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Abstract: For facing of the problems caused by the YOLOv4 algorithm’s insensitivity to small
objects and low detection precision in traffic light detection and recognition, the Improved YOLOv4
algorithm is investigated in the paper using the shallow feature enhancement mechanism and the
bounding box uncertainty prediction mechanism. The shallow feature enhancement mechanism is
used to extract features from the network and improve the network’s ability to locate small objects
and color resolution by merging two shallow features at different stages with the high-level semantic
features obtained after two rounds of upsampling. Uncertainty is introduced in the bounding box
prediction mechanism to improve the reliability of the prediction of the bounding box by modeling
the output coordinates of the prediction bounding box and adding the Gaussian model to calculate the
uncertainty of the coordinate information. The LISA traffic light data set is used to perform detection
and recognition experiments separately. The Improved YOLOv4 algorithm is shown to have a high
effectiveness in enhancing the detection and recognition precision of traffic lights. In the detection
experiment, the area under the PR curve value of the Improved YOLOv4 algorithm is found to be
97.58%, which represents an increase of 7.09% in comparison to the 90.49% score gained in the Vision
for Intelligent Vehicles and Applications Challenge Competition. In the recognition experiment,
the mean average precision of the Improved YOLOv4 algorithm is 82.15%, which is 2.86% higher
than that of the original YOLOv4 algorithm. The Improved YOLOv4 algorithm shows remarkable
advantages as a robust and practical method for use in the real-time detection and recognition of
traffic signal lights.

Keywords: traffic light; object detection; YOLOv4; deep learning; computer vision

1. Introduction

Traffic light detection technology can help drivers to identify the status of traffic lights
and make decisions quickly according to the identified status of traffic lights. This can
reduce driver distraction and prevent the occurrence of non-standard driving and illegal
behavior. Therefore, this research on a traffic light detection and recognition model with a
high accuracy in real-time has practical significance and broad development prospects for
improving road traffic safety. Traffic light detection systems often use industrial cameras
to collect road condition information. Due to the complexity and changeability of the
traffic light image background in real traffic scenarios, the traffic light in an image occupies
less pixels and its feature structure is sparse, which increases the difficulty of algorithm
recognition. Therefore, it is very important to study a more effective small target detection
algorithm for traffic signal light detection [1,2].

Traffic light detection has undergone several years of development, and many excellent
detection methods have been reported. At present, these methods can mainly be divided
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into two categories [3]: one is based on traditional algorithms using image processing and
machine learning, while the other is based on deep learning.

The use of traditional algorithms in traffic light detection has been widely investigated.
In [4], the authors located the position of the traffic light by converting the color image
to a YCbCr color space. The problem of low detection and recognition accuracy due to
traffic lights being a small target and only using their color and shape information was
solved by taking advantage of Gabor wavelets’ sensitivity to image edges. At the same
time, the authors extracted the features using two-dimensional independent component
analysis and completed the traffic light classification by sending the features to the nearest
neighbor classifier. In [5], the authors converted an RGB image to LUV color space on the
basis of sliding window detection, used the aggregate channel features (ACFs) algorithm
for training, then completed the detection of traffic lights. The authors of [6] proposed a
multi-scale traffic signal detection method based on the ACF algorithm and an enhanced
tree classifier. This method used a feature pyramid to fuse features and was able to
effectively detect red and green traffic lights. In [7], the authors proposed the use of a fast
image segmentation and compression algorithm based on color to improve computational
efficiency, introduced the time–space model of multi-frame image sequences to improve
the accuracy of traffic light detection, and combined these with support vector machines to
identify traffic lights through the histogram feature of the oriented gradient of the image.
The above methods can realize the detection of traffic lights to a certain extent; however,
traditional algorithms still face great challenges in practice due to their poor generalization
ability and limited detection speed.

The target detection algorithm based on deep learning was thus developed for the
detection of traffic lights to overcome the limitations of traditional algorithms. The authors
of [8] used the YOLO algorithm to detect traffic lights. By optimizing the loss function
of the network, the number of network grid units was increased from 7 × 7 to 11 × 11,
which significantly improved the model’s detection effect on traffic lights. In [9], the
authors used the Faster R-CNN algorithm to effectively improve the detection speed
of traffic lights, obtained regional suggestions and regional scores through the sliding
window mechanism in the regional suggestion network, input them to the ROI pooling
layer to obtain regional suggestion features, then input these to the fully connected layer
to complete the identification of traffic lights. In [10], the authors used YOLOv2 for the
detection of traffic lights. The final convolutional layer was removed from the network,
and three convolutional layers with dimensions of 3 × 3 were added. In order to enable
the identification of fine grain features, a passthrough layer was inserted behind the last
convolutional layer. Multiple scales were used to train both the LISA and LARA traffic
light data sets. The final area under the PR curve (AUC) value was as high as 90.49%. The
authors of [11] improved the structure of the single-shot multibox detector (SSD) and used
Inception-v3 to replace VGG-16 as the basic network. By combining background context
information and local information to detect and recognize signal lights, a 95% detection rate
was obtained with its self-made traffic light data sets. In [12], the authors combined a priori
map information with the YOLOv3 algorithm to detect traffic lights. Ideal results were
achieved by setting the default input size of the network to 608 × 608 and using multi-scale
training. In [13], the authors improved the YOLOv3 algorithm. Multiple feature fusions
were completed by combining with the up-sampling operation and the fused features were
sent to the detection layer to achieve better detection results. The above target detection
algorithm based on deep learning can realize the rapid detection of traffic lights under GPU
acceleration, but the detection accuracy could not be guaranteed.

