
����������
�������

Citation: Zhao, P.; Zheng, Q.; Ding,

Z.; Zhang, Y.; Wang, H.; Yang Y. A

High-Dimensional and Small-Sample

Submersible Fault Detection Method

Based on Feature Selection and Data

Augmentation. Sensors 2022, 22, 204.

https://doi.org/10.3390/s22010204

Academic Editors: Rafal Burdzik,

Minvydas Ragulskis, Maosen Cao,

Radosław Zimroz, Chaari Fakher and

Łukasz Konieczny

Received: 10 November 2021

Accepted: 25 December 2021

Published: 29 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A High-Dimensional and Small-Sample Submersible Fault
Detection Method Based on Feature Selection and
Data Augmentation

Penghui Zhao 1 , Qinghe Zheng 1 , Zhongjun Ding 2, Yi Zhang 2, Hongjun Wang 1,3,* and Yang Yang 1,*

1 School of Information Science and Engineering, Shandong University, Qingdao 266237, China;
201812603@mail.sdu.edu.cn (P.Z.); 201820314@mail.sdu.edu.cn (Q.Z.)

2 China National Deep Sea Center, Qingdao 266237, China; dzj@ndsc.org.cn (Z.D.); zy592@ndsc.org.cn (Y.Z.)
3 Public (Innovation) Experimental Teaching Center, Shandong University, Qingdao 266237, China
* Correspondence: hjw@sdu.edu.cn (H.W.); yyang@sdu.edu.cn (Y.Y.)

Abstract: The fault detection of manned submersibles plays a very important role in protecting the
safety of submersible equipment and personnel. However, the diving sensor data is scarce and
high-dimensional, so this paper proposes a submersible fault detection method, which is made up of
feature selection module based on hierarchical clustering and Autoencoder (AE), the improved Deep
Convolutional Generative Adversarial Networks (DCGAN)-based data augmentation module and
fault detection module using Convolutional Neural Network (CNN) with LeNet-5 structure. First,
feature selection is developed to select the features that have a strong correlation with failure event.
Second, data augmentation model is conducted to generate sufficient data for training the CNN
model, including rough data generation and data refiners. Finally, a fault detection framework with
LeNet-5 is trained and fine-tuned by synthetic data, and tested using real data. Experiment results
based on sensor data from submersible hydraulic system demonstrate that our proposed method can
successfully detect the fault samples. The detection accuracy of proposed method can reach 97% and
our method significantly outperforms other classic detection algorithms.

Keywords: fault detection; feature selection; data augmentation; high-dimensional sensor data;
limited fault event; manned submersible

1. Introduction

As one of the frontiers of current ocean development, deep-sea manned submersibles
represent a country’s comprehensive scientific and technological strength in materials,
control and marine disciplines [1]. As China’s first self-designed and self-developed opera-
tional deep-sea manned submersible, Jiaolong has performed many deep-sea dive missions
and completed scientific investigations in the fields of marine geology, marine biology,
and marine environment [2,3]. The fault detection of deep-sea manned submersibles has
become one of the most significant tasks during the execution of the dive mission due to
the person safety threat and economic loss caused by downtime of submersibles [4,5].

With the improvement of computing power and the development of signal process-
ing technology, many researchers have made great achievements in the field of fault
detection [6–8]. We can divide the fault detection methods into four categories: distance-
based methods, clustering-based methods, probability distribution-based methods, and the
deep learning-based methods. For distance-based methods, K-Nearest Neighbor (KNN)
algorithm supposes that the k nearest neighbor distances of the fault sample are much
larger than the normals’ [9]. However, KNN is suitable for the situations where the density
of each cluster is relatively uniform. Local Outlier Factor (LOF) method pays more atten-
tion to the detection of local outliers, and the detected outliers can be considered as fault
samples [10]. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [11],
K-Means [12], and WaveCluster [13] are the representative algorithms of clustering-based
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methods. The limitation of them lies in requiring prior knowledge about data cluster
number. In probability distribution-based methods, Gaussian Mixture Model (GMM) is
a popular approach [14], which fits the dataset to a mixed Gaussian distribution, and dis-
cordant observations are probably caused by the failure events. However, the cluster type
and number can act on the detection performance. In recent years, the deep learning-based
methods have gained much popularity in fault detection [15–19]. In [20], a fuzzy neural
network model combining BP neural network and fuzzy theory was established for fault
diagnosis. A method based on a deep convolutional neural network was proposed for
diagnosing bearing faults in [21]. Xu et al. proposed an fault diagnosis method based on
deep transfer convolutional neural network [22], which combined transfer learning theory
and convolutional neural network to realize online fault detection and diagnosis.

However, there are two critical problems in submersible fault detection.
(1) High-dimensional sensor data. The raw data from submersible sensing system

is high in dimensionality, but redundant feature variables will bring challenges to fault
detection and cause the increase in overfitting.

