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Abstract: Under 5G envision, for pushing visible light communication (VLC) channel model evolu-
tion to various non-Lambertian beams, this paper introduces the typical commercial non-Lambertian
beams, such as Luxeon rebel and side emitter, into the conventional analytical VLC channel model.
The numerical results illustrate that the non-Lambertian beams can significantly affect the VLC
channel frequency response characteristics. Compared with the traditional Lambertian beam, Side
Emitter optical beam could naturally bring up to about 56.8% VLC multi input multi output chan-
nel capacity deviation, which objectively opens a new discussion dimension for enhancing VLC
transmission performance.

Keywords: visible light communication; MIMO; optical beams; non-Lambertian sources; 6G
mobile communications

1. Introduction

For satisfying the explosive traffic in the evolving 5G and coming 6G era, some coun-
tries have initiated relevant research activities. For implementing new wireless technique
paradigms, such as terahertz communications, visible light communications (VLC) are
emphasized as candidates for green 6G network [1,2].

Up to now, VLC have been discussed and investigated for almost two decades. VLC
could make full use of the advantages from solid state lighting, which is also known as
light emitting diodes (LED). It should be noted that the current VLC research is almost
based on Lambertian LED assumption [3–6]. Nevertheless, for rendering certain lighting
performance, the secondary lens and the reflection cups are frequently attached to the
original LED chips by the manufacturers. As a matter of fact, the resultant optical beams
usually do not follow the conventional Lambertian pattern any more [7,8].

In VLC channel characteristics aspects, the analytical VLC channel model is widely
accepted by the researchers and engineers, thanks to its quite limited computation com-
plexity [3–5]. Nevertheless, the non-Lambertian VLC channel characteristics investigation
is still limited within the time-consuming deterministic modeling scheme [8,9]. On the
other hand, the multiple input multiple output (MIMO) techniques have been actively
applied in enhancing the VLC capacity performance [10]. Similarly, the VLC channel
capacity estimation is still absent for the actual non-Lambertian optical beams. It should
be noted that there are many potential VLC application scenarios adopting LED sources
following non-Lambertian beam characteristics. Therefore, for accurately evaluating MIMO
VLC performance variation, it is essential to consider the optical beam effects on MIMO
VLC channel characteristics. In this work, for the first time, the VLC analytical models
are derived for two typical non-Lambertian optical beams. Accordingly, based on the
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above non-Lambertian channel models, the MIMO capacities for the related two beams are
formulated for the following numerical estimation.

The remainder of this work is organized as follows: In Section 2 spatial optical beams
model is introduced. The analytical VCL channel model for the Lambertian and the typical
non-Lambertian beams are described in Section 3. In Section 4, the MIMO VLC channel
capacity is presented for the above distinct optical beams. Section 5 gives the relevant
numerical evaluation results. Finally, Section 6 concludes this paper.

2. Spatial Optical Beams Characteristics
2.1. Lambertian Optical Beams

In conventional VLC irradiance analysis, the LED sources are viewed as Lambertian
emitters. Such processing means that radiation intensity is also one cosine function of the
viewing angle and could be given as [3–6]:

ILam(φ) =
mLam + 1

2π
cosmLam(φ) (1)

where φ is the irradiance angle with respect to the source perpendicular axis. The Lam-
bertian order mLam is given by mLam = −In2/In(cos(φ1/2)), where φ1/2 is the half power
angle of the Lambertian beam [3–6]. Moreover, in Equation (1), (mLam + 1)/2π is the
normalization factor which assure the emitted all power equal to 1W from one generalized,
Lambertian beam. Specifically, in Figure 1, the Lambertian optical beam and the applied
typical indoor scenario are illustrated. Specifically, based on the above Lambertian beam
mathematical expression, the MATLAB plot tool is utilized to draw the Figure 1.
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2.2. Non-Lambertian Optical Beams

For realizing desired lighting performance, the actual optical beams are frequently
modified by the sum of three terms: the optical refraction by the encapsulating cup,
the optical reflection inside the lens and the optical reflection via the reflecting cup.

According to the reported measure results, the non-Lambertian optical beams could
be numerically fitted by the linear combination of certain Lambertian functions, and some
other functions generated by the mentioned reflections and refractions.

Without loss of generality, two typical non-Lambertian optical beams are included in
this work. Specifically, both optical beams are derived from the LUXEON Rebel LED and
Side Emitter LED, respectively.

