
sensors

Article

Towards the Interpretation of Sound Measurements from
Smartphones Collected with Mobile Crowdsensing in the
Healthcare Domain: An Experiment with Android Devices

Robin Kraft 1,2,* , Manfred Reichert 1 and Rüdiger Pryss 3

����������
�������

Citation: Kraft, R.; Reichert, M.;

Pryss, R. Towards the Interpretation

of Sound Measurements from

Smartphones Collected with Mobile

Crowdsensing in the Healthcare

Domain: An Experiment with

Android Devices. Sensors 2022, 22,

170. https://doi.org/10.3390/

s22010170

Academic Editor: Annie Lanzolla

Received: 7 October 2021

Accepted: 23 December 2021

Published: 28 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Databases and Information Systems, Ulm University, 89081 Ulm, Germany;
manfred.reichert@uni-ulm.de

2 Department of Clinical Psychology and Psychotherapy, Ulm University, 89081 Ulm, Germany
3 Institute of Clinical Epidemiology and Biometry, University of Würzburg, 97078 Wurzburg, Germany;

ruediger.pryss@uni-wuerzburg.de
* Correspondence: robin.kraft@uni-ulm.de

Abstract: The ubiquity of mobile devices fosters the combined use of ecological momentary assess-
ments (EMA) and mobile crowdsensing (MCS) in the field of healthcare. This combination not only
allows researchers to collect ecologically valid data, but also to use smartphone sensors to capture
the context in which these data are collected. The TrackYourTinnitus (TYT) platform uses EMA to
track users’ individual subjective tinnitus perception and MCS to capture an objective environmental
sound level while the EMA questionnaire is filled in. However, the sound level data cannot be used
directly among the different smartphones used by TYT users, since uncalibrated raw values are
stored. This work describes an approach towards making these values comparable. In the described
setting, the evaluation of sensor measurements from different smartphone users becomes increasingly
prevalent. Therefore, the shown approach can be also considered as a more general solution as it not
only shows how it helped to interpret TYT sound level data, but may also stimulate other researchers,
especially those who need to interpret sensor data in a similar setting. Altogether, the approach will
show that measuring sound levels with mobile devices is possible in healthcare scenarios, but there
are many challenges to ensuring that the measured values are interpretable.

Keywords: mHealth; crowdsensing; tinnitus; noise measurement; environmental sound

1. Introduction

Smart mobile devices (e.g., smartphones) are becoming increasingly ubiquitous. Their
capabilities allow the combined use of ecological momentary assessments (EMA) and
mobile crowdsensing (MCS) in the healthcare domain to not only collect qualitative lon-
gitudinal and ecologically valid data, but also to use sensors of smartphones as well as
connected external sensors (e.g., wearables) to capture the context in which these data
are collected [1]. For example, environmental data (e.g., noise [2,3]) can be measured
when a questionnaire is answered to correlate the questionnaire data with the environ-
mental data to gain new insights about patients. However, sensor measurements must be
accurate, comparable, and interpretable to provide meaningful information. Especially
for non-standardized smartphone sensors like the microphone (i.e., different manufactur-
ers, different mobile operating systems, different scales), it can be challenging to achieve
these properties.