(2) Limited fault issues. Due to the low fault frequency of submersibles, only limited
sensor data including fault samples is collected, which imposes limitations on model
training and is a challenging problem for fault detection.

To address above-mentioned redundant features caused by high-dimensional dataset,
a large collection of methods have been proposed, including Principal Component Anal-
ysis (PCA), Linear Discriminant Analysis (LDA) and feature selection composed of sub-
approaches such as filter, wrapper, and embedded. In [23], PCA as an unsupervised
dimensionality reduction method was used to remove redundant features in order to
get the low-dimensional feature matrix and retain the essential attributes for the fault
detection of rotor system. LDA processes labeled data, and when projecting them to a low-
dimensional space, it satisfies as much as possible to retain the information of the data [24].
In [25], filter and wrapper methods were used to form a hybrid feature selection framework
to get the best feature set, thereby improving the generalization and detection accuracy of
model. In terms of small sample fault detection, data augmentation methods and siamese
neural networks have become popular [26–28]. In order to obtain sufficient data and
improve the robustness of the detection model, data augmentation is an significant tech-
nology in data processing [29]. Previously, methods such as noise addition, interpolation,
window slicing, position replacement and sequence fusion have been maturely applied
in data augmentation for fault detection [30]. With the development of deep learning,
Generative Adversarial Networks (GAN) have been proposed as powerful tools for data
generation [31]. In [32], a small-sample fault detection method using synthetic data was
proposed, which improved GANs to generate more realistic fault data and enhance the
detection accuracy. A multiple-objective generative adversarial active learning model was
designed to detect outliers using limited data in high-dimensional space in [33]. In addi-
tion, siamese neural networks have made great achievements in small samples detection
and one-shot learning [34], and to alleviate the over-fitting issue in anomaly detection of
industrial cyber-physical systems, a siamese convolution neural network based few-shot
learning model was proposed in [35].

We propose a novel high-dimensional and small-sample submersible fault detection
method, which applies hierarchical clustering and AEs to select significant features and
use GANs to synthesize data. In this paper, hierarchical clustering is used to cluster the
raw data with the degree of similarity, and then AE is applied to evaluate the features of
each cluster to determine the correlation between the feature groups and labels, so as to
obtain the effective features for submersible fault detection. To get enough training data, a
rough simulated data generation process is developed to transform the normal sensor data
to rough simulated data according to adding adjusting rules in deep autoencoders. The
improved DCGAN is the data refiner, which is trained to obtain realistic data transformed
from the rough simulated data. Based on the above two processing methods, we have
gotten a meaningful feature group and sufficient training data, so that CNN can be used
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for fault detection, which is pretrained and fine-tuned with generated data, and tested with
the real sensor data.

The main contributions of this paper are as follows.
(1) A novel submersible fault detection method is designed, which innovatively

completes the fault detection of submersible hydraulic system, and greatly improves the
accuracy of detection by comparing with other classical algorithms.

(2) A feature selection model is proposed to select features strongly associated with
fault event and able to effectively improve results of submersible fault detection and
outperform several other state-of-art dimensional reduction methods.

(3) A data augmentation method based on improved DCGAN is developed, which
generates more realistic data as training dataset for fault detection model. No real sensor
data are required in fault detector training phase and the fault samples in submersible
sensor dataset can be precisely detected.

The remainder of this paper is organized as follows. Section 2 is the description of the
target submersible and sensor data set collected from the submersible. The submersible
fault detection model is illustrated in Section 3. In Section 4, experiments and analysis are
performed. Finally, Section 5 summarizes the conclusion of this paper with future work.

2. Data Description

The basic information of submersible and the data set used for fault detection are
described in this section. Jiaolong is a manned submersible with a maximum working
depth of 7000 m, and its detailed parameters are in Table 1. The data set contains a complete
signal collected by the sensor system during a dive mission in the Southwest Indian Ocean
hydrothermal area. The collection period spans about 11.5 h, and the sampling frequency
is 2 Hz, resulting in a total of 83,856 observations.

Table 1. Parameters of the Jiaolong manned submersible.

Parameters

Length 8.6 m
Breadth 3.9 m
Height 3.4 m

Weight in air 22.3 t
The inner diameter of the manned spherical shell 3.4 m

The geological environment of the submarine is complicated and it is very prone to
failure due to the existence of many “chimney”-like hydrothermal sulfides in the submarine
hydrothermal area [36]. In this dive mission, the hydraulic system , load dumping and
camera of the submersible failed, but only the failure of the hydraulic system was captured
by the sensor signal. Furthermore, hydraulic system fault resulted in its corresponding mul-
tiple functions to fail, which greatly affected the operational capability of the submersible
and brought a great threat to safety of the submersible.

