
����������
�������

Citation: Horváth, E.; Pozna, C.;

Unger, M. Real-Time LIDAR-Based

Urban Road and Sidewalk Detection

for Autonomous Vehicles. Sensors

2022, 22, 194. https://doi.org/

10.3390/s22010194

Academic Editor: Arturo de la

Escalera Hueso

Received: 6 December 2021

Accepted: 23 December 2021

Published: 28 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Real-Time LIDAR-Based Urban Road and Sidewalk Detection
for Autonomous Vehicles
Ernő Horváth 1,* , Claudiu Pozna 1,2 and Miklós Unger 1

1 Vehicle Industry Research Center, Széchenyi István University, H-9026 Győr, Hungary; pozna@sze.hu (C.P.);
unger.miklos@ga.sze.hu (M.U.)

2 Department of Product Design and Robotics, Transylvania University of Brasov, 500036 Brasov, Romania
* Correspondence: herno@ga.sze.hu

Abstract: Road and sidewalk detection in urban scenarios is a challenging task because of the road
imperfections and high sensor data bandwidth. Traditional free space and ground filter algorithms
are not sensitive enough for small height differences. Camera-based or sensor-fusion solutions are
widely used to classify drivable road from sidewalk or pavement. A LIDAR sensor contains all the
necessary information from which the feature extraction can be done. Therefore, this paper focuses
on LIDAR-based feature extraction. For road and sidewalk detection, the current paper presents a
real-time (20 Hz+) solution. This solution can also be used for local path planning. Sidewalk edge
detection is the combination of three algorithms working parallelly. To validate the result, the de
facto standard benchmark dataset, KITTI, was used alongside our measurements. The data and the
source code to reproduce the results are shared publicly on our GitHub repository.

Keywords: autonomous vehicle; open source; LIDAR point cloud; free-space detection; road segmentation;
ground-non-ground segmentation; obstacle detection; autonomous vehicles; self-driving

1. Introduction

Autonomous vehicles, also known as self-driving vehicles, are currently being rapidly
improved. These vehicles or robots have the capability of sensing their environment and
moving safely without human input. The four main tasks of these systems are sensing,
perception, planning, and control. Sensing is basically data acquisition from the sensors;
perception means feature extraction from the sensor data; planning means to create a
feasible trajectory; finally, control is responsible for executing this trajectory. The scope
of this work is perception, more precisely the extraction of road and sidewalk features.
This information will be provided to the planning subsystem. From a sensor point of view,
a self-driving vehicle incorporates vision-based methods, typically stereo or monocular
cameras. Moreover, radio-waves-based ranging is present, most notably with radar. In
the current work, our focus is on LIDAR, which is also a common light ranging sensor.
While vision-based methods are suitable for many types of recognition, they are sensitive to
illumination. LIDAR-based methods are largely invariant to illumination changes, and they
are becoming inexpensive and more appropriate to measure the environment in 3D space
in high resolution. This high resolution requires efficient algorithms to work in real time.

In an urban environment, curbs are meant to separate vehicle traffic from pedestrians.
They are typically continuous along the road, and they isolate the elevated sidewalk
level. LIDAR generates a discrete point cloud that provides 3D data encompassing height
information. Thus, a simple approach would be to use height data and fit a plane to the
road level for segmentation. This proves to be a naïve method for several reasons. The
road is purposely designed to be curbed and not a perfectly flat surface. The drainage
gradient is the effect of the combined road slope, the longitudinal slope, and surface cross-
slope. Without this slope, the water would cover the surface, which leads to dangerous
situations such as hydroplaning. Furthermore, over the years the concrete or the asphalt

Sensors 2022, 22, 194. https://doi.org/10.3390/s22010194 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22010194
https://doi.org/10.3390/s22010194
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5083-2073
https://doi.org/10.3390/s22010194
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22010194?type=check_update&version=2


Sensors 2022, 22, 194 2 of 17

can accumulate numerous deformations. The unevenness caused by manholes, potholes,
and others, which are common characteristics of an urban environment, makes feature
extraction challenging. Even if there are some limitations regarding the lanes, the junctions,
the minimum and maximum curvatures, this still leaves practically unlimited versions of
road and sidewalk shapes. For LIDAR-based road and sidewalk detection, as a solution
to these challenges, a real-time, robust, feasibly less parameter-sensitive algorithm was
designed and implemented.

To present our method, the paper is organized as follows: Section 2 presents a review
of the state of the art; Section 3 presents the proposed method; Section 4 describes the
evaluation of the proposed method; and finally, Section 5 shows the conclusions.

2. Related Work

In the following, a review of related research is introduced. There are numerous papers
on road and lane detection based on camera or camera and LIDAR fusion [1–5]. These
solutions generally rely on image data and use mainly deep learning with neural networks.
The neural networks are usually convolutional, and the models are trained using labelled
images of urban roads and other scenarios. If the lightning conditions are satisfactory these
solutions can perform in real time with GPU acceleration.

