical fibers,
increasing nodal MB concentration, or increasing surface light energy, must be explored for
this technology to be translated to the clinic.
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Figure 6. Mean and standard deviation of simulated PALI decay rate measurements at varying
depths for deoxygenated (a) and oxygenated (b) solutions. Black dashed lines represents the decay
rate corresponding to 10 mm Hg error. Error from the true decay rate for low and high oxygenations
is shown in (c,d).

Figure 7a,b show the flash photolysis signal collected for high and low oxygen levels,
respectively, along with single and double exponential fits. Based on previous works [8,9],
the data was expected to follow a single exponential but, for the low oxygen MB solution,
this resulted in poor goodness of fit as it failed to capture the initial part of the decay. A
double exponential better fit this data, suggesting the presence of additional reactants
with the triplet state. The slower decay rate from the double exponential was recorded
as this rate consistently matched the literature values for triplet state lifetime in low
oxygen solutions [21]. The decay rates of the fit were 6.05× 105 and 1.84× 104 1

s , for the
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oxygenated and deoxygenated solutions, respectively. Figure 7c shows the decay rate
measured with PALI for tubing in water. PALI accurately captures the double and single
exponential behavior observed in the flash photolysis results for the low and high oxygen
MB solutions, respectively, and reports a decay rate that is consistent with that measured
by flash photolysis. Fitting was done using the Levenberg-Marquardt algorithm and the
model that was fit to the deoxygenated data is shown in Equation (4). The scale factor for
the second exponential was set to (1− a) as it was assumed that only two decay rates were
present in the solution.

ae−bt + (1− a)e−c∗t (4)
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urements at low oxygenations become unreliable as shown in Figure 8d where the mean 
and two standard deviation error bars are shown. As 0% error is beyond two standard 
deviations from the mean, less than 2.5% of collected measurements are expected to be 
near the actual oxygenation. Figure 8c shows that this depth corresponds to an SNR of 20. 
In contrast, for high oxygen solutions, PALI can achieve less than 10 mm Hg error for 
depths up to 16 mm with a corresponding SNR of 10 but reliable measurements can be 
achieved for depths beyond 16 mm. Simulation, however, predicts that accurate and reli-
able measurements can be measured below 22 mm and beyond 25 mm for deoxygenated 

Figure 7. Low (a) and high (b) oxygen decay rate measured by flash photolysis. The blue line is the
photodetector (PD) signal, red is the double exponential fit, and yellow is the single exponential fit.
(c) Decay rate measured by PALI for tubing in water. Stars are the data points and the lines are the fit.
The red and blue lines correspond to high and low oxygen, respectively.

Figure 8a,b show the consistency of PALI measurements at different depths along with
a black dashed line indicating the decay rate corresponding to the 10 mm Hg threshold.
The decay rate associated with 10 mm Hg was calculated using a two-point calibration with
PALI measurements at oxygenated and deoxygenated solutions. The depth where the decay
rate error exceeded 10 mm Hg was beyond 16 mm for the deoxygenated solutions and at
16 mm for oxygenated solutions. As the standard deviation of the deoxygenated solution
is expected to be similar to the standard deviation of metastatic node measurements, this
data indicates that PALI may achieve high sensitivities in identifying metastatic nodes
for depths beyond 16 mm in the tissue. However, at 16 mm PALI measurements at low
oxygenations become unreliable as shown in Figure 8d where the mean and two standard
deviation error bars are shown. As 0% error is beyond two standard deviations from
the mean, less than 2.5% of collected measurements are expected to be near the actual
oxygenation. Figure 8c shows that this depth corresponds to an SNR of 20. In contrast, for
high oxygen solutions, PALI can achieve less than 10 mm Hg error for depths up to 16 mm
with a corresponding SNR of 10 but reliable measurements can be achieved for depths
beyond 16 mm. Simulation, however, predicts that accurate and reliable measurements can
be measured below 22 mm and beyond 25 mm for deoxygenated and oxygenated solutions,
respectively. A potential source for this discrepancy may be differences in MB monomer
concentration. Using kinetic equations, it was calculated that at 400 µM, about 50% of the
MB concentration would be monomers. However, the actual concentration of monomer
MB available for reaction with oxygen may be less than this value due to the presence of
other reactions with MB monomers or to dimerization.
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As both the illumination and photoacoustic sensing geometry were optimized in this
setup, this depth represents the maximum PALI imaging depth. As lymph node depths
for many types of cancers are beyond this [24,25], methods to increase the SNR must be
explored. One potential method would be to use penetrating optical fibers to illuminate
the lymph node rather than using trans-dermal illumination. Further work must be done
to assess the fraction of the lymph node’s volume that can be illuminated with this method
and how to optimize energy coupled into the fiber. Another option would be to increase
the concentration of monomer MB within the lymph node by embedding it in a complex,
such as cucurbituril [26]. While increasing the concentration does increase SNR, it limits
the penetration depth of light within the lymph node due to the high absorption coefficient
of MB. This in turn limits oxygen mapping to only superficial regions of the node. More
work must be done to identify the optimal MB concentration for node imaging. While a
single element transducer was used in this study due to its high ultrasound sensitivity,
array transducers are more useful in the clinical setting as they provide faster imaging.
One geometry that is particularly interesting are concave ring arrays [27] as it enables
high ultrasound sensitivity, illumination perpendicular to the skin, and fast imaging.
Reanalyzing PALI imaging depth with a more clinically relevant transducer geometry is
another future step for this project.