For the LUXEON Rebel case, the spatial radiation intensity could be profiled by one
sum of two Gaussian functions [7]:

ILUX(φ) =
2

∑
i=1

gLUX
1 i

exp[− ln 2(
|φ| − gLUX

2 i

gLUX
3 i

)
2

], (2)
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where the coefficient values of Gaussian functions are identified as gLUX
11

= 0.76, gLUX
21

= 0◦,
gLUX

31
= 29◦, gLUX

12
= 1.10, gLUX

22
= 45◦, and gLUX

32
= 21◦ [7]. Similarly, the 3D display of LUXEON

Rebel optical beam and the relevant indoor scenario are shown in Figure 2. Based on the
above LUXEON Rebel beam mathematical expression, the MATLAB plot tool is utilized to
draw the Figure 2 as well. The strength of the two Gaussian terms is linked to the basic
components of LED source (chip, mirror and lens). Although this non-Lambertian beam
is still rotationally symmetric, the concerned direction of maximum radiation intensity
obviously deviates the normal direction of the source, which means that more optical
power is emitted to the coverage edge area [7,8].
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Figure 2. (a) 3D spatial optical beam of LUXEON Rebel non-Lambertian LED; (b) LUXEON Rebel
non-Lambertian LED-applied indoor scenario, respectively.

As for the Side Emitter case, the spatial radiation intensity could be profiled by one
sum of three Gaussian functions [7]:

ISID(φ) =
3

∑
i=1

gSid
1 i

exp[− ln 2(
|φ| − gSid

2 i

gSid
3 i

)
2

], (3)

where the included Gaussian functions coefficients could be identified as gSid
11

= 0.542,
gSid

21
= 22.75◦, gSid

31
= 49.96◦, gSid

12
= 0.573, gSid

22
= 77.84◦, gSid

32
= 23.7◦, gSid

13
= 0.279, gSid

23
= 86.67◦,

and gSid
33

= 8.43◦ specifically [7]. Accordingly, 3D spatial optical beam of Side Emitter
non-Lambertian LED and Side Emitter non-Lambertian LED-applied indoor scenario is
presented in Figure 3. Respectively, based on the above Side Emitter beam mathematical
expression, the MATLAB plot tool is utilized to draw the Figure 3.
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3. Analytical VLC Channel Model
3.1. Lambertian VLC Channel Model

For conventional Lambertian beam configuration, the VLC channel gain includes line
of sight (LOS) and non-line of sight (NLOS) components.

For the LOS portion, the channel frequency response could be given as [6]

HLam
LOS

( f ; T, R) =

{
AR
d2 ILam(φ)GofGoc cos(θ)e−j2π f ∆tLOS , 0 ≤ θ ≤ θFOV

0, θ ≥ θFOV
, (4)

where AR is the physical area of the receiver R, d is the distance between the optical
transmitter T and the receiver R, Gof is the optical filter gain, Goc = nRI/

(
sin2(θFOV)

)
is

the optical concentrator gain at the receiver R with internal refractive index nRI, ∆tLOS is
propagation delay of the LOS path and is the field of view (FOV) at the receiver.

HNLOS( f ; T, R) = ηDIFF
e−j2π f (∆T+∆tLOS)

1+j f
f0

, (5)

where ∆T is the delay between the LOS component and the NLOS component onset, f0 is
the NLOS component cutoff frequency, and ηDIFF is the power efficiency for the NLOS
component [5]. Specifically, ηDIFF could be calculated as follows

ηDIFF =
AR

AROOM

〈ρ〉
1−〈ρ〉 , (6)

where AROOM is the entire room surface, and 〈ρ〉 is the average reflectivity of the room
surface. The mentioned f0 can be identified by f0 = 1/(2πτ) where the exponential decay
time is given by

τ = − 〈t〉
In〈ρ〉 , (7)

The figure 〈t〉 can be viewed as the average time between two reflections. In typical a
rectangular room, 〈t〉 is given as follows

〈t〉 = 4VROOM

cAROOM
=

2
c

l · w · h
l · w + l · h + w · h , (8)

where l, w, and h are the length, the width, and the height, respectively [5]. Therefore,
under Lambertian optical beam configuration, the whole channel frequency response could
be written as

HLam
VLC

( f ; T, R) = HLam
LOS

( f ; T, R) + HNLOS( f ; T, R), (9)

3.2. Non-Lambertian VLC Channel Model

Obviously, unlike the NLOS component, the channel frequency response of the LOS
portion is tightly relevant to the optical beam radiation characteristic.