There are also solely LIDAR-based solutions that focus on ground detection [6,7]
and road detection [8–13]. Most of them work in a postprocessing or semiautomated
manner [8–11]. For LIDAR segmentation, there are neural-network-based solutions too,
such as RangeNet++, PolarNet, etc. [14–16]. These solutions heavily rely on GPU. The
current state of art ensures real-time performance with the help of FPGA or GPU accel-
eration [12–15]. Although numerous road shapes (T-shape, Y-shape, +-shape) have been
investigated, most of the methods cannot handle complex intersections [8–12]. These
shapes lack roundabouts, bridges, multilanes, safety islands, etc. LIDAR sensors provide
raw 3D spatial information and can be organized as single-layer LIDAR (also referred as
2D LIDAR or laser scanner) and multilayer, or 3D LIDAR. In [17,18], a downward looking
2D LIDAR sensor scans the scene with 2D point array covering a 90◦ field-of-view. Their
method extracts line segments from the raw data of the sensor in polar coordinates and
the line segments are classified. [17] is a great example of this classical approach, which
is also featured in the DARPA Urban Challenge. The limit in these solutions is the very
narrow field of view compared to a 3D LIDAR. Fusion-based methods, which incorporate
LIDAR/ultrasonic/camera/stereo camera [19–22], generally provide accurate outputs
owing to the multiple sensor inputs. The limit of these techniques is their real-time perfor-
mance: [20] mentions processing-time optimization as future work while [21] claims that
ultrasonic fusion on an NVIDIA Xavier board is slower that the input; the method in [22]
can work in real time with a high-end NVIDIA RTX 3090 GPU. Although lane detection
is a related subject [23–25], different solutions may be applied for road map generation.
These solutions aim for lane-level map generation instead of immediate lane keeping
during autonomous driving. There are also solely 3D LIDAR-based solutions [26–29]. They
usually work in a non-deterministic way, which is not necessarily a drawback. [27] uses
random sample consensus (RANSAC) to filter for candidate point extraction and seed
point extraction. [28] also uses RANSAC to estimate the quadratic polynomial model from
candidate points and iterates continuously until the fitted model satisfies as many points
as possible. [29] also uses heuristics; in order to estimate the ground plane, a sequential
quadratic programming (SQP) optimization is applied. This solution also uses reflectance
data and requires the sensor to be calibrated.

Some of the aforementioned methods have recognition issues. For example, in [8],
determining the distance and angular difference between two adjacent points in the hori-
zontal plane without elevation is challenging. In [9], determining the threshold of wavelet
transformation can be also difficult, and may even provide false positive results. Moreover,
in [10], trajectory is one of the inputs, which narrows down the usage range. Most of the
methods discussed in [1–33] use LIDAR systems that spin at 10 Hz. This means a full



Sensors 2022, 22, 194 3 of 17

360◦ measurement is provided 10 times a second. The number of voxels can be calcu-
lated with respect to the horizontal angular resolution (typically 0.2◦–0.8◦, which means
1800–450 samples) and the vertical resolution (number of channels, typically 16–128). A 2D
LIDAR has no vertical resolution; it consists of only one channel. The working range of
the LIDAR is typically between 50 and 500 m. Our solution uses a 20 Hz frequency, 512 or
1028 vertical samples, and 64 horizontal channelled LIDAR, in 120 m range, and it is tested
on multiple versions of available LIDARs (see the Section 4).

To apply road and sidewalk detection to our local planner, we expect generality,
performance, real-time usage, lack of parameter sensitivity, and openness. Therefore,
we decided to design and implement a solution that is based on a single sensor and offers
robust results on roundabouts, multilanes, bridges, etc. The proposed method performs in
real time without FPGA acceleration on a moderate embedded ARM CPU.

3. The Proposed Solution

The proposed solution finds the sidewalk using three different methods. It is important
to mention that the output consists not only of the point clouds of the road and the separator
area but also a simplified vector that is easily handleable. This output is useful for other
algorithms, such as local path planners, because it is a more compact description of the
road. Compactness can be one of the key components of real-time performance.

As a model of the urban road and sidewalk environment, a distorted flat surface and a
slightly and unevenly elevated sidewalk can be imagined (see Figure 1). From a bird’s-eye
view, the road and the sidewalk could take many forms. The mentioned properties and
the simplified sensory data are illustrated in Figure 1. It is assumed that the LIDAR sensor
is over the road surface level. The model of the urban road and sidewalk environment is
displayed in Figure 1. The road is green, and the sidewalk is marked with red.

Figure 1. The figure displays the problem. The road is green, and the sidewalk is marked with
red. Two channelled measurements are displayed as dotted lines. Moreover, some artifacts such as
manholes and other unevenness are displayed.

The proposed solution is free and available publicly as source code, called urban_road_
filter. The input of our solution is a plain LIDAR stream, without a camera or any additional
sensor data. The output is a 3D voxel point cloud of the road and sidewalk along with a
2D polygon description of the road. The solution encompasses three methods of sidewalk
detection (star-shaped search method, X-zero, and Y-zero methods), a road detection
method, and a 2D polygon-based road extraction.



Sensors 2022, 22, 194 4 of 17

3.1. Sidewalk Detection

Sidewalk edge detection is the combination of star-shaped search, X-zero, and Z-zero
methods. All methods have the same purpose, but they work on a different principle. The
final result is a logical disjunction of these methods’ outputs. It is important to note that
the mentioned methods run in a parallel manner. False positive curb points may appear
behind the actual curb. Curb points are the boundary voxels between the curb and the
road. False positive curb points are created behind the curb, e.g., due to the similar 3D
characteristics of the voxels from various artifacts. The artifact can be for example a public
bench that stands out from the sidewalk the same way as the curb stands out from the
road. This results in false identification. The final polygon is created between the road and
first curb points, which means later curb points do not compromise the final result. This
phenomenon does not affect the method negatively, because the false positive voxels are
never on the road surface.

3.1.1. Star-Shaped Search Method

This method divides the point cloud into rectangular-shaped segments. The combina-
tion of these shapes resembles a star; this is where the name originates. From each segment
the possible sidewalk starting points are extracted, where the algorithm was created to not
be sensitive to the Z-coordinate-based height variations. This means in practice that this
algorithm would perform well even when a LIDAR is tilted with respect to the road surface
plane. The point cloud is treated in the cylindrical coordinate system (see Figure 2).

Figure 2. Star-shaped search method, the long rectangles (boxes) in circular layout represent the cut
out from the original LIDAR point cloud. On the right in the zoomed image, the red dots are the
sidewalk starting points.