The YOLOv4 algorithm, which is a recent update in the YOLO series and has a better
performance than many target detection algorithms, can be used to detect traffic lights [14].
As the most excellent target detection algorithm of the YOLO series, the YOLOV4 algorithm
can realize the high-precision real-time detection of targets, but as with all target detection
algorithms there is still a common problem—that is, it is not sensitive enough for small
target detection. For example, the authors of [15] introduced the YOLOv4 target detection



Sensors 2022, 22, 200 3 of 20

network to improve the detection accuracy and speed of the dial area, replaced Hough
transform with image segmentation technology, and used an improved U-net network to
improve the accuracy of pointer detection. At the same time, the automatic calibration
of the dial was realized based on image segmentation. In [16], the authors introduced a
method to obtain the best size of the region of interest (ROI) dynamically. Firstly, prior
maps containing sufficient traffic light information were generated based on multi-sensor
data. Then, by analyzing the relationship between the error of the sensors and the optimal
size of the ROI, the adaptively dynamic adjustment (ADA) model was built. Furthermore,
according to the multi-sensor data fusion positioning and ADA model, the optimal ROI
could be obtained to predict the location of traffic lights. Finally, YOLOv4 was employed to
extract and identify the image features. However, traffic lights, as small targets, were no
longer sensitive to the positioning and color resolution due to the lack of shallow features
as the network deepened [17].

In order to solve these problem and improve the detection accuracy of traffic signal
lights, in this paper improvements of the YOLOv4 algorithm are investigated. The shallow
features are fused with deep features after up-sampling to realize the enhancement of
shallow features and improve the positioning and color resolution ability of the YOLOv4
algorithm for small targets. The Gaussian model is used to process the coordinates of the
predicted bounding box and calculate the uncertainty of the bounding box in order to
improve the reliability of the predicted bounding box and further improve the detection
performance of the YOLOv4 algorithm for small targets.

2. Basics of YOLOv4 Algorithm

This section introduces the principle and network structure of the YOLOv4 algorithm.

2.1. The Principle of YOLOv4 Algorithm

The YOLOv4 algorithm divides the network input into S× S grid units; then, each grid
unit predicts B bounding boxes, the bounding box confidence, and C category probabilities.
The confidence of the predicted bounding box reflects whether the predicted bounding
box contains objects and the accuracy of the position when the objects are included. The
accuracy is expressed as the intersection over union (IOU) of the predicted bounding box
and the real bounding box according to Equation (1).

con f idence = Pr(object) × IOUtruth
pred (1)

where confidence is the confidence of the bounding box and Pr(object) is the probability of
the object being detected in the grid.

By setting the category confidence threshold, the bounding boxes with a category
confidence higher than the threshold are screened out and the non-maximum suppression
algorithm is used to obtain the final bounding box. The predicted bounding box includes
the four parameters tx, ty, tw, and th. In order to reduce the influence of singular samples
on the network, the YOLOv4 algorithm normalizes the above parameters. As shown in
Figure 1, the network input is an image with a size of 608 × 608. The input image is
divided into 19 × 19 grid units. The width and height of the entire image are widthimg
and heightimg, respectively, which are divided into s × s grid units. The dotted line is the
predicted bounding box. The center point coordinates are (x0,y0) and the grid position of
the center point is (row,col). The width and height of the bounding box are widthbox and
heightbox, respectively. The normalization method is described as follows.

(1) Boundary box width and height normalization according to Equations (2) and (3),
respectively.

tw =
widthbox
widthimg

(2)

th =
heightbox
heightimg

(3)
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(2) Center point coordinate normalization according to Equations (4) and (5).

tx = x0 ·
s

widthimg
− col (4)

ty = y0 ·
s

heightimg
− row (5)

Figure 1. Normalization of predicted bounding box.

2.2. CSPDarknet-53 Feature Extraction Network

The CSPDarknet-53 feature extraction network is based on Darknet-53 and optimized
by adding a cross-stage feature fusion strategy [18]. To prevent repeated gradient informa-
tion from being obtained in different layers, the idea of splitting and fusion is introduced
across stages to maximize the differences in gradient combinations. In the process of split-
ting and fusion, the gradient flow is truncated, meaning that the gradient information will
not be reused and the generation of redundant information will be minimized. Applying
the cross-stage feature fusion strategy to the local network of Darknet-53 can reduce the
computational complexity of the feature extraction network and improve the speed and
accuracy of the network’s reasoning. The cross-stage feature fusion strategy is shown in
Figure 2.

Figure 2. Cross-stage feature fusion strategy.

CSPDarknet-53 retains the original 52 convolutional layers in Darknet-53 and adds
a cross-stage feature fusion strategy to the Darknet-53 local network to effectively reduce
the possibility of duplication in the information integration process. The network structure
diagram is shown in Figure 3.

Compared with Darknet-53, CSPDarknet-53 can greatly reduce the amount of cal-
culation necessary, increase the network inference speed, reduce the network memory
consumption, and improve the network accuracy.
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Figure 3. Network structure diagram of CSPDarknet-53.

2.3. YOLOv4 Algorithm Loss Function

The loss function of the YOLOv4 algorithm is composed of three parts: the prediction
error of the bounding box coordinates, the confidence error of the bounding box, and the
category prediction error. The calculation formula of the loss function of the YOLOv4
algorithm is shown as Equation (6), and the meaning of each parameter of the loss function
are shown in Table 1.