4. Conclusions

Sentinel lymph node biopsy is an essential tool to understand the patient prognosis
and determine treatments. However, current lymph node assessment methods are either
invasive and cause pain or lack adequate sensitivity or specificity. By measuring tissue
oxygen, PALI may better identify metastatic lymph nodes compared to current technologies
due to the hyper-metabolic state of cancer cells compared to normal tissue. Simulation
and benchtop experiments were done to assess the maximum depth that PALI can obtain
measurements with less than 10 mm Hg error and the depth where PALI provides reliable
decay rates for oxygenated and deoxygenated solutions. Experimentally, it was found that
below 16 mm, PALI can reliably measure the decay rate of oxygenated and deoxygenated
solutions and achieve a mean error of less than 10 mm Hg. Simulation results predict
a higher depth limit of 22 mm. This discrepancy may be due to the presence of MB
dimers and work must be done to prevent aggregation to improve imaging depth. Since
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the sentinel lymph node for many cancers is often deeper than 16 mm, implementing
PALI with penetrating optical fibers must be explored. Specifically, the question of how
many fibers and their geometry around the node must be studied. While the preliminary
results from this study are encouraging, more work must be done to evaluate the system’s
sensitivity and specificity in identifying metastases using in-vivo models. These models will
account for the non-uniformity of dye concentration within the lymph node, the presence
of additional reactions with triplet MB, and the acoustic attenuation of tissue.
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Appendix A

A two-state model of the methylene blue dynamics is shown in Figure A1 where S0 is
the ground state and T1 is the triplet state. The transition rate from S0 to T1 is β and decay
rate from T1 to S0 is α. Given this, the change of the number of molecules in T1 can be
modeled using Equation (A1) where nt is the number of molecules in the triplet state and
n0 is the number of molecules in the ground state.
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Figure A1. Two state model of methylene blue triplet state dynamics.

dnt

dt
= βn0 − αnt (A1)

n = n0 + nt (A2)

Equation (A2) reflects that the only place molecules can go in our system is the triplet
or ground state. Equation (A3) shows the solution for triplet state dynamics in terms of nT
with the initial condition that nt(t = 0) = 0.

nt =
βn

α + β

(
1− e−(α+β)t

)
(A3)

https://github.umn.edu/punno002/PALI-Imaging-Depth-Lymph-Node
https://github.umn.edu/punno002/PALI-Imaging-Depth-Lymph-Node
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β is dependent on the number of ground state molecules that absorb the excitation
light as shown in Equation (A4) where η describes the percentage of ground state molecules
that absorbed the excitation light that enter the triplet state, I describes the intensity of the
excitation beam in units of W

cm2 , σ0 is the ground state absorption cross-section in units of
1

cm2 , h is Planck’s constant, and ν is the frequency of the excitation beam.

β =
η Iσ0

hν
(A4)
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