Figure 3 represents the cut-out box (a rectangular cuboid) of the scanned points. The
vertices of the box are represented by 8 points P1,1; . . . ; 2,4. Its orientation and positioning
change iteratively with incremental rotation and translation. More precisely, for each βk
and k = 1, . . . , nk rotations, the box is translated along the ∆ direction by ni successive
increments. For an easier understanding of the proposed algorithm, Figure 3 illustrates
the plane of symmetry π used in Figure 4. Figure 4 shows a side view of the cut-out box,



Sensors 2022, 22, 194 5 of 17

i.e., the projection on plane π of the 2 boxes (Bk,2, Bk,3) and also the scanned points that are
selected by the mentioned 2 boxes.

Figure 3. A single rectangle cut out of the scanned points.

Figure 4. The graph’s side view concerning the points separation process and the pk,i,j points
parameter selected by the Bk,i box.

The proposed algorithm (see Figures 3–5) contain the following steps:
Step 1. The current box definition:
The box is defined by 8 points P1,1,, . . . , P2,4,. The geometric model of the iterated box,

which is rotated with angle βk around the Z axis and translated with the ci value on the
∆ axis (the box’s X axis), is:

Pk,i = RZ(βk) · DX(ci)P0 (1)



Sensors 2022, 22, 194 6 of 17

where the 8 points coordinates in their local coordinate system are:

P0 =


x0

1,1 x0
1,2 . . . x0

2,4

y0
1,1 y0

1,2 . . . y0
2,4

z0
1,1 z0

1,2 . . . z0
2,4

1 1 . . . 1

 (2)

The homogeneous translation transformed matrix is:

DX(ci) =


1 0 0 ci
0 1 0 0
0 0 1 0
0 0 0 1

 (3)

The homogeneous rotation transformed matrix is:

DX(ci) =


cos(βk) − sin(βk) 0 0

sin(βk) cos(βk) 0 0

0 0 1 0

0 0 0 1

 (4)

The coordinates of the 8 points in the global coordinate system, calculated after the
rotation around the Z axes and translation on the ∆ axes, are:

Pk,i =


xk,i

1,1 xk,i
1,2 . . . xk,i

2,4

yk,i
1,1 yk,i

1,2 . . . yk,i
2,4

zk,i
1,1 zk,i

1,2 . . . zk,i
2,4

1 1 . . . 1

 (5)

ci = i · ∆T βk = k · ∆R , i = 1, . . . , ni k = 1, . . . , nk (6)

where ∆T is the translation; ∆R is the rotation increment; ∆θ is the LIDAR angular increment,
an interval parameter.

Step 2. Inside points identification:

The set of scanned points set p =

 x
y
z

 witch are inside the Bk,i box are defined like:

Sk,i =
{

p
∣∣I(p, Bk,i) = 1

}
(7)

where the function to determine if a point is inside the Bk,i box is:

I(p, Bk,i) =

 1 i f V = 1
6

6
∑

r=1
Fr(p, Bk,i)

0 else
(8)



Sensors 2022, 22, 194 7 of 17

The ensemble of subfunctions used in determining if the points are inside the box is:

F1(p, Bk,i) =

∣∣∣det
([

Pk,i
1,1 − p Pk,i

1,2 − p Pk,i
1,3 − p

])∣∣∣+∣∣∣det
([

Pk,i
1,3 − p Pk,i

1,4 − p Pk,i
1,1 − p

])∣∣∣
F2(p, Bk,i) =

∣∣∣det
([

Pk,i
1,1 − p Pk,i

1,2 − p Pk,i
2,2 − p

])∣∣∣+∣∣∣det
([

Pk,i
2,2 − p Pk,i

2,4 − p Pk,i
1,1 − p

])∣∣∣
F6(p, Bk,i) =

∣∣∣det
([

Pk,i
2,1 − p Pk,i

2,2 − p Pk,i
2,3 − p

])∣∣∣+∣∣∣det
([

Pk,i
2,3 − p Pk,i

2,4 − p Pk,i
2,1 − p

])∣∣∣
Pk,i

1,1 =


xk,i

1,1

yk,i
1,1

zk,i
1,1



(9)

V = LlH; L, l, H the boxes dimension
Step 3. The ordered set of the inside points computation:
The ordered set has the same elements as Sk,i but also characterized by the distance ρ

−
Sk,i =

{
pk,i,j

∣∣∣pk,i,j ∈ Sk,i ∧ ρk,i,j−1 ≤ ρk,i,j ≤ ρk,i,j+1

}
(10)

where ρk,i,j is the distance of the scanned point pk,i,j on the Z axis, p =

 x
y
z

, and

ρ =
√

x2 + y2

Step 4. The relative high computation:
The set of the relative highs (the distance on the Z axis computed for the points that

are included in the ordered set)

Dk,i,j =

dk,i,j

∣∣∣∣∣∣ dk,i,j = abs
(

zk,i,j+1 − zk,i,j

)
∧ pk,i,j ∈

−
Sk,i ∧ pk,i,j =[

xk,i,j yk,i,j zk,i,j
]T

 (11)

−
dk,i =

1
mk.i

mk,i

∑
j=1

dk,i,j (12)

is the average distance between the ordered points inside the box

mk,i = card(Dk,i)

Step 5. Extracting the points of interest:

ΓS =

{
pk,i,j

∣∣∣∣abs
(−

dk,i − dk,i,j

)
≥ ε

}
(13)

The algorithm is represented in the block diagram of Figure 5.



Sensors 2022, 22, 194 8 of 17

Figure 5. The proposed algorithm (star-shaped search method).

The points of interest represent the inner edge of the sidewalk. As previously men-
tioned, in order to increase the robustness of the method, we combined this output with
the results computed with the X-zero and Z-zero.