Loss = λcoord
S2

Σ
i = 0

B
Σ

j = 0
1obj

ij (2 − wi × hi)[(xi − x̂i)
2 + (yi − ŷi)

2] +

λcoord
S2

Σ
i = 0

B
Σ

j = 0
1obj

ij (2 − wi × hi)[(wi − ŵi)
2 + (hi − ĥi)

2
] −

S2

Σ
i = 0

B
Σ

j = 0
1obj

ij [Ĉi log(Ci) + (1 − Ĉi) log(1 − Ci)] −

λnoobj
S2

Σ
i = 0

B
Σ

j = 0
1noobj

ij [Ĉi log(Ci) + (1 − Ĉi) log(1 − Ci)] −

S2

Σ
i = 0

1noobj
i

S2

Σ
c ∈ classes

[ p̂i(c log(pi(c)) + (1 − p̂i(c)) log(1 − pi(c))]

(6)

Table 1. The meaning of each parameter of the loss function.

Parameter Meaning

λcoord Coordinate loss weight
λnoobj Does not include the target’s loss weight

1obj
ij

Whether the j anchor box of the i grid has targets

1noobj
ij

Whether the j anchor box of the i grid has no target

S The number of input images in the grid cell division
B The number of each grid cell projection boundary box
Ci Confidence
p Category

c = 0,1,...,C Category number
i = 0,1,...,S2 Grid unit number
j = 0,1,...,B Bounding box number
xi, yi, wi, hi The abscissa, ordinate, width, and height of the center point of the prediction box
x̂i, ŷi, ŵi, ĥi The abscissa, ordinate, width, and height of the center point of the real box

3. YOLOv4 Algorithm Network Improvement

In order to improve its ability to detect small targets, the YOLOv4 algorithm network
needs to be improved. A method for shallow feature enhancement is proposed to improve
the network’s ability to locate small targets, improve its color resolution, and enhance its
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sensitivity for small target detection. The bounding box uncertainty prediction mechanism
is introduced to improve the reliability of predicting the bounding box.

3.1. YOLOv4 Algorithm Network Structure Improvement

The YOLOv4 algorithm uses the CSPdarknet-53 feature extraction network. As the
network deepens, the receptive field increases while the dimension of the feature map
decreases. Meanwhile, the features gradually become abstract and the semantic features
become more and more obvious. Nevertheless, the location information becomes more
and more fuzzy, which makes it impossible to achieve the precise detection of small
targets. In view of this, a shallow feature enhancement method is proposed that combines
shallow features with high-level semantic features to improve the precise positioning and
recognition of small targets by the YOLOv4 algorithm.

The original feature extraction network of the YOLOv4 algorithm, CSPDarknet-53,
uses a CSP strategy to ensure the feasibility of the shallow feature enhancement method
and achieve the best results without destroying its network structure. This paper proposes
two feature fusion improvement strategies—namely: fusing the 11th layer and 127th
layer features while fusing the 23rd layer and 117th layer features after processing, and
fusing the 23rd layer and 127th layer features while fusing the 54th layer and 117th layer
features after processing. Two factors should be taken into consideration when realizing
the strategies. Firstly, when the 11th layer shallow features are merged with the 127th layer
features, the 127th layer features need to be upsampled 4 times before they can be merged
with the 11th layer features. Secondly, the dimension of the generated features is as high
as 304 × 304 × 255, and the large amount of additional calculations cannot achieve the
real-time detection of signal lights.

On these grounds, the following methods are used to enhance the shallow features:
(1) the high-level semantic features of the 117th layer are up-sampled; (2) the shallow
features of the 54th layer are spliced; (3) the convolution operation is carried out; (4) the
high-level semantic features of the 127th layer are up-sampled and the shallow features
of the 23rd layer are spliced. After the convolution operation, the first-scale feature is
obtained. The first-scale feature has dimensions of 152 × 152 × 255, the second-scale
feature dimensions are 76 × 76 × 255, and the third-scale feature dimensions remain
unchanged at 19 × 19 × 255. While ensuring the high detection accuracy for individual
larger traffic lights, the detection accuracy of most small targets is improved. As the
improved algorithm does not destroy the network structure of CSPDarknet-53, it ensures
that some large traffic lights still have a high detection accuracy. At the same time, it
integrates shallow features with more specific and obvious location information with the
deep features, takes into account the advantages of shallow features and deep features, and
improves the detection accuracy of traffic lights for most small targets.

The network structure of the Improved YOLOv4 algorithm is shown in Figure 4.
Firstly, the image input required by YOLOv4 algorithm is a multiple of 32, and the input
traffic light data need to be processed. If the input size is set too small, the detection
accuracy will be low. Experimental verification shows that if the input size is set above
608 × 608 × 3, the detection accuracy will not improve much, while the detection time
will be slightly longer if the calculation is too large. Therefore, the traffic light data are
scaled from the size of 1280 × 960 × 3 to the size of 608 × 608 × 3 in three channels as
the input for the entire network. Secondly, 53-CSPDarket network is used for the feature
extraction of input data, and input data with a size 3 × 3 and 1 × 1 are alternately used
for convolution operation. In order to avoid the problem of the dimensions of feature
graph decreasing with the deepening of the convolution depth, with the features gradually
becoming abstracted and insensitive to small target detection, the above method is used
to perform shallow feature fusion based on the original YOLOv4 algorithm. Finally, the
three-scale characteristic information is formed and the detection and recognition of traffic
lights are completed to improve the detection and recognition accuracy of traffic lights by
the YOLOv4 algorithm.