The raw data set consists of 294 features collected by sensors of multiple systems,
which is related with hydraulic system, doppler anemometer, anticollision sonar, altimeter,
main battery, etc. Figure 1 shows the some systems located in the submersible and their
corresponding sensing signals. In this study, since the fault occurred in the hydraulic
system, we only analyze the features related to the hydraulic system, and other features are
not in our interest. The chosen 52 features are listed in Table 2.
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AltimeterHydraulic source

Main battery

(a)
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Hydraulic source
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(b)

Figure 1. Structural sketch and corresponding sensing signals of Jiaolong submersible: (a) structural
sketch of Jiaolong submersible; (b) sensing signals of Jiaolong submersible.

Table 2. The features of hydraulic system.

Feature Name Description

Pressure of system [VP1, VP2] The pressure values of main hydraulic system and auxiliary hydraulic system

Current of [110V power, 24V power] The current values of main power and auxiliary power

Tank pressure The pressure values of fuel tank

Temperature of tank [VP1, VP2] The temperature of main fuel tank and auxiliary fuel tank

Displacement of compensator [10LPM, 15LPM] Displacement values of main compensator and auxiliary compensator

Trim system level compensation alarm Alarm conditions of liquid level compensation in trim system

Leak Leakage of hydraulic system

Backup [1, B1, A5, B5, A12, B12] Six types of backup data

Microbial sampler Working conditions of the microbial sampler

Submerged drilling work [A2, B2] Working conditions of the two submersible drills

Trim pump power [A3, B3] Power of two trim pumps

Abandonment of main manipulator [A4, B4] Abandonment conditions of two main manipulators

Main manipulator work [A6, B6] Working conditions of two main manipulators

Deputy manipulator work [A7, B7] Working conditions of two deputy manipulator

Conduit pulp rotary mechanism [A8, B8] Two types of conduit pulp rotary mechanism

Load of [VP1, VP2] Load of main hydraulic system and auxiliary hydraulic system

Sea water pump signal Signal from sea water pump

Control signal of [15LPM, 10LPM, 1.2LPM] Three types of control signal

Sea valve [A9, B9, A10, B10, A11, B11] Six types of sea valve signal

Floating load rejection A13 Load rejection conditions in floating
Diving load rejection B13 Load rejection conditions in diving

Abandonment of deputy manipulator [A14, B14] Two types of abandonment of deputy manipulator

Ballast tank drainage [A15, B15] Two types of drainage ballast tank
Ballast tank inflow [A16, B16] Two types of inflow ballast tank

Proportional valve adjusts the trim angle [1, 2] Two trim angles in proportional valve adjusting

3. Proposed Fault Detection Method

In this study, proposed feature selection module first extracts the essential features
from the raw dataset. Then, DCGAN-based data augmentation module is proposed to
generate sufficient training data. Finally, with the above-mentioned signal processing
modules, CNN can achieve good performance under the challenges of high-dimensional
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data and limited fault data. The overall architecture of the fault detection method is shown
in Figure 2.

Feature subset

Feature subset 

evaluation(AE)

Sensor dataset

Selected features

Deep

AutoEncoder

Rough 

generated data  

Adjusting rules

DCGAN

Refined generated data

CNN

Pretraining

Fine-tuning

Fault detection

Valid dataset Test dataset

Phase 1: Feature selection Phase 2: Data augmentation Phase 3: Fault Detection

Hierarchical 

clustering

Train dataset

Optimal feature subset

Figure 2. The overall architecture of the proposed fault detection method.

3.1. Feature Selection

In this section, a novel feature selection module that is composed of a feature grouping
method based on hierarchical clustering and AE-based feature evaluation is proposed, as
shown in Figure 3.

Hierarchical 
clustering

R
M

SE
R

M
SE

R
M

SE

Comparison 
of detection 

accuracy
… … …

Original data Feature subsets Evaluation results Selected features

Feature clustering phase Feature subsets evaluation phase

Figure 3. The architecture of feature selection module.

3.1.1. Features Clustering

In this work, agglomerative hierarchical clustering algorithm [37] is used as the feature
grouping method. As shown in Figure 4, the agglomerative hierarchical clustering method
initially treats each feature as a cluster, and then combines the two most similar clusters
into a new larger cluster step by step. Iterate this process until all features are members of
a single large cluster. In the clustering process, the correlation distance matrix is used to
measure the similarity of two clusters, and then find clusters that can be further merged.
The correlation distance dc between two feature variables vi and vj is expressed as follows.

dc
(
vi, vj

)
= 1−

(vi − v̄i) ·
(
vj − v̄j

)
‖vi − v̄i‖2

∥∥vj − v̄j
∥∥

2

(1)
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where v̄i and v̄j are the means of feature variables vi and vj, respectively, and · represents
the operation of dot product.

Let Ne be the number of elements in each feature variable. Let~r = {r1, r2, · · · , rn}, ri,
denoting the summed squared residuals of feature vi, be defined as:

ri =
Ne

∑
t=0

(
v(t)i − v̄i

)2
(2)

The correlation distance matrix is denoted as M, and expressed as:

M =
[
Mi,j

]
= 1−

Ci,j√
ri
√rj

(3)

where

Ci,j =
Ne

∑
t=0

((
v(t)i − v̄i

)(
v(t)j − v̄j

))
(4)

Ci,j represents the sum of residual products between features vi and vj, and forms the
partial correlation matrix Cr.