3.1.2. X-Zero Method

The X-zero and Z-zero methods find the sidewalk eluding the X and the Z component
of the measurements. Both X-zero and Z-zero methods take the channel number of a voxel
into account, thus it is necessary for the LIDAR not to be parallel with respect to the road
surface plane. This is a known limitation of both mentioned algorithms, and thus of the
whole urban_road_filter method.

Step 1. Creation of the initial point set:
The X-zero method omits the X dimension and uses cylindrical coordinates instead

see Figure 6. The approach uses iterations through a ring (channel) and defines triangles
on the voxels (zi−1, zi, zi+1). The initial data are:

H = {zi|i = 1, . . . , n} (14)

where zi is the height of the measured point Pi.
Step 2. Sliding window definition:
The method uses a sliding window (Wi) in an iterative manner, see Figure 7. The

window is defined as follows:

Wi = {zi−1, zi, zi+1|zi,...,i+1 ∈ H, i = 2, n− 1} (15)



Sensors 2022, 22, 194 9 of 17

Figure 6. X-zero method, cylindrical coordinate system, single channel (ring).

The point Pi’s angular parameter is defined as:

A = {αi = f (zi−1, zi, zi+1)|zi−1,i,i+1 ∈Wi ∧ (zi−1〈zi〉zi+1), i = 2, n− 1} (16)

where:

f (zi−1, zi, zi+1) = cos−1
(

l2
i−1,i+l2

i,i+1−l2
i−1,i+1

2li−1,i li,i+1

)


li−1,i =
√
(zi − zi−1)

2 + ∆2

li,i+1 =
√
(zi − zi+1)

2 + ∆2

li−1,i+1 =
√
(zi+1 − zi−1)

2 + 4∆2

where ∆ = r · ∆θ is the linear increment; ∆θ is the LIDAR angular increment, an interval
parameter; r, is radius of the virtual cylinder on the surface on which are projected the
measure points, r is a parameter chosen, after practical trails.

Figure 7. X-zero method, visualization of voxel triangles.



Sensors 2022, 22, 194 10 of 17

Step 3. Extract the feature points:
A set ΓX = {α|α ∈ A ∧ α < αr} is the currently chosen data. f defines an angle and if

it is bigger than the cylinder_deg_x (αr) parameter, it is considered as a high point. Please
note that the parameters are listed in Section 3.3. The high point classification means that
the voxel is considered as a curb feature.

3.1.3. Z-Zero Method

The Z-zero method is loosely inspired by the spatial feature extraction proposed in [12].
The main difference in our method is that a sliding-window-based approach (5 + 5 voxels
by default) calculates the angles as a vector direction.

Step 1. Initial data for the feature extraction:
According to Figure 1 terminology, the angle αz0 can be defined as the angle between

two vectors in the sliding window. Here, x and y are the coordinates of the points and n
means the value specified as a parameter, which indicates the number of points on the curb
side. In supplement to the angles defined by the vector, the change of height is considered
to minimize false positive results. This is achieved by determining the one with the largest
altitude value of both vector points and comparing it with the starting point of the vectors.
If this meets the conditions, it is finally accepted as a sidewalk point. In the following
(Equation (17)), n means the total number of points, x, y the dimensions, va the road surface
approximated direction, and vb the curb-approximated direction.

va =
1
n ∗
[

n
∑

k=1
(xi−k − xi),

n
∑

k=1
(yi−k − yi)

]
vb = 1

n ∗
[

n
∑

k=1
(xi+k − xi),

n
∑

k=1
(yi+k − yi)

]
αz0

1 = cos−1
(

va∗vb
|va |∗|vb |

) (17)

Step 2. Horizontal and vertical continuity search:
As mentioned in [12], the Z-zero curb searching also relies on the definition of hori-

zontal continuity, vertical continuity, angle threshold, and elevation threshold. Horizontal
and vertical continuity examine whether the voxel has a large vertical or horizontal gap.
If the gap is big enough it is considered as a candidate curb voxel. This behaviour can be
adjusted by the curb_height parameter, listed in Section 3.3.

Step 3. Angle and elevation search:
Considering the two vectors in the sliding window, if a road surface voxel is examined,

the angles between these should be around 180◦ (see Figure 1, a2 angle). A threshold
angle comparison (defined by the cylinder_deg_z parameter, listed in Section 3.3) decides
whether the voxel is a curb point or not. Moreover, by default, a 5 cm elevation distance is
acceptable between the neighbouring voxels.

Step 4. Extract the feature points:
Similar to the X-zero method, the high point classification means that the voxel is

considered as a curb feature. This means that the list of curb voxels is added to the possible
curb voxel array, ΓZ.

As a final step, the disjunct union of ΓS (from the star-shaped method), Γx (from the
X-zero method), and ΓZ (from the Y-zero method) is formed. This may encounter some
false positive voxels, but the location of these never affects polygon-based representation.

3.2. Two-Dimensional Polygon-Based Road Representation

Along with the detection of the sidewalks, our algorithm also provides a polygon,
i.e., a vector output of the detected road. This is created to be in between the road voxels
and curb voxels. This output can be directly used by a local planner to design a feasible
local trajectory.

More precisely, the algorithm distinguishes two categories of road boundaries: the side-
walk including the obstacle-surrounded boundary (marked with a red stripe on Figure 8)



Sensors 2022, 22, 194 11 of 17

and the out-of-range boundary (marked with a green stripe on Figure 8). This comes
handy for a local planner who can process this kind of data. However, the local planner
expects to know what is a hard boundary that no trajectory should cross. However, if a
boundary appears due to out-of-range sensor data, a local planner can plan the trajectory
in that direction. To reduce the boundary polygon quantity Douglas and Peucker’s [30,31]
algorithm was used.

Figure 8. An example scenario explaining the 2D polygon road. The left image is not involved in the
algorithm, it just helps to understand the first half of the scene better.