Sensors 2022, 22, 200 7 of 20

n×
54 107 11623 117 126 127

Hierarchical feature fusion
Convolutional layer

Residual block
Maximum pooling layer
Upsampling
Detection layer

Feature fusion

139

150

162

152×152

76×76

19×19
76×76

608×608

152×152

76×76

19×19

4× 2×

Number of 
network layers

Figure 4. The network structure of the Improved YOLOv4 algorithm.

3.2. Uncertainty Prediction of Bounding Box

The bounding box prediction of the original YOLOv4 algorithm only predicts the
coordinate information, while the accuracy of the bounding box is not processed. Conse-
quently, the accuracy of the predicted bounding box coordinates cannot be judged from
the results [19,20]. In order to further strengthen the YOLOv4 algorithm’s ability to detect
traffic lights, a bounding box uncertainty prediction mechanism is added to the YOLOv4 al-
gorithm to predict the uncertainty of each coordinate information and improve the accuracy
of the predicted bounding box.

In the original YOLOv4 algorithm, the coordinate information (tx and ty) of the center
point of the bounding box and the size information (tw and th) of the bounding box are
extracted through bounding box regression. However, these parameters can only provide
the position and size of the bounding box and cannot represent the reliability of the
bounding box. In this paper, the uncertainty calculation is added to the calculation of
the confidence level and a single Gaussian model of tx, ty, tw, and th is used to model the
uncertainty of the prediction frame. The Gaussian model is expressed by Equation (7).

p(y|x) = N(y; µ(x), Σ(x)) (7)

where µ(x) represents the mean function and ∑(x) represents the variance function.
To predict the uncertainty of the bounding box, the coordinate information of the

predicted bounding box is modeled as the mean and variance. The outputs of the bounding
box are µ̂tx , Σ̂tx , µ̂ty , Σ̂ty , µ̂tw , Σ̂tw , µ̂th , and Σ̂th . Due to the detection layer structure in the
network, the Gaussian parameters of tx, ty, tw, and th are preprocessed using the Sigmoid
function according to Equations (8)–(10).

µtx = σ(µ̂tx ), µty = σ(µ̂ty)µtw = µ̂tw , µth = µ̂th (8)

Σtx = σ(Σ̂tx ), Σty = σ(Σ̂ty)

Σtw = σ(Σ̂tw), Σth = σ(Σ̂th)
(9)

σ(x) =
1

1 + exp(−x)
(10)

The average value of each coordinate in the detection layer is the predicted coordinate
of the bounding box, and each variance represents the uncertainty of its corresponding
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coordinate. In Equation (8), µ̂tx and µ̂ty represent the center coordinates of the bounding
box in the grid, so the Sigmoid function is used to process it as a value between 0 and 1. µtw

and µth represent tw and th in YOLOv4. Since their scale changes may exceed the grid size
of the center point of the bounding box, the Sigmoid function is not used for processing.
The variance of each coordinate information in Equation (9) is processed by the Sigmoid
function to be between 0 and 1. In the Gaussian distribution, the greater the variance is, the
greater the change in the distribution will be. Since each variance represents the uncertainty
of its corresponding coordinate, the closer the processed variance is to 0, the smaller the
uncertainty will be and the more reliable the predicted bounding box will be; the closer it is
to 1, the greater the uncertainty will be and the less reliable the predicted bounding box
will be.

The change in the calculation method of the bounding box confidence during predic-
tion is calculated using Equation (11).

con f idence = Pr(object) × IOUtruth
pred × (1 − Uncertaintyaver) (11)

where Uncertaintyaver is the mean value of the uncertainty for each coordinate’s information.
Compared with the large target, if a bounding box of the same size is used in the

detection of the small target, the variance will be large due to the small target occupying
fewer pixels, resulting in a low confidence of the bounding box, and the bounding box can
easily be abandoned. In small target detection, the variance of the bounding box with a
smaller size is smaller and the mean value obtained for the uncertainty will be smaller,
leading to the higher confidence of the predicted bounding box. By setting the category
confidence threshold, the bounding boxes with a category confidence higher than the
threshold are screened out, and the redundant prediction boundary boxes are removed
by a non-maximum suppression algorithm to obtain the final boundary boxes. In other
words, by adding the bounding box uncertainty prediction mechanism to the YOLOv4
algorithm, the predicted bounding box with smaller parameters becomes more suitable for
small target detection tasks.

3.3. Performance Analysis of Improved YOLOv4 Algorithm for Small Target Detection

The pixel size of the pictures in the VOC2007 data set varies, generally being 500× 375 pixels
(horizontal image) or 375 × 500 pixels (vertical image), and the width and height cannot
deviate by more than 100 pixels. In order to verify the effectiveness of the improved
algorithm for the problem of small target detection, this paper selects small targets in the
VOC2007 data set whose width and height are less than one tenth that of the original image
(that is, a target that occupies 50 × 37 pixels or 37 × 50 pixels, and the width and height
deviation does not exceed 10 pixels) for experimental verification. There are eight types of
small targets—namely, airplanes, birds, boats, bottles, cars, dogs, sheep, and people—with
a total of 1164 tags.