The TrackYourTinnitus (TYT) mobile platform uses EMA and MCS to track a user’s
individual tinnitus. Tinnitus is the perception of an internal sound in the ears in the
absence of a corresponding external sound. As symptoms are subjective and vary over
time, TYT was created to monitor and evaluate the variability of these symptoms in the
daily life of tinnitus affected patients or interested users [4]. The platform has been in
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operation since 2014 and is composed of a registration and information website ( https:
//www.trackyourtinnitus.org/, accessed on 1 October 2021), a central backend for data
storage, and a mobile application available for both Android and iOS. The mobile apps
assess users’ individual tinnitus perceptions (e.g., tinnitus loudness and distress) by asking
them to complete tinnitus EMA questionnaires at different times of the day [5]. In addition,
the environmental sound level is captured in parallel with the completion of the daily
questionnaire [5]. The detailed process of the TYT app is described in [1], whereas the
underlying data set (i.e., structure and insights to the collected data) is described in [6].
The overall objective of this work is to investigate the correlations between environmental
sound level and reported tinnitus symptoms. More specifically, it should be examined
whether the environmental sound level has an effect on tinnitus. If the sound levels can be
correlated to questionnaire-collected data, new insights might be unveiled as the sound
level data can be considered more objective than data from completed questionnaires alone
(e.g., to allow predictions on tinnitus loudness based on the sound data). In this context,
further note that, for tinnitus and many other diseases and disorders, longitudinal studies
that are able to collect ecologically valid data for such a long time are still very rare. In
addition, the collection of objective data succh as the sound level is even more scarce.
Since TYT has been running for more than half a decade, and not all circumstances of the
collection procedure were clear to the developers beforehand, it is now of great interest
to make the collected amount of sound levels interpretable from a medical perspective.
Therefore, the experiment at hand is important for TYT, but the results and lessons learned
may be of much greater value for the healthcare domain in general.

However, the data available in the TYT database [6] do not contain calibrated sound
pressure level (SPL) or weighted decibel (e.g., dB(A)) values, but rather relative amplitude
(Android) or uncalibrated decibel (iOS) values as retrieved from the mobile system APIs.
This fact prevents a direct comparison of these values and therefore a meaningful interpre-
tation regarding the correlation with tinnitus symptoms. A preceding calibration of the
mobile devices and storing respective dBSPL, dB(A) or dB(C) values would circumvent this
issue. To encounter that sound sensor values measured by a smartphone require further
considerations in healthcare scenarios is also recognized by other works than TYT [7]. From
a general viewpoint, sensor measurements collected by a modern smartphone for health-
care purposes require many considerations before collected sensor data can be actually
evaluated. In [8], for example, challenges are discussed in the context of fall detection. One
of the challenges discussed by the authors of [8] also has implications for the data collected
by TYT, namely the usability when collecting sensor data. If a user has his or her smart-
phone in the pocket, collected sensor values may not be usable. Consequently, works can
be found that try to mitigate such challenges on a more generic level [9]. However, the data
in the TYT database were collected for more than six years with more than 100,000 entries,
and the respective mobile apps used to collect these values cannot be changed retroactively
to counteract the described issues. Since no other works could be found that helped to
analyze these pre-existing collected sound pressure levels, the following requirements were
established for the experiment shown in the work at hand:

• Identification of an experimental setting that can be used to learn more about the
interpretation possibilities of the collected TYT sound level values.

• In addition to the latter point, in the best case, the experiment should be appropriate
to enable us to compare all sound level values across the different smartphone devices
from different manufacturers and different mobile operating systems.

• Conduction of the experiment without the use of an expensive sound laboratory, with
the goal to foster and facilitate the overall reproducibility.

Based on these requirements, different scenarios have been discussed. In the end, the
following approach (i.e., list of decisions for the experiment) was conceived to make the
described values usable and comparable:

https://www.trackyourtinnitus.org/
https://www.trackyourtinnitus.org/
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1. The TYT database was analyzed to identify the mobile device models that contributed
the most environmental sound measurement data.

2. The analysis of the database showed that more detailed device information is available
for Android devices. For this reason, it was decided to use Android devices for
the experiment.

3. A sample of the identified device models was selected and acquired (i.e., we purchased
these devices for the experiment).

4. A new mobile application was developed that mimics the behavior of the TYT app
with respect to the sound measurement. More specifically, the app was implemented
with the specific focus on the sound measurement but using the same software
functions as TYT (i.e., by copying the relevant source code fragments from the origi-
nal app).