3.3. Parameter Settings

There are several parameters that may be used to fine-tune the solution, although
even the default values produce adequate results. In the following, the parameters listed
in Table 1 are introduced. An important parameter is the LIDAR topic and its frame
name. It is important to know that the algorithm works with multiple methods at the
same time. The size of the examined area can be set with multiple parameters. The region
of interest (ROI) can be set by the x_direction parameter and with the minimum and
maximum x, y, and z parameters. The x_direction parameter may have three different
values: negative, positive, and both, indicating whether the region of interest is behind,
in front of, or bidirectional related to the LIDAR along the x axis. The parameters called
cylinder_deg_x, cylinder_deg_z, and sector_deg are the parameters in degrees for the
X-zero, Z-zero, and star-shaped methods, respectively. These parameters can be set in a
range of 0–180 degrees, and they were introduced in Sections 3.1.2 and 3.1.3. The star-
shaped method uses adaptive edge detection to find the points belonging to the curb. To
tune this method, the kdev dispersion and kdiv distance coefficients need to be set. If the
algorithm is used in a road where there are many potholes or failures, these parameters
should be small. Correspondingly, if it is used in a high-quality road the kdev and kdiv
parameters should be high.



Sensors 2022, 22, 194 12 of 17

Table 1. The parameter list of the urban road filter.

Param Name Function Type (Interval)/Default

fixed_frame The fixed frame from the transform
list in ROS. String String

topic_name The name of the LIDAR topic. String String

x_zero_method A flag indicating whether the X-zero
method is enabled. Bool (True-False)/True

z_zero_method A flag indicating whether the Z-zero
method is enabled. Bool (True-False)/True

star_shaped_method A flag indicating whether the
star-shaped method is enabled. Bool (True-False)/True

blind_spots Filtering blind spots. Bool (True-False)/True

x_direction Filtering x direction. Positive means
in front of the LIDAR. Both/ positive/negative Both

interval LIDAR’s vertical resolution. Double (0–10)/0.18

curb_height Estimated minimum height of the
curb (m). Double (0–10)/0.05

curb_points Estimated number of points on the
curb (pcs). Int (1–30)/5

beam_zone Width of the beam zone (deg). Double (10–100)/30

cylinder_deg_x
The included angle of the examined

triangle (three points) (deg) in
x_zero_method.

Double (0–180)/150

cylinder_deg_z
The included angle of the examined

triangle (two vectors) (deg) in
z_zero_method.

Double (0–180)/140

sector_deg Radial threshold (deg) in
star_shaped_method. Double (0–180)/50

min_x,max_x,min_y,
max_y,min_z,max_z Size of the examined area x, y, z (m). Double (−200–200)/30

dmin_param Minimum number of points for
dispersion. Int (3–30)/10

kdev_param Dispersion coefficient Double (0.5–5)/1.1225

kdist_param Distance coefficient. Double (0.4–10)/2

4. Results

To evaluate the proposed method, broad real-time and log-file-based analysis and
experiments were carried out. Our real-time tests were carried out at the ZalaZONE proving
ground [32,33]. This facility has an extensive Smart City test field, which is designed to
have the most significant properties of a traditional urban area. In this area, the dimensional
drawings of the facility and drone images are available. With this additional information,
we were able to elaborate our results even more accurately.

In Figure 9, three images are presented to explain our results more visually. The first
image shows the road with green voxels and the sidewalk with red voxels. Although
the false positive sidewalk points are visible, they do not affect the overall performance.
The results were collected at 20 Hz and a 30 km/h speed. In addition, the exact RTK GPS
location is associated with the LIDAR data, to get a more understandable result. The second
image in Figure 9 shows an overlay of the drone image and our results, while the third
image only shows the proving ground from above.



Sensors 2022, 22, 194 13 of 17

Figure 9. On the left side, the result is visible: road (green) and the sidewalk (red). In the middle,
a mixture of the measurement and a drone image is displayed. On the right only the drone image is
visible (location: Zalaegerszeg, Hungary, ZalaZONE).

We collected a vast dataset at our university campus; in-vehicle tests were carried out
there too (Figure 10). A part of these data is publicly available at the same repository as
the code. The in-vehicle test was carried out on a single embedded controller (NVIDIA
Jetson AGX Xavier) and the performance of the method was according to our expectations.
The algorithm can perform at 20 Hz, which is the same frequency at which the LIDAR
sensor provides its raw data. The Jetson AGX Xavier has an eight-core ARM architecture,
64-bit Carmel CPU which has a 2.26 GHz clock speed. During the in-vehicle tests, we
used the Ubuntu 18.04 operating system, which is a common Linux distribution. During
the log-file-based analysis, we observed that the solution ran up to 2× faster than real
time, which meant 40 Hz in our case. In this case, an Intel Core i9 16-core x64 architecture
i9-7960X CPU was used at a 2.80 GHz clock speed. During the log-file-based analysis,
a Windows 11 machine with WSL was used.

To obtain a qualitative estimation of our method, we used [12] as a basis for the
extensive comparison of similar algorithms. As an example of outcome, our results (left)
compared with the results presented in [7] are displayed in Figure 11.

Figure 10. In-vehicle test of the method. On the (left) side, camera information is shown. On the
(right) side, LIDAR 3D data are visible where the road (green) and sidewalk (red) are highlighted.
The voxel scale is LIDAR intensity-based (location: University Campus, Győr, Hungary).