The YOLOv4 algorithm that only increases the reliability of Gaussian model calculation
coordinates is named YOLOv4-v1, and the YOLOv4 algorithm that only increases the
shallow feature enhancement mechanism is named YOLOv4-v2. The YOLOv4 algorithm
optimized by using two improved methods is named Improved YOLOv4. On the VOC2007
small target data set, experiments were carried out using the YOLOv4-v1, YOLOv4-v2, and
Improved-YOLOv4 algorithms.

It can be seen from Table 2 that the Improved YOLOv4 algorithm has a significantly
improved detection accuracy for small targets. By using two methods simultaneously, the
detection accuracy of the Improved YOLOv4 algorithm is 8.08% higher than the mean
average precision (mAP) value of the original YOLOv4 algorithm. It can be noticed that the
overall accuracy and recall rate of the Improved YOLOv4 algorithm are also significantly
improved. Although the detection speed of the Improved YOLOv4 algorithm using the
shallow feature fusion method has slowed down, it can still achieve the real-time detection
of the target.
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Table 2. Small target detection performance index of the VOC2007 data set.

Algorithm
AP/%

mAP/% Precision/% Recall/%
Detection
Speed/msAeroplane Bird Boat Bottle Car Dog Person Sheep

YOLOv4 78.23 63.65 59.47 57.26 84.31 75.21 81.47 65.84 70.68 74.31 76.62 22.28
YOLOv4-v1 80.09 65.77 62.78 59.43 89.45 75.47 84.82 68.71 73.32 75.26 77.53 22.04
YOLOv4-v2 83.42 68.75 64.96 62.77 88.26 78.53 84.21 72.31 75.40 79.87 83.79 26.27

improved-YOLOv4 85.61 75.63 70.02 66.57 87.67 85.89 83.23 75.53 78.76 81.27 85.11 25.93

4. Experiment and Analysis
4.1. Experimental Platform and Data

The operating system of the experimental platform was Ubuntu 16.04 with the pro-
cessor Inter(R)-CPU-E5-2620-v4. In order to improve the computing speed and reduce
the training time, an Nvidia GeForce GTX 1080Ti graphics card, was used in the Darknet
framework. CUDA 8.0, and cuDNN 6.0 used GPU for acceleration.

In order to verify the performance of the Improved YOLOv4 algorithm for traffic
signal detection, experiments were carried out using the LISA traffic light data set of the
Intelligent and Safe Automobile Laboratory of the University of California, San Diego [21].
The Bumblebee XB3 camera was installed in the central position at the top of the vehicle to
shoot the traffic signal lights during the sample collection for this data set. The large amount
of data collected included various scenes, such as strong illumination, target coverage, and
night. These scenes raised the difficulty of the traffic signal light identification and were
able to better verified the robustness of the algorithm. The dataset was equipped with
complete labels; it is summarized in Table 3, where LISA-dayTrain is the training set and
LISA-daySeq1 is the test set.

Table 3. Overview of the LISA traffic light data set.

Sequence Name Number of Images Number of Tags Image Size

LISA-dayTrain 14,025 40,764 1280 × 960
LISA-daySeq2 6894 11,144 1280 × 960

LISA-daySeq1 4060 10,308 1280 × 960

In addition, in order to verify the scalability and generalization of the improved
YOLOv4 algorithm, experiments were carried out using the LaRa dataset collected on the
streets of Paris, France. The samples of this data set were collected by the Marling F-046C
camera sensor. The camera was mounted behind the interior rear-view mirror, and the
vehicle speed was less than 50 km/h. The dataset is summarized in Table 4. In order to
facilitate the experiment, 449 samples labelled as “ambiguous” were removed from the
9168 labelled samples, and the remaining 8719 samples were used to divide the training
set and the test set. Among these, the training set contained 7051 samples and the test set
contained 1668 samples.

Table 4. Overview of the LaRa traffic light data set.

Sequence Name Number of Images Number of Tags Image Size

Lara_UrbanSeq1_JPG 11,179 9168 640 × 480

4.2. YOLOv4 Algorithm Anchor Parameter Calculation

The YOLOv4 algorithm extends the anchor mechanism. Anchor is a set of a priori
candidate frames with a fixed aspect ratio to constrain the range of the predicted object. In
the training process of the network, through the pre-set anchor parameters the size of the
predicted bounding box is continuously adjusted, and the optimal predicted bounding box
is gradually determined. Therefore, when training traffic signal data, it is very important
to set appropriate network parameters according to the characteristics of the traffic signal
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data. In order to filter the anchor parameters that are most suitable for traffic lights, in this
paper we used the K-means++ clustering algorithm to cluster the traffic light data, calculate
the similarity of the input samples, and obtain the anchor parameters suitable for the traffic
light data.

We selected the number of different clusters k and used the K-means++ algorithm to
cluster the traffic light data. The average intersection over union (AVG IOU) of the real box
and the predicted box varied with the value of k, as shown in Figure 5.

Figure 5. The change curve of Avg IOU.

It can be seen from Figure 5 that as the number of clusters k increased, the average
intersection over union tended to become more flat. The larger the value of k was, the
smaller the gap between the real box and the predicted box was, which helped reduce the
matching error in the training process. Therefore, in this paper we chose to use the a priori
aspect ratio when k = 9 as the anchor parameter of the Improved YOLOv4 algorithm; the a
priori aspect ratios corresponding to different k values are shown in Table 5.