5. The selected device models were equipped with this mobile application.
6. For the evaluation of the smartphone devices equipped with the app, a sound signal

was generated, for which the volume was adjusted to different sound levels using
a professional calibrated sound level meter (SLM). Based on this setting, the values
captured by the mobile app on the different mobile devices were recorded.

7. Finally, the results were used to derive equations for the different device models that,
in turn, can be used to transform the measurement data in the database into (partially)
comparable dB(C) values.

How these steps were carried out in practice and what results were achieved are
discussed in the following sections. In Section 2, a detailed discussion of related works
will be presented. Section 3 presents the experiment in detail, while Section 4 presents its
results. A discussion of the results with respect to limitations and practical relevance will
be provided in Section 5. Section 6 closes our work with a summary and an outlook for
future work.

2. Related Work

Measuring sound levels with smartphones has been a topic of research for some time.
There are both scientific and commercial implementations of apps that perform sound
measurements. In addition, studies evaluating the accuracy and precision of these apps
can be found in the literature. Moreover, the ability of smartphones to perform sound level
measurements in the environment as well as their calibration has been investigated and
discussed in a thorough manner. Finally, there are works that deal with large data sets of
sound levels measured with smartphones.

NoiseMap [10] is an Android app that performs geo-referenced sound measurements
and sends these data to an open urban sensing platform following a participatory sensing
approach to create real-time noise maps and data graphs. The incoming sound signal is
sampled and first translated to a relative dB full scale (dBFS) value and subsequently to a
dBSPL value by adding a constant calibration value. A built-in calibration tool can be used
to determine this value using a constant pink noise [10]. The iOS app SoundLog [11] was
developed by the Australian National Acoustic Laboratories (NAL) with the aim to pro-
vide a personal noise dosimeter. The app is capable of measuring A-weighted equivalent
continuous sound levels (LAeq), C-weighted peak sound pressure levels (LCpk), as well as
other values for different sampling periods [11]. Ambiciti [12] is a mobile app developed
for both Android and iOS that utilizes mobile crowdsensing to enable urban noise moni-
toring. The app performs automatic background noise measurements in dB(A) using the
microphone and the user’s location. In addition, a calibration feature is provided [12]. The
accuracy of the app has been evaluated and found to be within ±1.2 dB(A) [13]. The City
Soundscape [14] mobile app is used as part of a noise monitoring platform in the context of
acoustic urban planning in smart cities. The app mimics the user interface of a professional
SLM and is able to measure dBSPL and equivalent continuous sound level (Leq) values [14].
Furthermore, there are numerous apps implementing sound measurements available in the
Google Play Store (e.g., refs. [15–17]) and the Apple App Store (e.g., refs. [18–20]). However, in
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the context of environmental and occupational noise monitoring, for most of these apps
there is no information available on the algorithms used as well as no systematic and
standardized evaluation of their quality and accuracy, which is a common issue in the
field of mHealth apps [21]. There are various studies evaluating the accuracy of existing
apps [22–29]. These studies were thereby either conducted in controlled laboratory en-
vironments [22–25,27–29] and used pink noise [23,24,28,29], white noise [25,27–29], 1/3
octave band noise [22], or representative audio samples [29] to simulate sound sources with
different sound levels, or were performed in real-world field environments [26,28]. Results
indicate that some sound measurement smartphone apps may be considered accurate and
reliable to a certain degree (±1 dB(A) or ±2 dB(A) respectively), but most of the apps
cannot be used as reliable tool to assess the environmental sound [23,25]. In general, iOS
apps performed better than Android apps, which can be attributed to the fact that Android
devices are built by several different manufacturers and there is a lack of conformity of
microphones and other audio components [23,25]. It has been shown that accuracy can
be improved if the smartphone apps are calibrated before the measurements [27]. Fur-
thermore, it has been shown that the use of an external calibrated microphone can further
increase the accuracy and precision of sound measurements compared to measurements
using internal smartphone microphones [30].