Raw features The first clustering The second clustering The last clustering

Figure 4. The sketch map of agglomerative hierarchical clustering algorithm.

After obtaining the computing method of the correlation distance M, the agglomera-
tive hierarchical clustering is carried out in the following steps.

(1) Apply M as the measure of the similarity between feature clusters, the clusters are
gradually clustered into larger ones, and finally a large cluster containing all the features
is obtained.

(2) Break the link of the current largest cluster and check whether the size of each
cluster is less than δ.

(3) If the size of a cluster is greater than δ, repeat the processing in Step 2 until the size
of all current clusters does not exceed δ.

(4) If the size of each cluster is less than δ, then current clusters are the feature groups
that meet the requirements of clustering algorithm.

(5) k feature groups with strong correlation are obtained.

3.1.2. Feature Subsets Evaluation

The feature variables in the raw data set are not all related to the fault, so it is very
important to select the features that can help us detect the fault. On the premise that the
features are divided into k feature subsets, in this section, the AE [38] is used to evaluate
them and determine the feature groups that play a critical role in fault detection [39]. Let
G = {g1, g2, · · · , gk}, G is the set of k feature groups. As depicted in Figure 3, k three-layer
AEs are applied to detect anomaly samples, which map to k feature subsets, respectively.
As a anomaly detector, AE uses Root Mean Squard Error (RMSE) as the metric of anomaly
score, and RMSE is defined as:

RMSE =

√√√√ 1
Ne

Ne

∑
i=1

(
xi − x′i

)2 (5)
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where xi and x′i are the ith raw sample value and reconstruction value, respectively.
In the training phase, only normal data is used to train the AE model. Parameter set θ =

{θ1, θ2, · · · , θk}, which is updated using Stochastic Gradient Descent (SGD). Furthermore,
let ztrain = {z1, z2, · · · , zk}, where zi represents the RMSE vector of gi in training dataset.
When predicting the anomaly value of the test data, the trained model is applied to get
the RMSEs set zpredict of test samples, which determines the anomaly property of each
sample by setting the appropriate threshold µ. Finally, the optimal feature subset is selected
by comparing threshold γ with the predicting accuracy. The training, predicting and
evaluation phases of algorithm are presented in Algorithm 1.

Algorithm 1 Feature subsets evaluation based on AE model.
Input: G, set of feature groups.

C, set of predicting sample labels.
Nt, number of samples in training dataset.
Np, number of samples in predicting dataset.
µ, the RMSE threshold for anomaly samples.
γ, the accuracy threshold for optimal feature subset.

Output: Gs, optimal feature subset.
1: Initialize θ randomly;

//Training phase
2: for gi ∈ G do
3: zi ← zeros(length = Nt);
4: for t← 1..Nt do
5: g′i [t]← reconstruction(gi[t], θi);
6: θi in AE is updated;
7: zi[t]← RMSE

(
gi[t], g′i [t]

)
;

8: end for
9: end for

10: ztrain ← {z1, z2, · · · , zk}, θtrain ← {θ1, θ2, · · · , θk};
//Predicting phase

11: for gi ∈ G do
12: z′i ← zeros(length = Np);
13: for p← 1..Np do
14: g′i [p]← reconstruction(gi[p], θi);
15: z′i [p]← RMSE

(
gi[p], g′i [p]

)
;

16: end for
17: end for
18: zpredict ←

{
z′1, z′2, · · · , z′k

}
;

//Evaluation phase
19: for gi ∈ G do
20: for e← 1..Np do
21: if z′i [e] > µ then
22: Anomaly(gi[e])← 1;
23: else
24: Anomaly(gi[e])← 0;
25: end if
26: end for
27: Li ← {Anomaly(gi[1]), Anomaly(gi[2]), · · · , Anomaly(gi[Np])};
28: Calculate Accuracy(Ci, Li);
29: if Accuracy(Ci, Li) > γ then
30: Gs[i]← gi;
31: end if
32: end for

3.2. Data Augmentation

In order to prevent the scarce data set from reducing the effectiveness of fault detection
and improve the generalization ability of detection model, data augmentation is a very
important method to generate sufficient samples. The DCGAN-based data augmentation
algorithm is proposed, where deep autoencoders are used in rough data generation and
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DCGANs are improved to refine rough generated data. Figure 5 shows the flowchart of the
proposed data augmentation model.

Normal data

Rough fault data

Generative 

network

Discriminative 

network

Generated 

fault data

Real fault 

data

Refined 

fault data

Encoder

Rough normal 

data

Generative 

network

Discriminative 

network

Generated 

normal 

data

Real 

normal 

data

Refined 

normal

data

Decoder

Refined 

generated data
Refining fault data phase Refining normal data phase

Adding 

Gaussian noise

Encoder

Decoder

L1 

regularization

Figure 5. Flowchart of DCGAN-based data augmentation.