We used another metric presented in [26] to quantify our results. To evaluate the
algorithm, a high-end processor i9-77940X at 3.10 GHz was used and 16 GB RAM. On this
architecture, the core of the algorithms, without the data acquisition and publication, was
able to run 0.014 s on average, which means more than 70 Hz (see Figure 12). On a slightly
slower CPU (i9-7960X at 2.80 GHz) but together with the data acquisition and publishing,
it was still over 40 Hz. We calculated the running time of the algorithm proposed in the
second part of the experiment, as shown in Figure 12. To compare our results to state-of-the



Sensors 2022, 22, 194 14 of 17

art performance, in [26] the average running time was 0.036 s, this result was achieved on
an older CPU (i7-4790) and the results were together with the data acquisition step. We are
confident to say that both [26] and our method can perform in real-time.

Figure 11. Results comparing our method (left) with the plane_fit_ground_filter (right) [7].

Figure 12. Results of the proposed approach (computation time).

To evaluate the proposed method and verify if it can meet the real-time requirements,
we conducted quantitative experiments. For this purpose, we chose the ZalaZONE proving
ground [32,33], which has urban roads without traffic. Figure 12 shows an example scenario
where we drove for 75 s and recorded the LIDAR data at 20 Hz. We used the Ouster OS1
64 channel LIDAR with a range of 120 m. The LIDAR was at the top of the vehicle, 1.54 m
above the ground without tilting. Our experiments validated that the proposed method can
perform in real time both on a PC with an i9 CPU and an NVIDIA AGX Xavier embedded
system. In this experiment, we used an RTK-INS (Novatel PwrPak7D GPS), which provides
accurate position data at 20 Hz.

5. Conclusions and Future Work

At the beginning of this project, our goal was to identify roads and curbs from LIDAR
data. After the literature review, it turned out that there was no complete fit for our
purposes. After extensive requirements listing, the work was elaborated by the authors and
the research assistants listed in the acknowledgement section. The paper introduced a novel
method for road and sidewalk detection. The sidewalk edge detection is the combination
of the introduced star-shaped search, X-zero, and Z-zero methods in 3D voxels. Moreover,
a polygon output was provided by the method, which can be directly used by a local
trajectory planner. We evaluated the method via extensive real-time field tests and off-line



Sensors 2022, 22, 194 15 of 17

analysis from previous measurements and public datasets. We compared the results of our
solution to previous ones.

The solution has limitations. Both the X-zero and the Z-zero algorithms require the
LIDAR to be in a parallel position with respect to the road surface. Although this is a
common sensor setup [34–39] and our vehicles were equipped this way, there are notable
cases where it is recommended to set it up differently. For instance, [38] has LIDAR systems
both straight (parallel to the road) and tilted. Furthermore, [40] only uses a tilted LIDAR,
so as an example, our solution is unsuitable for this sensor setup.

A new type of LIDAR, called solid-state technology is getting higher interest in the sci-
entific community [41,42]. Although these sensors have not yet been fully commercialized,
they promise a higher operational life and low power. They also produce structured 3D
information but are organized differently. As a further limitation, the proposed method
does not support this technology. The 3D data from the solid-state technology are not in the
classical channel-based organization, thus our method cannot calculate the channel-based
sliding window, on which the later steps rely. As mentioned, there are several limitations
regarding our method. In addition, concatenating two traditional spinning LIDAR data
produces a similar result. Concatenating multiple LIDAR streams is quite common, thus
this is a more serious limitation. The concatenated LIDAR data from the method point
of view resemble the solid-state data. The current method is not able to identify classic
channel information.

Our approach is designed for autonomous vehicles; as future work, it could be ex-
tended to environmental monitoring [43] or map generation [27]. Additional future work
may consist of overcoming the mentioned limitations. Similar to most software, the source
code is subject to future developments. Thus, we have shared the necessary documentation,
guidelines, and code of conduct. This also means that the code, dataset to test, and videos
to understand are shared publicly at https://github.com/jkk-research/urban_road_filter
(accessed on 22 December 2021).

Author Contributions: Conceptualization, C.P. and E.H.; methodology, E.H.; software, M.U. and
E.H.; validation, M.U.; formal analysis, C.P.; resources, E.H. and M.U.; data curation, M.U.; writing—
original draft preparation, C.P.; writing—review and editing, C.P.; visualization, E.H.; supervision,
C.P.; project administration, E.H.; funding acquisition, E.H. All authors have read and agreed to the
published version of the manuscript.

Funding: The research presented in this paper was funded by the “Thematic Excellence Program—
National Challenges Subprogram—Establishment of the Center of Excellence for Autonomous Trans-
port Systems at Széchenyi István University (TKP2020-NKA-14)” project.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Source code and data available on https://github.com/jkk-research/
urban_road_filter (accessed on 22 December 2021).

Acknowledgments: We thank the undergraduates who also participated in the early stage of this
project: Bence Patai and László Csaplár.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nan, Z.; Wei, P.; Xu, L.; Zheng, N. Efficient Lane Boundary Detection with Spatial-Temporal Knowledge Filtering. Sensors 2016,

16, 1276. [CrossRef] [PubMed]
2. Pereira, V.; Tamura, S.; Hayamizu, S.; Fukai, H. Semantic Segmentation of Paved Road and Pothole Image Using U-Net

Architecture. In Proceedings of the International Conference of Advanced Informatics: Concepts, Theory and Applications
(ICAICTA), Yogyakarta, Indonesia, 20–21 September 2019; pp. 1–4.

3. Lyu, X.H.Y. Road Segmentation Using CNN with GRU. arXiv 2018, arXiv:1804.05164.
4. Mohammed, A.S.; Amamou, A.; Ayevide, F.K.; Kelouwani, S.; Agbossou, K.; Zioui, N. The Perception System of Intelligent

Ground Vehicles in All Weather Conditions: A Systematic Literature Review. Sensors 2020, 20, 6532. [CrossRef] [PubMed]

https://github.com/jkk-research/urban_road_filter
https://github.com/jkk-research/urban_road_filter
https://github.com/jkk-research/urban_road_filter
http://doi.org/10.3390/s16081276
http://www.ncbi.nlm.nih.gov/pubmed/27529248
http://doi.org/10.3390/s20226532
http://www.ncbi.nlm.nih.gov/pubmed/33203155


Sensors 2022, 22, 194 16 of 17

5. Pham, T. Semantic Road Segmentation using Deep Learning. In Proceedings of the Applying New Technology in Green Buildings
(ATiGB), Da Nang, Vietnam, 12–13 March 2021.