Moreover, the ability of smartphones to perform environmental sound level mea-
surements in general has been extensively discussed in the literature [31–34]. In [32], the
sound capture and processing procedure when using smartphones for environmental noise
measurements is investigated by analyzing the impact and accuracy of different algorithms,
time periods, and sampling strategies for noise calculation. The results indicate that, with
the correct settings, it is possible to measure noise levels in the range of 35–95 dB(A), with
an accuracy of ±2 dB(A). Other studies have shown that an adequate sound level meter
smartphone app that is used together with an external microphone can achieve compliance
with most of the requirements of Class 2 of the IEC 61672/ANSI S1.4-2014 standard for
periodic testing [33], as well as full compliance for directional response in the horizontal
plane [34]. The authors of [31] discuss the use of smartphones in the context of urban noise
pollution and present a field-study evaluating the relevancy and accuracy in this context.
The results indicate that smartphones can be used as useful noise measurement devices
with an accuracy of ±3 dB(A) if careful review of the collected data is undertaken.

Furthermore, the calibration of smartphones for sound measurements and different
approaches in this regard have been discussed in this context [35–39]. In [35], a labora-
tory calibration method for noise measurement smartphone apps is presented based on
frequency response linearization and an A-weighted sound level correction. The authors
of [36] introduce a calibration method that does not require user interaction and is based
on a node-based calibration utilizing a linear model and a common indoor quiet noise
base. Slow-start issues of this approach are mitigated with the help of a crowdsourcing-
based calibration. A cross-calibration method for participatory sensor networks based
on outlier detection, crowd sensors-based correction, fixed sensors-based correction, and
day–evening–night noise level (Lden) estimation is proposed by [37]. In [38], an averaging
method for the calibration of a smartphone microphone against a reference microphone in
terms of sound pressure level and frequency spectrum measurements is presented. It is
shown that the method can be used to calibrate a smartphone using another smartphone
calibrated using the same method. Finally, the authors of [39] propose a calibration method
for smartphones that does not require specific equipment or knowledge of the user by
utilizing the low variability of the average noise emission of vehicles.

Finally, works that deal with large data sets of sound levels measured with smart-
phones can be found in the literature. For example, interpolation [40,41] and simulation [41]
strategies for producing sound maps based on such smartphone measurements have been
investigated and discussed in this context.

However, to the best of our knowledge, the evaluation of an pre-existing large data set
of uncalibrated environmental sound level amplitude values measured with smartphone
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sensors has not yet been considered in the literature. In this context, the chosen approach
of making the data set of sound measurements comparable and interpretable by taking
a sample of devices from this data set, calibrating them, and deriving corresponding
equations is a novelty. Furthermore, none of the existing related works considers the
assessment of environmental sounds measured with smartphone sensors, or smartphone
sensor measurements in general, in the context of tinnitus.

3. Materials and Methods

First, the materials and methods used to perform the experiments in the scope of the
work at hand are described. In this context, the data set used for the initial analysis is
outlined. Furthermore, the selection of hardware and software components used for the
experiments is described. Finally, the experimental setup and procedure are delineated.

3.1. Data Set for the Analysis

The data set for the analysis has been extracted from the TYT database on 26 January
2020 and contains a total of 76,542 entries. The structure of the TYT data set has been
described in [6]. In this data set, 45,712 (59.72%) entries belong to an Android device, 30,607
belong to an iOS device (39.99%), and 223 of the entries contain no user agent information
(0.29%), as shown in Table 1. As described in [6], for every answer sheet that is collected
with the TYT mobile applications for Android and iOS, the user agent is extracted and
stored together with the answer data. For the Android version of the app, this user agent
contains, among other information, the constant Build.MODEL from the android.os.Build
API ( https://developer.android.com/reference/android/os/Build#MODEL, accessed on
1 October 2021), which can be used to uniquely identify the respective device model (see
Table 2). Note that for the iOS version of TYT, only the device type (iPhone/iPad) and the
OS version is stored in this variable. For this reason, it was decided to use Android devices
for the experiments in the scope of this work.