3.2.1. Rough Data Generation

In this part, the method of generating rough data is illustrated in detail, where rough
normal data is generated by encoder and decoder of deep autoencoder and the generation of
rough data is guided by adjusting rules applied in deep autoencoder. The follow sections
describe the detailed methods and the process of rough data generation is shown in Figure 6.

Real normal data Deep autoencoder adding 

Gaussian noise

Deep autoencoder under 

L1 regularization

Rough fault data

Rough normal data

Rough generated data

Figure 6. The process of generating rough data.
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(1) Rough Normal Data Generation: The seven-layer AE subjecting to L1 regularization
is used to produce the rough normal data, which is generated by first encoding and then
decoding real normal data. Due to the same dimensions of input layer and output layer,
the data converted by the deep autoencoder can be regarded as rough normal data.

(2) Rough Fault Data Generation: Contrast to the rough normal data generation
process, the adjustment rules are applied to deep autoencoder in the simulated fault data
generation, in which random Gaussian noise is added to the code layer to create rough
fault samples deviating from normal ones.

3.2.2. Generated Data Refining

The rough generated data cannot be directly applied to the submersible fault detection,
as there is still a big gap between it and real data. In this part, the improved DCGAN is
used as the rough data refiner.

(1) Deep Convolutional Generative Adversarial Network: DCGAN is an unsupervised
learning algorithm that combines CNN and GAN [40]. As shown in Figure 7a, similar to
the general GAN, it consists of a generator G and discriminator D, and can be described in
the following equation:

V(G, D) = Ex∼Pdata [logD(x)] + Ez∼Pz [log(1− D(G(z)))] (6)

where x and z are the real data with the distribution Pdata and data as the input of G with the
distribution Pz, respectively. Function D() represents the probability that the discriminated
data is from real data and the optimum GAN is expressed as the follow equation.

GAN∗ = arg min
G

max
D

V(G, D) (7)

where D is trained to maximize D(x) and 1− D(G(z)) so as to correctly identify real data
and generated data, and G is trained to minimize 1− D(G(z)), so that generated data is
more realistic.

(2) Rough Data Refiner Based on DCGAN: In order to better combine CNN and GAN,
DCGAN replaces pooling operation with strided convolution in both generating network
and discriminating network, and uses global pooling layer instead of fully connected layer
to improve model stability. The detailed structures of generator networks and discrimi-
nator networks are shown in Figure 7b,c, respectively. Then, the generator loss L(G) and
discriminator loss L(D) are calculated in Equations (8) and (9).

L(G) =
1
N

N

∑
i=1
−log(D(G(zi))) (8)

L(D) =
1
N

N

∑
i=1
−log(D(xi))− log(1− D(G(zi))) (9)

To make the generated data closer to real data, loss function of generator is improved
according to actual submersible sensor conditions and is described as follows:

Limproved(G) = L(G) + Lsimilarity(G) =
1
N

N

∑
i=1

[
−log(D(G(zi))) + λ

(
1− G(zi) · xi
‖G(zi)‖‖xi‖

)]
(10)

where Lsimilarity is the loss from cosine similarity between generated data and real data and
λ is the weight of cosine similarity loss.

Based on the above loss functions, the parameters of generating networks and discrim-
inating networks are updated by SGD in the training process. As shown in Figure 7a, rough
normal data and fault data are, respectively, processed by refiners composed of generators
and discriminators, and when training epochs reach 200, the data from generators can be
determined to be refined generated data.
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Figure 7. The architecture of data refiner: (a) the basic architecture of DCGAN-based nor-
mal data refiner and fault data refiner; (b) structure of generator networks; (c) structure of
discriminator networks.

3.3. Fault Detection Based on CNN
3.3.1. Data Preprocessing

In general, the data collected from sensor in the submersible is one-dimensional
waveform signal data, but it can also be presented as two-dimensional grayscale images.
In this work, a sensor data preprocessing method is proposed to convert waveform signal
data to image data which are the ideal inputs for CNN model.

The detailed process of data preprocessing method is shown in Figure 8. Let signal
data including k feature variables be evenly divided into N parts, and each segment have l
samples. Since the signal data has a lower dimensionality compared with general images,
so the method that l

k data segments are repeatedly used to form a l× l matrix. To transform
the matrix to a grayscale image, the value of each element in matrix is normalized from 0
to 255 and then used as gray level of a pixel in the image. The normalization method is
designed as following:

Gray(i, j) = int
(

255× Matrix(i, j)−min(Matrix)
max(Matrix)−min(Matrix)

)
(11)

where Gray() and Matrix() are the value of pixel in grayscale image and the element value
in matrix, respectively, and function int() makes fractions round down. The preprocessing
algorithm does not require the guidance of prior knowledge and the obtained images can
maintain the characteristics of raw data as much as possible.