6. Zermas, D.; Izzat, I.; Papanikolopoulos, N. Fast Segmentation of 3D Point Clouds: A Paradigm on LiDAR Data for Autonomous
Vehicle Applications. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Singapore,
29 May–3 June 2017.

7. Himmelsbach, M.; Hundelshausen, F.V.; Wuensche, H.-J. Fast segmentation of 3D point clouds for ground vehicles. In Proceedings
of the IEEE Intelligent Vehicles Symposium, La Jolla, CA, USA, 21–24 June 2010.

8. Kang, Y.; Roh, C.; Suh, S.-B.; Song, B. Boundary Detection Using Multiple Kalman Filters. IEEE Trans. Ind. Electron. 2012,
59, 4360–4368. [CrossRef]

9. Peterson, K.; Ziglar, J.; Rybski, P.E. Fast Feature Detection and Stochastic Parameter Estimation of Road. In Proceedings of the
International Conference on Intelligent Robots and Systems, IROS IEEE/RSJ, Nice, France, 22–26 September 2008.

10. Zai, D.; Li, J.; Guo, Y.; Cheng, M.; Lin, Y.; Luo, H.; Wang, C. 3-D Road Boundary Extraction From Mobile Laser Scanning Data via
Supervoxels and Graph Cuts. IEEE Trans. Intell. Transp. Syst. 2018, 19, 802–813. [CrossRef]

11. Yang, B.; Fang, L.; Li, J. Semi-automated extraction and delineation of 3D roads of street scene. ISPRS J. Photogramm. Remote Sens.
2013, 79, 80–93. [CrossRef]

12. Zhang, Y.; Wang, J.; Wang, X.; Dolan, J.M. Road-Segmentation-Based Curb Detection Method for Self-Driving via a 3D-LiDAR
Sensor. IEEE Trans. Intell. Transp. Syst. 2018, 19, 3981–3991. [CrossRef]

13. Lyu, Y.; Bai, L.; Huang, X. Real-Time Road Segmentation Using LiDAR Data Processing on FPGA. In Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018.

14. MiliotoIgnacio, A.; Vizzo, V.; Behley, J.; Stachniss, C. RangeNet++: Fast and Accurate LiDAR Semantic Segmentation. In Proceed-
ings of the International Conference on Intelligent Robots and Systems (IROS), IEEE/RSJ, Macau, China, 3–8 November 2019.

15. Zhang, Y.; Zhou, Z.; David, P.; Yue, X.; Xi, Z.; Gong, B.; Foroosh, H. PolarNet: An Improved Grid Representation for Online
LiDAR Point Clouds Semantic Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020.

16. Massa, F.; Bonamini, L.; Settimi, A.; Pallottino, L.; Caporale, D. LiDAR-Based GNSS Denied Localization for Autonomous Racing
Cars. Sensors 2020, 20, 3992. [CrossRef]

17. Zhang, W. LIDAR-based road and road-edge detection. In Proceedings of the IEEE Intelligent Vehicles Symposium, San Diego,
CA, USA, 21–24 June 2010; pp. 845–848.

18. Han, J.; Kim, D.; Lee, M.; Sunwoo, M. Enhanced Road Boundary and Obstacle Detection using a Downward-Looking LIDAR
sensor. IEEE Trans. Veh. Technol. 2012, 61, 971–985. [CrossRef]

19. Yuan, X.; Zhao, C.-X.; Zhang, H.-F. Road detection and corner extraction using high-definition Lidar. Inf. Technol. J. 2010,
9, 1022–1030. [CrossRef]

20. Fernandes, R.; Premebida, C.; Peixoto, P.; Wolf, D.; Nunes, U. Road detection using high resolution LIDAR. In Proceedings of the
IEEE Vehicle Power and Propulsion Conference, Coimbra, Portugal, 27–30 October 2014.

21. Baek, I.; Tai, T.; Bhat, M.; Ellango, K.; Shah, T.; Fuseini, K.; Rajkumar, R. CurbScan: Curb Detection and Tracking Using Multi-
Sensor Fusion. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC),
Rhodes, Greece, 20–23 September 2020; 2020.

22. Yu, B.; Lee, D.; Lee, J.-S.; Kee, S.-C. Free Space Detection Using Camera-LiDAR Fusion in a Bird’s Eye View Plane. Sensors 2021,
21, 7623. [CrossRef] [PubMed]

23. Jung, J.; Bae, S.H. Real-Time Road Lane Detection in Urban Areas Using LiDAR Data. Electronics 2018, 7, 276. [CrossRef]
24. Joshi, A.; James, M.R. Generation of accurate lane-level maps from coarse prior maps and lidar. IEEE Intell. Transp. Syst. Mag.

2015, 7, 19–29. [CrossRef]
25. Sivaraman, S.; Trivedi, M.M. Dynamic probabilistic drivability maps for lane change and merge driver assistance. IEEE Trans.

Intell. Transp. Syst. 2014, 15, 2063–2073. [CrossRef]
26. Sun, P.; Zhao, X.; Xu, Z.; Wang, R.; Min, H. A 3D LiDAR Data-Based Dedicated Road Boundary Detection Algorithm for

Autonomous Vehicles. IEEE Access 2019, 7, 29623–29638. [CrossRef]
27. Guojun, W.; Wu, J.; Rui, H.; Tian, B. Speed and Accuracy Tradeoff for LiDAR Data Based Road Boundary Detection. IEEE/CAA J.