Table 5. A priori aspect ratio corresponding to different k values.

k = 6 k = 7 k = 8 k = 9 k = 10 k = 11

(6,13) (7,14) (6,12) (6,13) (6,13) (6,13)
(8,16) (10,21) (7,17) (8,16) (8,16) (8,16)
(10,24) (12,28) (9,17) (10,24) (10,24) (10,23)
(13,28) (16,34) (10,24) (13,27) (13,27) (13,24)
(18,40) (18,44) (13,28) (16,34) (15,34) (13,30)
(26,53) (25,42) (16,37) (18,44) (20,39) (17,32)

- (27,58) (21,44) (25,41) (18,47) (17,41)
- - (27,58) (23,55) (25,42) (25,41)
- - - (29,59) (23,54) (22,52)
- - - - (29,59) (28,55)
- - - - - (30,70)

4.3. Model Training Analysis

In all experiments, the K-means++ clustering algorithm was used to calculate the
anchor parameters corresponding to the traffic light data set and replace the original anchor
parameters used in the algorithm. The maximum number of iterations was set as 50,000,
and the initial learning rate was set as 0.01. In order to prevent the gradient explosion from
occurring when the learning rate was too high in the training process, the cosine function
attenuation method [22] was used to attenuate the learning rate. The attenuation curve of
the cosine function is shown in Figure 6.
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Figure 6. Attenuation curve of the cosine function.

During the training process, all training parameters of the network were recorded.
Figure 7 shows the curve of average loss changing with the number of iterations. It can be
seen from the figure that the average loss in the initial training stage was relatively large.
As the number of iterations increased, the average loss decreased continuously and finally
stabilized, achieving an ideal training effect.

Figure 7. Relation curve of average loss and the number of iterations. (a) LISA traffic light data set.
(b) LaRa traffic light data set.

Figure 8 shows the curve of the average intersection over union with the number of
iterations. It can be seen from the figure that the average intersection over union was very
small at the beginning of the training. As the number of iterations increased, the average
intersection over union gradually increased. After the number of iterations reached 45,000,
the average intersection over union could be maintained at about 0.9 to achieve the ideal
training effect.

Figure 8. Relation curve of the average intersection over union and the number of iterations. (a) LISA
traffic light data set. (b) LaRa traffic light data set.
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4.4. Analysis of Traffic Lights Detection Performance

In the traffic light detection, the problem was that the traffic light only occupied a small
number of effective pixels. The background of traffic lights in natural scenes is complex and
changeable. Strong light, evening, and weather conditions will affect the detection effect of
traffic lights. In order to verify the effectiveness of the algorithm proposed in this paper for
small target traffic light detection within a complex background, the AUC value specified
in the Vision for Intelligent Vehicles and Applications (VIVA) Challenge Competition was
used as the evaluation index for this section of the experiment, and the intersection over
union of true positive samples in the calculation should be greater than 0.5.

We detected traffic lights according to the requirements of the VIVA Challenge Com-
petition, where the category name was Traffic Light. Six experiments were performed on
the LISA traffic light dataset using the Faster R-CNN, YOLOv3, YOLOv4, YOLOV4-V1,
YOLOV4-V2, and Improved YOLOv4 algorithms. After full training, the detection results
of the various traffic signal lights in different scenes were compared, as shown in Figure 9.
The yellow rectangle represents the missing spot, the blue parallelogram represents the
wrong spot, and the green circular represents the correct spot.

Figure 9. Cont.
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Figure 9. Comparison of detection results using multiple algorithms for traffic lights in different
scenarios in the LISA data set. (a) Faster R-CNN. (b) YOLOv3. (c) YOLOv4. (d) YOLOv4-v1.
(e) YOLOv4-v2. (f) Improved YOLOv4.

Figure 9 lists the detection effect maps and the local area enlarged images of traffic
lights under different algorithms in the two scenarios of strong illumination and evening.
It can be seen from the figure that the YOLOv3 algorithm missed targets and led to the
false detection of traffic lights in strong light and in the evening, while the Faster R-CNN,
YOLOv4, YOLOv4-v1, YOLOv4-v2, and Improved YOLOv4 algorithms avoided missed
and false detections in the legend.

By testing 4060 traffic light data points in the LISA-daySeq1 test set, the Improved
YOLOv4 algorithm was able to greatly reduce the missed and false detection of traffic lights
and the detection accuracy was significantly improved. The performance indicators of
the traffic lights detection are shown in Table 6. The results show that although the Faster
R-CNN algorithm had a high AUC value, the detection time was longer, meaning that
it could not achieve the real-time detection of traffic lights. Compared with the original
YOLOv4-v1 algorithm, the AUC value, precision, and recall rate of YOLOv4-v2 algorithm
were significantly improved. The Improved YOLOv4 algorithm had the highest AUC value,
precision rate, and recall rate, which were much higher than those of the original YOLOv3
algorithm, indicating that the two improved methods proposed in this paper were suitable
for traffic light detection. Since the shallow feature enhancement mechanism was used
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in the YOLOv4-v2 and Improved YOLOv4 algorithms, which increased the amount of
network calculations, the detection speed was lower than that of the original YOLOv4
algorithm, but the average detection time of a single image of the Improved YOLOv4
algorithm was only 33.74 ms. Compared with the 101.48 ms taken by the Faster R-CNN
algorithm, the Improved YOLOv4 algorithm had a higher detection accuracy while still
achieving the real-time detection of traffic lights.

Table 6. Traffic light detection performance index in the LISA data set.