3.3.2. Proposed Fault Detection Framework

In this section, a submersible fault detection framework based on CNN model with
LeNet-5 structure is described. As shown in Figure 2, the framework consists of three parts:
pretraining and fine-tuning using synthetic dataset, and fault detection testing using test
set in real data.
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Figure 8. Proposed sensor data processing method.

The LeNet-5 was originally proposed as convolutional neural network model for
handwritten digit recognition and had achieved good results in image recognition and
classification [41,42]. The structure of LeNet-5 is shown in Figure 9, in which there are one
input layer, two convolution layers, two pooling layers, two fully connection layers and
one output layer. ReLU function follows each convolution layer as an activation function
and provides the sparse representation ability of the neural network.
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Figure 9. The network structure of LeNet-5.

In view of the fact that only one fault issue in the hydraulic system, the data used
for submersible fault detection is very limited. In addition, if the detection model is
directly trained with real data, it will increase the risk of overfitting, and cannot prove the
effectiveness of our model. so we apply synthetic data to pretraining and fine-tuning of
fault detection model. After obtaining the pretrained model, only a small portion of the
generated data is used to fine-tune parameters of fully connection layers to get the model
applied to real data. Based on the established framework and the trained model, the real
sensor data can be detected whether a fault has occurred.

4. Experimental Result
4.1. Experiment Settings and Results

Feature selection, data augmentation and fault detection are the three parts of the
proposed method. This section illustrates experiment settings and results of each part.
All the numerical experiments are carried out with Python 3.5 and run on workstation
equipped with an Intel 3.80 GHz CPU, RTX3060 GPU and 16.0-GB RAM.
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4.1.1. Feature Selection Experiment

In feature selection section, normal samples are used for hierarchical clustering and
the training of AEs in feature subsets evaluation and samples are used as predicting dataset
for AEs, half of which are from normal dataset and the other half are part of fault samples.

The maximum size δ of cluster is set to 1 in feature clustering and the clustering results
are listed in Table 3. The thresholds in feature subsets evaluation are set as: µ = 1, γ = 0.95,
and the accuracy and recall rate of each feature subset obtained by evaluation are shown in
Figure 10. According to the evaluation results, we can find that accuracy and recall rate
of Cluster 2 have reached 0.98 and 0.99, respectively, while the evaluation results of other
clusters are very poor, indicating that only features in Cluster 2 have strong correlation
with fault event and others are not helpful for fault detection.

Table 3. Feature clustering results.

Clusters Features

Cluster 1

Main manipulator work A6
Current of 110V power
15LPM control signal
Pressure of system VP1
VP1 load

Cluster 2

Temperature of tank [VP1, VP2]
Current of 24V power
Tank pressure
Displacement of compensator [10LPM, 15LPM]

Cluster 3

Sea water pump signal
Sea valve [BC A10, BC B10, AD B9]
Backup B12
Ballast tank inflow A16
Pressure of system VP2
10LPM control signal
VP2 load

Cluster 4∼35 Each of the remaining 32 features is a cluster
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Figure 10. The evaluation results of feature subsets.

4.1.2. Data Augmentation Experiment

In this part, 30,000 signal samples have been selected from normal dataset to generate
rough data, including 15,000 rough normal signal samples and 15,000 rough fault signal
samples, respectively, which are preprocessed into 32× 32 image data for subsequent
data refining. In addition, setting the preprocessed image sample size to 32× 32 takes into
account the time required for the occurrence of submersible failure (approximately 10 to 20 s)
and the sample size is set to an exponential power of 2 to facilitate the calculation of CNN.
DCGAN is used as a refiner and the network structures of its generator and discriminator
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are listed in Table 4. Normal data refiner and fault data refiner share the same network
structure in generators and discriminators, but the parameters of them are individually
trained. Here, Convolution 1 (128@4× 4) indicates that there are 128 convolutional kernel
of size 4× 4 in this layer. The initial settings of hyperparameters for all networks are 0.0002
for learning rate, 64 for mini-batch size and 300 for max-epoch.

Table 4. Structures of generators and discriminators.

Layers in Generators Layers in Discriminators

Input (100× 1) Input (32× 32)
Convolution 1 (128@4× 4) Convolution 1 (32@16× 16)
Convolution 2 (64@8× 8) Convolution 2 (64@8× 8)
Convolution 3 (32@16× 16) Convolution 3 (128@4× 4)
Output (32× 32) Global pooling (128× 1)

Output (D(x))

Using the proposed generating data model, a large amount of realistic normal data
and fault data can be created and Figure 11 illustrates the real data, rough data and refined
data. In reality, there is a difference between normal data and fault data in numerical values
and changing trends, but after signal data is converted to grayscale images, the difference
seems to be small to us, however, classifiers can clearly distinguish them. As shown in
Figure 11, the refined data is closer to the real data than the rough data, and it is able to
show the different characteristics of normal data and fault data.