Respectively, for the LUXEON Rebel beam case, the LOS channel frequency response
should be given by [7,8]:

HLUX
LOS

( f ; T, R) =

{
AR
d2 ILUX(φ)GofGoc cos(θ)e−j2π f ∆tLOS , 0 ≤ θ ≤ θFOV

0, θ ≥ θFOV
, (10)

The whole channel frequency response should be rewritten as:

HLUX
VLC

( f ; T, R) = HLUX
LOS

( f ; T, R) + HNLOS( f ; T, R), (11)
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Similarly, for the Side Emitter beam case, the LOS channel frequency response is
given by

HSID
LOS

( f ; T, R) =

{
AR
d2 ISID(φ)GofGoc cos(θ)e−j2π f ∆tLOS , 0 ≤ θ ≤ θFOV

0, θ ≥ θFOV
, (12)

The whole channel frequency response for this beam is written as

HSID
VLC

( f ; T, R) = HSID
LOS

( f ; T, R) + HNLOS( f ; T, R), (13)

4. MIMO VLC Channel Capacity
4.1. Lambertian MIMO Channel Capacity

For one typical MIMO VLC system, the output of the receiver is described by

y = Hx + n, (14)

where x = [x1, x2, . . . , xl]T are emitted symbols from the l transmitters, y = [y1, y2, . . . , yk]T

are the received symbols at the receiver with k photo detectors (PD), n = [n1, n2, . . . , nk]T

are the additive white Gaussian noise (AWGN) at the k photo detectors and the direct
current (DC) channel gain matrix H is given as

H =

 HVLC(0; T1, R1) · · · HVLC(0; Tl , R1)
...

. . .
...

HVLC(0; T1, Rk) · · · HVLC(0; Tl , Rk)

, (15)

where HVLC(0; Tn, Rm) represents the DC channel gain between the transmitter Tn and the
photo detector Rm. Following the previous work, in one well-lit environment, the shot
noise is a dominant contributor to signal disturbance at the receivers. Then the noise power
could be calculated as

N0 = 2qIbgB +
4KbTB

Rf
, (16)

where q denotes the electron charge in coulombs, Ibg is the current due to background
light; B is the system modulation bandwidth; Kb denotes the Boltzmann constant; T is the
absolute temperature and Rf is the feedback resistance of the transimpedance amplifier
(TIA) [11].

Following the work of Harald Haas, the capacity equation for RF MIMO channels
can be utilized to estimate the theoretical capacity of MIMO VLC Gaussian channels.
Specifically, its formula is represented here for convenience [10]:

CLam = B log2

(
det
(

I +
Ps

N
HLamHH

Lam

))
, (17)

where B is the system modulation bandwidth, det() denotes the determinant, I is the
identity matrix, Ps denotes the emitted signal power at each transmitter, N is the total noise
variance and []H is the Hermitian conjugate of one matrix [10]. Moreover, following (15),
channel matrix HLam could be given for Lambertian optical beam, and the element of this
matrix should be calculated by (9) with =0.

4.2. Non-Lambertian MIMO Channel Capacity

For non-Lambertian optical beams, the above VLC channel capacity formula must be
renewed accordingly. For the LUXEON Rebel beam case, the respective channel capacity is
given by [7,8,10]:

CLUX = B log2

(
det
(

I +
Ps

N
HLUXHH

LUX

))
, (18)
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where HLUX is the channel matrix for LUXEON Rebel optical beam, and the element of this
matrix should be calculated by (11) with f = 0.

Moreover, for the Side Emitter beam, the respective channel capacity is given by [7,8,10]:

CSID = B log2

(
det
(

I +
Ps

N
HSIDHH

SID

))
, (19)

where HSID is the channel matrix for Side Emitter optical beam, and the element of this
matrix should be calculated by (13) with f = 0.

5. Numerical Analysis

For investigating the optical beam effects on VLC channel characteristics, the typical
indoor scenario is adopted from the classic publication, which is consistent with the
scenario shown in Figures 1b, 2b and 3b. For fair comparison, all three optical beam
patterns are normalized within the following work. Furthermore, Table 1 summarizes the
main parameters for this work.

Table 1. Summarizes the main parameters for this work.

Parameters Values

Room size (W × L × H) 5 ×5 × 3 m3

Reflection coefficient of walls 0.60
Emitted power of each transmitter 100 mW

LED Lambertian index 1
Receiver field of view 30◦

Physical area of PD 1 cm2

Responsively of PD 0.4 A/W
Concentrator refractive index 1.54

Optical filter gain 1
Modulation bandwidth 10 MHz
Charge of an electron 1.602 × 10−19

Background light current 5100 µA
Absolute temperature 298 K

Feedback resistance of TIA 6 kΩ

In Figure 4, the DC channel gains spatial distribution are shown for the Lambertian
and investigated two non-Lambertian optical beams. For conventional Lambertian beam
case, the DC channel gain dynamic range is about−100.74~−96.05dB while the counterpart
of the LUXEON Rebel optical beam case is about−100.38~−95.51 dB. Due to the distinct
radiation pattern for the Side Emitter beam, the respective dynamic range is dramatically
reduced to −102.12~−99.62 dB.