Algorithm AUC/% Precision/% Recall/% Detection Speed/ms

ACF 40.17 - - -
YOLOv2 90.49 - - -

Faster R-CNN 97.01 98.25 95.93 101.48
YOLOv3 92.32 93.03 92.97 24.38
YOLOv4 96.58 96.86 95.62 28.33

YOLOv4-v1 96.84 97.41 96.13 27.59
YOLOv4-v2 97.03 97.96 96.17 33.99

Improved YOLOv4 97.58 98.74 96.81 33.74

In order to further evaluate the performance of the Improved YOLOv4 algorithm for
traffic light detection and verify the generalization of the algorithm, the above traffic light
detection experiments were carried out again with the LaRa data set. After full training,
the comparison of the detection results of different algorithms is shown in Figure 10. The
yellow rectangle represents the missing spot, the blue parallelogram represents the wrong
spot, and the green circular represents the correct spot.

By testing 1668 samples, the results further showed that the Improved YOLOv4
algorithm could greatly reduce the missed and false detection of traffic lights, and the
detection accuracy was significantly improved. The performance indicators for traffic light
detection are shown in Table 7. At the same time, by analyzing the detection results of the
same data set in different scenarios and different data set conditions, this also fully proved
that the Improved YOLOv4 algorithm proposed in this paper had generalization potential
and scalability.

Figure 10. Cont.
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Figure 10. Comparison of the detection results using multiple algorithms for traffic lights in different
scenarios in the LaRa data set. (a) Faster R-CNN. (b) YOLOv3. (c) YOLOv4. (d) YOLOv4-v1.
(e) YOLOv4-v2. (f) Improved YOLOv4.

Table 7. Traffic light detection performance index in the LaRa data set.

Algorithm AUC/% Precision/% Recall/% Detection Speed/ms

ACF 39.28 - - -
YOLOv2 88.33 - - -

Faster R-CNN 94.92 96.63 93.74 163.80
YOLOv3 89.71 90.13 90.01 28.21
YOLOv4 94.66 95.03 94.67 32.39

YOLOv4-v1 94.73 95.02 94.40 33.45
YOLOv4-v2 95.31 96.76 95.61 39.63

Improved YOLOv4 95.85 97.98 95.77 40.17

4.5. Analysis of Traffic Lights Recognition Performance

In order to verify the effectiveness and robustness of the Improved YOLOv4 algorithm
for traffic light recognition, the traffic light recognition experiment in this section divided the
green, red, and yellow traffic lights into Go, Stop, and Warning and adopted the evaluation
index mAP that is commonly used in target detection algorithms as the experimental
evaluation index.

The Faster R-CNN, YOLOv3, YOLOv4, YOLOv4-v1, YOLOv4-v2, and Improved
YOLOv4 algorithms were used to carry out six groups of experiments on the LISA traffic
light data sets. The detection results of various traffic signal lights in different scenes were
compared, as shown in Figure 11, where the yellow rectangle represents the missing spot,
the blue parallelogram represents the wrong spot, and the green circular represents the
correct spot.

Figure 11 lists the detection effect maps and local area enlarged images of traffic
lights under different algorithms in the two scenarios of strong illumination and evening.
There were two cases of green traffic lights in the figure under strong light. The YOLOv3
algorithm missed detection, and the YOLOv4, YOLOv4-v1, and YOLOv4-v2 algorithms
all had one case of false detection and one case of correct detection. The Faster R-CNN
and Improved YOLOv4 algorithms could correctly identify all the green traffic lights in
the figure, and there were three cases of red traffic lights in the figure in the evening. The
YOLOv3 algorithm correctly identified only one obvious red traffic light, while the YOLOv4,
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YOLOv4-v1, and YOLOv4-v2 algorithms correctly identified two red traffic lights. The
Faster R-CNN and Improved YOLOv4 algorithms correctly identified all red traffic signal
lights in the figure. After testing on 4060 images in the test set, the Improved YOLOv4
algorithm could effectively reduce the occurrence of missed and false detections of traffic
lights, and the recognition accuracy of traffic lights was significantly improved.

Figure 11. Comparison of recognition results using multiple algorithms for traffic lights in different
scenarios in the LISA data set. (a) Faster R-CNN. (b) YOLOv3. (c) YOLOv4. (d) YOLOv4-v1.
(e) YOLOv4-v2. (f) Improved YOLOv4.
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The performance indicators of traffic light identification are shown in Table 8. In
the identification experiments of the YOLOv4-v1 and YOLOv4-v2 algorithms, their mAP
values were significantly improved compared with the original YOLOv4 algorithm, which
proved that the proposed two improved methods of shallow feature enhancement and
boundary box uncertainty prediction could effectively improve the identification accuracy
of the YOLOv4 algorithm for traffic lights.

Table 8. Traffic light recognition performance index in the LISA data set.

Algorithm
AP/%

mAP/% Precision/% Recall/% Detection Speed/ms
Go Stop Warning

Faster R-CNN 73.29 91.63 78.97 81.29 82.18 83.79 101.48
YOLOv3 63.28 85.02 74.71 74.33 75.17 80.30 24.38
YOLOv4 71.46 89.97 76.43 79.29 80.17 81.99 28.33

YOLOv4-v1 73.02 90.23 76.54 79.93 81.42 82.97 27.59
YOLOv4-v2 73.93 91.86 78.25 81.34 82.07 83.58 33.99

Improved YOLOv4 76.67 91.26 78.53 82.15 83.59 84.85 33.74

In order to further evaluate the performance of the Improved YOLOv4 algorithm for
traffic light recognition, six groups of experiments were carried out on the LaRa data set
using the above algorithms. The comparison of recognition results is shown in Figure 12,
where the yellow rectangle represents the missing spot, the blue parallelogram represents
the wrong spot, and the green circular represents the correct spot.