In order to compare the real data and generated data more clearly, the details of real
data and synthetic data of temperature of tank VP2 under normal and anomaly conditions
are shown in Figure 12. Obviously, the value of fault data is lower than normal data and
has been in a fluctuating state, while the normal data occasionally changes in value. In
terms of numerical value, generated fault data is also smaller than generated normal data.
Since the generated data contains more noise, the generalization of the classifier can be
improved and overfitting can be prevented.

(a) (b) (c)

(d) (e) (f)

Figure 11. Results of data generation. The first row of data is the normal data, whereas the second
row is the fault data: (a) real normal data; (b) rough normal data; (c) refined normal data; (d) real
fault data; (e) rough fault data; (f) refined fault data.
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Figure 12. Real data and generated data: (a) real normal data of temperature of tank VP2;
(b) generated normal data of temperature of tank VP2; (c) real fault data of temperature of tank VP2;
(d) generated fault data of temperature of tank VP2.

4.1.3. Fault Detection Experiment

In fault detection phase, 2448 image samples are generated from DCGAN, 80% of which
are applied in pretraining phase and the remaining data is used in fine-tuning phase. Real
data set is divided into 2994 images, and all of them are testing samples. Here, both synthetic
data and real data are preprocessed into 32× 32 images. The structure of LeNet-5 is detailed
in Table 5, and the initial parameters of model are set as follows: learning rate is 0.0001, the
min-batch size is set as 4 and max-epoch is 500. In this case, the model is first trained by
synthetic data, and then, the fully connection layers are fine-tuned by the valid dataset from
generated data. Finally, the trained model can carry out fault detection on the test dataset. The
accuracy and the values of loss function of proposed method in validation and testing process
are shown in Figure 13. At the validation stage, since model is still detecting synthetic data,
the accuracy quickly reaches 100%. Moreover, it can be seen that a stable testing accuracy of
97% has been achieved and loss function gradually converges during the testing stage.

Table 5. Structure of LeNet-5 model.

Layers in LeNet-5

Input (32× 32)
Convolution 1 (16@28× 28)
Pooling 1 (2× 2)
Convolution 2 (32@10× 10)
Pooling 2 (2× 2)
Fully connection 1 (120)
Fully connection 1 (84)
Output (2)

0 50 100 150 200 250 300 350 400 450 500
Epoch

60
65
70
75
80
85
90
95

100

A
cc

ur
ac

y(
%

)

Validation Accuracy
Testing Accuracy

(a)

0 50 100 150 200 250 300 350 400 450 500
Epoch

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

Lo
ss

Validation Loss
Testing Loss

(b)

Figure 13. Fault detection experiment result: (a) validation accuracy and testing accuracy;
(b) validation loss and testing loss.
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4.2. Comparative Experiments and Analysis

In this section, the proposed submersible fault detection method is evaluated by three
comparative experiments. Comparative experiments in Section 4.2.1 are designed to verify
that the proposed feature selection method is able to improve the accuracy of fault detection
and outperforms other dimensionality reduction methods. In Section 4.2.2, experiments are
conducted to examine the effect of different numbers of generated training samples on the
submersible fault detection. Finally, experiments comparing our proposed method with
three classic fault detection algorithms are carried out to verify the superiority of proposed
method in Section 4.2.3.

4.2.1. Comparative Experiments with Different Feature Selection Methods

Four groups of fault detection experiments are carried out. In Group 1, feature
selection process is not performed before fault detection, whereas PCA, Recursive Feature
Elimination (RFE) and our proposed feature selection method are applied to Group 2,
Group 3 and Group 4, respectively. Three general fault detection methods (LOF, isolation
forest and one-class SVM) are used in the comparative experiments.

Figure 14 shows the results of four groups experiments. With the different feature
selection methods, the following results hold:

(1) When using LOF method, our proposed method has made the greatest contri-
bution to improving detection accuracy, whereas PCA and RFE can only improve fault
detection slightly.

(2) When using isolation forest method, only our method can greatly improve the
performance of fault detection, and other methods will reduce the accuracy of detection.

(3) When using one-class SVM method, both RFE and our method can greatly improve
the accuracy of fault detection and our method outperforms RFE by 0.3%. However, the
improvement effect of PCA is relatively small.

In short, after processing of the proposed feature selection method, the accuracy of
three fault detection method has been greatly improved, and our method outperforms PCA
and RFE.
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Figure 14. Comparison results of three fault detection methods with three feature selection algorithms.

4.2.2. Comparative Experiments with Different Numbers of Generated Samples

In this section, a comparative experiment is given to illustrate that the number of
generated samples for training LeNet-5 model can affect the detection accuracy of fault
detection model. The structure and parameters of detection model, validation dataset and
testing dataset remain the same, whereas the number of training samples changes. We set
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the number of training samples to 1000, 1400 and 2000, then train, fine-tune and test the
detection model, respectively. As shown in Figure 15, although the validation accuracy
in the three experiments can reach 100%, the test accuracy improves as training samples
increase. When the number of training samples is 1000, testing accuracy cannot reach 85%,
whereas the testing accuracy is able to go up to 97% as the samples number increases to
2000. It can be concluded that the number of training samples has a great influence on the
performance of fault detection.
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Figure 15. Comparison results of validation accuracy and testing accuracy with different numbers of
training samples: (a) 1000 training samples; (b) 1400 training samples; (c) 2000 traning samples.