The frequency response curves for the typical receiver positions are shown Figure 5.
Specifically, at the central receiver position (2.5 m, 2.5 m, 0.85 m), compared to the conven-
tional Lambertian beam, the LUXEON Rebel beam is capable of providing about 0.82 dB
frequency response gain within system bandwidth range. In addition, the Side Emitter
optical beam induces up to about 3.29 dB frequency response loss at the same position.

For the corner receiver position (0.5 m, 0.5 m, 0.85 m), the frequency response gain of
the LUXEON Rebel beam is slightly weaker than the counterpart of the Lambertian beam.
On the other hand, the gain gap between the Side Emitter optical beam and the Lambertian
beam is reduced to 2.35 dB. All above results identify that the non-Lambertian beams could
reshape the VLC spatial coverage and provide distinct channel gain distribution.

For analyzing the optical beam effects on the MIMO transmission, the MIMO capacity
performance is estimated under the concerned three optical beam configurations.
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For the convenience of analysis, at the MIMO receiver, four PD are included, and each
is assumed perfectly alignment to one separate optical source. From Figure 6, it could be ob-
served that LUXEON Rebel optical beam could present a similar MIMO capacity level to the
Lambertian optical beam, but the peak capacity appears at the solo central position, and not
under the four separate optical source positions. For the Lambertian optical beam case and
LUXEON Rebel optical beam case, the average capacity is 102.53 Mbps and 103.99 Mbps,
respectively. The counterpart of Side Emitter optical beam case is 44.27 Mbps, therefore Side
Emitter optical beam could induce up to 58.26 Mbps average capacity degradation with
improved performance uniformity. The respective average MIMO transmission capacity
deviation is about 56.8% compared to the Lambertian baseline case.

For the conventional Lambertian beam case, the MIMO transmission capacity dynamic
range is about 48.27~140.01 Mbps while the counterpart of the LUXEON Rebel optical
beam case is about 54.64~164.25 Mbps. As for the left Side Emitter beam case, the rele-
vant dynamic range is dramatically reduced to 25.59~55.13 Mbps. For clear comparison,
the Cumulative distribution function (CDF) curves of Lambertian optical beam case and
two considered non-Lambertian optical beam cases are described in Figure 6d according to
the three distinct MIMO capacity spatial distribution illustrated in Figure 6a–c. For evaluat-
ing the MIMO capacity under different receiver height, three height settings, i.e., 100 cm,
115 cm and 130 cm are considered for the concerned two non-Lambertian optical beam
cases. In this situation, under three receiver height setting, all six different non-Lamertain
MIMO capacity distributions could be identified, and the respective six CDF curves are
described in Figure 7. Moreover, as shown in Figure 7, elevating the receiver height could
bring a more obvious MIMO capacity gain to the LUXEON Rebel optical beam case than the
Side Emitter optical beam case. For LUXEON Rebel optical beam case, the average capacity
is 112.53 Mbps for height of 100 cm, and the counterpart is increased to 120.94 Mbps and
129.00 Mbps for receiver heights of 115 cm and 130 cm. On the other hand, similar capacity



Sensors 2022, 22, 216 8 of 10

gain could also be observed by increasing receiver height for the Side Emitter beam case.
Accordingly, the average capacity is 51.67 Mbps for height of 100 cm, and the counterpart
is increased to 60.25 Mbps and 70.13 Mbps for receiver heights of 115 cm and 130 cm.
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6. Conclusions

This work has investigated the VLC channel characteristic evolution from the con-
ventional Lambertian beam to typical non-Lambertian beams. The potential beam effects
on VLC DC channel gain and MIMO capacity distribution are illustrated for the first time.
For the typical corner receiver position, the channel gain gap between the Side Emitter
optical beam and the Lambertian beam is still up to 2.35 dB. Under distributed transmit-
ter configuration, the Side Emitter optical beam could provide more uniform capacity
distribution at the price of about 56.8% average MIMO transmission capacity deviation,
compared to the Lambertian baseline case. On the other hand, the capacity distribution is
more sensitive to receiver height for the LUXEON Rebel optical beam.
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