The performance indicators of traffic light identification are shown in Table 9. In
the recognition experiments, the mAP value of the YOLOv4-v1 algorithm increased by
0.82% compared to the original YOLOv4 algorithm and the mAP value of the YOLOv4-v2
algorithm increased by 1.47% compared to the original YOLOv4 algorithm. These results
further proved that the proposed two improved methods of shallow feature enhancement
and boundary box uncertainty prediction could effectively improve the identification
accuracy of traffic lights by the YOLOv4 algorithm, and these had a good scalability.

Figure 12. Cont.
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Figure 12. Comparison of recognition results using multiple algorithms for traffic lights in different
scenarios in the LaRa data set. (a) Faster R-CNN. (b) YOLOv3. (c) YOLOv4. (d) YOLOv4-v1.
(e) YOLOv4-v2. (f) Improved YOLOv4.

Table 9. Traffic light recognition performance index in the LaRa data set.

Algorithm
AP/%

mAP/% Precision/% Recall/% Detection Speed/ms
Go Stop Warning

Faster R-CNN 70.51 87.31 74.23 77.35 79.26 80.92 163.80
YOLOv3 60.59 81.29 73.42 71.76 72.52 77.65 28.21
YOLOv4 69.72 86.38 76.11 77.41 78.39 79.24 32.39

YOLOv4-v1 72.34 87.99 74.35 78.23 78.74 80.06 33.45
YOLOv4-v2 73.45 88.15 75.04 78.88 79.11 80.61 39.63

Improved YOLOv4 74.74 88.68 76.49 79.97 81.02 82.17 40.17

5. Conclusions

We proposed the use of the Improved YOLOv4 algorithm for traffic light detection
and recognition. This method involved adding a shallow feature enhancement mechanism
and a bounding box uncertainty prediction mechanism. By using the Improved YOLOv4
algorithm, the problem that the YOLOv4 algorithm was not sensitive to small targets was
effectively solved and the accuracy of the traffic light detection and recognition was greatly
improved. The experimental analysis was performed with the LISA traffic light data set
and the LaRa traffic light data set, and the following conclusions were obtained.

(1) A shallow feature enhancement mechanism was applied to optimize the YOLOv4
algorithm. The accuracy of traffic light detection and recognition was effectively
improved. For the two data sets of LISA and LaRa, the AUC is increased to 97.03%
and 95.31% in the traffic signal detection experiments, respectively, while mAP is
increased to 81.34% and 78.88% in the recognition experiments, respectively. Due to
the increase in the number of network calculations, the detection time was increased to
33.99 ms and 39.63 ms, respectively. The results show that the method can effectively
improve the detection and recognition accuracy of traffic lights. Although the amount
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of network calculation necessary was increased slightly, the method could still realize
the real-time detection and recognition of traffic lights.

(2) A bounding box uncertainty prediction mechanism was applied to optimize the
YOLOv4 algorithm, which effectively improved the accuracy of the YOLOv4 algo-
rithm in the detection and recognition of traffic lights. The accuracy of traffic light
detection and recognition was effectively improved. For the two data sets of LISA
and LaRa, the AUC was increased to 96.84% and 94.73% in the traffic signal detection
experiments and the mAP was increased to 79.93% and 78.23% in the recognition
experiments. The detection time was reduced to 27.59 ms and 33.45 ms, respectively.
The results show that, compared with the improved YOLOv4 algorithm, this method
had little difference in detection and recognition speed but effectively improved the
accuracy of the YOLOv4 algorithm in the detection and recognition of traffic lights.

(3) The Improved YOLOv4 algorithm involved using the two optimization methods,
the shallow feature enhancement mechanism, and the bounding box uncertainty
prediction mechanism. For the two data sets of LISA and LaRa, the AUC was in-
creased by 1% and 1.19% in the traffic light detection experiments compared with the
original YOLOv4 algorithm, respectively. In the recognition experiments, the mAP
was improved by 2.86% and 2.56% compared with the original YOLOv4 algorithm,
respectively. The robustness of the Improved YOLOv4 algorithm was evidenced
by the significant reduction in the missed and false detection cases under complex
traffic signal light backgrounds, such as strong illumination, target blocking, and
evening. Additionally, when the improved YOLOv4 algorithm was tested on data sets
collected by different cameras, the AUC and mAP are improved, which also proved
the scalability of the algorithm. Although the calculation cost increased due to the
increase in the number of network calculations, the increased detection time was
only at the ms level, which could also ensure the real-time detection of traffic lights.
This shows that the method described in this paper is a feasible method for use in
real scenarios.

Prospective investigations: It is still a challenge to avoid missed and false detections
of traffic lights due to the complexity and changeability of the background in traffic light
detection scenarios. Considering the effectiveness of the Improved YOLOv4 algorithm
in reducing the number missed and false detection cases, the target tracking should be
focused on the identified traffic light to predict the movement trajectory and status of the
traffic light relative to the vehicle in order to further improve the reliability of the Improved
YOLOv4 algorithm for the detection and recognition of traffic lights.
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