4.2.3. Comparative Experiments with Classic Fault Detection Algorithms

In order to verify the effectiveness and superiority of the proposed method, the
performances of classic fault detection methods including isolation forest, LOF and one-
class SVM are given for comparison. As shown in Table 6, accuracy, recall, precision and
F1 are used as metrics to compare the performance of fault detection. We observe that our
proposed method has achieved the best results in accuracy, recall, precision and F1 at 0.97,
0.98, 0.96 and 0.97, respectively, and they are significantly better than other methods.

Table 6. Fault detection performance comparisons.

Methods Accuracy Recall Precision F1

Proposed method 0.97 0.98 0.96 0.97
Isolation forest 0.70 0.87 0.75 0.81

LOF 0.52 0.72 0.66 0.69
One-class SVM 0.64 0.76 0.89 0.82

4.3. Failure Analysis of Submersible Hydraulic System

We conduct analyse to find the relationship between the failure of hydraulic system
and the related sensor variables. In this dive mission, hydraulic oil leaked into the main
valve box due to solenoid valve leakage at a depth of 2100 m. The liquid in the valve
box with limited volume continued to accumulate, causing the pressure to rise, and the
pressure was acting on the valve plate. The valve plate burst and sea water entered the
valve box. The Electronic Control Unit (ECU) board in the valve box was short-circuited
and burned in contact with water, and the current suddenly changed, which exceeded the
bearing range of the relay after the air switch of the hydraulic system in the cabin, and the
relay was burned out. Subsequently, the values of various sensors in the hydraulic system
failed. Figure 16 shows the depth variation information during the dive of submersible and
the six subgraphs in Figure 17 represent six sensor variables, where the red dashed lines
mark the points of failure.

As shown in Figure 17a, since the valve plate of the hydraulic valve box burst and
sea water entered the valve box, which caused the ECU board to short-circuit and burn, so
the current from 24V power supply suddenly changed drastically. Moreover, activating
signals of main hydraulic source and auxiliary hydraulic source were located on the ECU
control board of main valve box, so that the failure caused the entire hydraulic system
to be paralyzed. Therefore, the signals from tank pressure (see Figure 17b), temperature
of tank VP1 (see Figure 17f) and displacement of compensator 15LPM (see Figure 17e)
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located in main valve box and temperature of tank VP2 (see Figure 17c) and displacement of
compensator 10LPM (see Figure 17d) located in auxiliary valve box did not work properly.

By analyzing the fault events and sensor signals, we further understand the specific
details of the fault and also discover the design loopholes in hydraulic system of the
submersible. In the follow-up study, experts improve the hydraulic system to separate the
activating signals of main and auxiliary hydraulic sources, so as to avoid similar incidents
in the future.
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Figure 16. Depth values during the dive.
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Figure 17. Sensor variables related to hydraulic system fault event: (a) current of 24V power; (b) tank
pressure; (c) temperature of tank VP2; (d) displacement of compensator 10LPM; (e) displacement of
compensator 15LPM; (f) temperature of tank VP1.

5. Conclusions

In this paper, a submersible fault detection method is proposed. The method is
designed to overcome the difficulties of scarce dive data and high dimensionality. There
are three modules in this method: feature selection, data augmentation and fault detection.
In the first module, agglomerative hierarchical clustering and AEs are used to select the
optimal feature subset related to the fault event. In the second module, the proposed
adjusting rules is used to generated rough data with deep autoencoders, then the improved
DCGAN as refiner transforms the rough data to realistic data. In the third module, LeNet-5
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structure-based CNN model is applied as the fault detector, which is trained and fine-tuned
with generated data. The proposed method is tested by the real submersible sensor data,
and the results indicate that our method can effectively detect fault occurring in submersible
hydraulic system. In comparison with several classic algorithm, in terms of accuracy, recall,
precision and F1, the proposed method outperforms other fault detection algorithms. We
have also analyzed the relationship between fault event and sensor signals, which can
provide information for the retrospect of the fault details.

Although good results have achieved in this paper, there are still some limitations in
our study. First, we currently only detect and analyze the failure of the hydraulic system
in the submersible. Second, our proposed method currently only processes the sensor
signal of the submersible. Third, we can only simulate the fault occurred to generate data.
Therefore, we will continue the study focusing on three aspects: (1) After obtaining the fault
data of other systems, we will improve the algorithm according to its data characteristics to
achieve accurate fault detection. (2) The adaptive improvement of the algorithm is made
to transfer it to other data sets so as to realize the fault detection of other applications.
(3) We will introduce expert knowledge in fault data generation to detect possible faults.
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