Autom. Sin. 2021, 8, 1210–1220.
28. Guojun, W.; Wu, J.; Rui, H.; Yang, S. A Point Cloud-Based Robust Road Curb Detection and Tracking Method. IEEE Access 2019,

7, 24611–24625.
29. Guerrero, J.A.; Chapuis, R.; Aufrère, R.; Malaterre, L.; Marmoiton, F. Road Curb Detection using Traversable Ground Segmentation:

Application to Autonomous Shuttle Vehicle Navigation. In Proceedings of the 2020 16th International Conference on Control,
Automation, Robotics and Vision (ICARCV), Shenzhen, China, 13–15 December 2020; pp. 266–272.

30. Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep Learning for 3D Point Clouds: A Survey. IEEE Trans. Pattern
Anal. Mach. Intell. 2020, 43, 12. [CrossRef]

31. Douglas, D.H.; Peucker, T.K. Algorithms for the reduction of the number of points required to represent a digitized line or its
caricature. Cartogr. Int. J. Geogr. Inf. Geovisualization 1973, 12, 112–122. [CrossRef]

32. Hershberger, J.; Snoeyink, J. An O (n log n) implementation of the Douglas-Peucker algorithm for line simplification. In
Proceedings of the Tenth Annual Symposium on Computational Geometry, New York, NY, USA, 6–8 June 1994.

http://doi.org/10.1109/TIE.2012.2185013
http://doi.org/10.1109/TITS.2017.2701403
http://doi.org/10.1016/j.isprsjprs.2013.01.016
http://doi.org/10.1109/TITS.2018.2789462
http://doi.org/10.3390/s20143992
http://doi.org/10.1109/TVT.2012.2182785
http://doi.org/10.3923/itj.2010.1022.1030
http://doi.org/10.3390/s21227623
http://www.ncbi.nlm.nih.gov/pubmed/34833698
http://doi.org/10.3390/electronics7110276
http://doi.org/10.1109/MITS.2014.2364081
http://doi.org/10.1109/TITS.2014.2309055
http://doi.org/10.1109/ACCESS.2019.2902170
http://doi.org/10.1109/TPAMI.2020.3005434
http://doi.org/10.3138/FM57-6770-U75U-7727


Sensors 2022, 22, 194 17 of 17

33. Szalay, Z.; Hamar, Z.; Simon, P. A Multi-layer Autonomous Vehicle and Simulation Validation Ecosystem Axis: ZalaZONE. Intell.
Auton. Syst. Adv. Intell. Syst. Comput. 2019, 867, 954–963.

34. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets Robotics: The KITTI Dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.
[CrossRef]

35. Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke, S.; Gall, J.; Stachniss, C. Towards 3D LiDAR-based semantic scene
understanding of 3D point cloud sequences: The SemanticKITTI Dataset. Int. J. Robot. Res. 2021, 40, 959–967. [CrossRef]

36. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. Nuscenes:
A multimodal dataset for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Seattle, WA, USA, 5 August 2020; pp. 11621–11631.

37. Burnett, K.; Samavi, S.; Waslander, S.; Barfoot, T.; Schoellig, A. aUToTrack: A Lightweight Object Detection and Tracking System
for the SAE AutoDrive Challenge. In Proceedings of the 2019 16th Conference on Computer and Robot Vision (CRV), Kingston,
QC, Canada, 29–31 May 2019.

38. Agarwal, S.; Vora, A.; Pandey, G.; Williams, W.; Kourous, H.; McBride, J. Ford Multi-AV Seasonal Dataset. Int. J. Robot. Res. 2020,
39, 1367–1376. [CrossRef]

39. Wang, Z.; Ding, S.; Li, Y.; Fenn, J.; Roychowdhury, S.; Wallin, A.; Martin, L.; Ryvola, S.; Sapiro, G.; Qiu, Q. Cirrus: A Long-range
Bi-pattern LiDAR Dataset. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an,
China, 30 May–5 June 2021.

40. Geyer, J.; Kassahun, Y.; Mahmudi, M.; Ricou, X.; Durgesh, R.; Chung, A.S.; Hauswald, L.; Pham, V.H.; Mühlegg, M.; Dorn, S.; et al.
A2D2: Audi Autonomous Driving Dataset. arXiv 2020, arXiv:2004.06320v1.

41. Zhao, F.; Jiang, H.; Liu, Z. Recent development of automotive LiDAR technology, industry and trends. In Proceedings of the SPIE
11179, Eleventh International Conference on Digital Image Processing (ICDIP 2019), Guangzhou, China, 14 August 2019.

42. Aijazi, A.K.; Malaterre, L.; Trassoudaine, L.; Checchin, P. Systematic Evaluation and Characterization of 3D Solid State LIDAR
Sensors for Autonomous Ground Vehicles. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B1, 199–203. [CrossRef]

43. Ding, Y.; Hou, H.; Huang, Q.; Liu, J.; Hussain, S.; Qiao, G. Enhanced Performance of Fabry-Perot Tunable Filter by Groove
Geometry Design of Double Folded Cantilever. J. Nanoelectron. Optoelectron. 2020, 15, 687–692. [CrossRef]

http://doi.org/10.1177/0278364913491297
http://doi.org/10.1177/02783649211006735
http://doi.org/10.1177/0278364920961451
http://doi.org/10.5194/isprs-archives-XLIII-B1-2020-199-2020
http://doi.org/10.1166/jno.2020.2830

	Introduction 
	Related Work 
	The Proposed Solution 
	Sidewalk Detection 
	Star-Shaped Search Method 
	X-Zero Method 
	Z-Zero Method 

	Two-Dimensional Polygon-Based Road Representation 
	Parameter Settings 

	Results 
	Conclusions and Future Work 
	References