Table 1. Data set from the TYT database used for the analysis.

Description Entries %

Total 76,542 100

Android 45,712 59.72

iOS 30,607 39.99

No user agent information 223 0.29

Furthermore, a sound level measurement capturing the environmental noise level for
the first 15 s of the user completing the EMA questionnaire is performed and stored together
with the EMA answer data. For the Android version of the app, this value represents an
amplitude value retrieved by the Android MediaRecorder API [42] and averaged over the
measurement period. The Android source code that was used in the application to retrieve
this value is later analyzed and discussed in Section 4.2. In contrast, the iOS version stores
a relative dB value, which is not further analyzed in the scope of this work.

3.2. Hardware and Software Selection

The selection of the hardware as well as software used for the experiments is described
in the following. This includes the selection process used to decide on the mobile devices
to be investigated. In addition, other relevant hardware and software used to perform the
experiments themselves, namely the sound level meter, calibrator, speaker, tone generator,
and the mobile application for the sound measurement, are described.

 https://developer.android.com/reference/android/os/Build#MODEL
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3.2.1. Mobile Devices

In order to perform the experiments for an optimal subset of devices that allows
assumptions to be made about as many entries in the data set as possible, the data set
described in the previous section was analyzed from two different perspectives.

For the first analysis, the data set was analyzed on a per-device basis. To this end, the
following procedure was used:

1. For each entry, the device IDs of the device models (see Section 3.1) are extracted.
2. For each extracted device ID, the number of unique users and entries containing a

sound measurement are counted.
3. For each device ID, the device names are looked up and device IDs with the same

device name are summarized in a new row.

The 30 most used device models resulting from this process are shown in Table 2.
For the second analysis, the data set was analyzed on a per-user basis with regard to

the intended interpretation of the data. Thereby, users (and their respective device models
used) were selected based on the following conditions:

• There are more than 500 entries containing sound measurements for the user.
• The reported tinnitus loudness (see [6]) is fluctuating and appears plausible (e.g., not

only zero values and not always the same value).
• The sound measurement is fluctuating and appears plausible (e.g., not only zero

values and not always the same value).

Finally, the identified devices from both analyses were combined, resulting in eight
devices, as highlighted in Table 2. Since the selected device models had to be purchased
and not all devices were available at the time of starting the experiments, only four of the
eight identified devices could be used (highlighted in dark gray in Table 2). On top of these
four devices, a Google Pixel 2 was used simply because it was available to the experimenters.
This resulted in the five devices shown in Table 3. The Android version installed on each
device can be found in the table. These are the maximum versions that were officially
supported by the acquired devices at the time of the experiments.

3.2.2. Reference Sound Level Meter and Calibrator

As a reference sound level meter (SLM) for the performed sound measurements the
testo 815 by Testo SE & Co. KGaA is used. It allows measurements in the range of 32 to 130 dB
and a frequency range of 31.5 to 8000 Hz. The SLM supports frequency weightings A and
C. Its accuracy is ±0.5 dB under reference conditions at 94 dB and 1000 Hz in accordance
with Class 2 of IEC 60,942 [43], with a resolution of 0.1 dB. In order to avoid distortions due
to differences in temperature and air pressure, the sound level calibrator PeakTech 8010
by PeakTech Prüf- und Messtechnik GmbH was used to calibrate the SLM. The accuracy of
the calibrator is ±0.5 dB under reference conditions at 23 ◦C, 1013 mbar air pressure and
65% humidity.

3.2.3. Speaker and Tone Generator

As a sound source for the experiments, the speaker of the GigaWorks T20 Series II
by Creative connected to a notebook was used. The Online Tone Generator by Tomasz
P. Szynalski [44] was used on the notebook to generate a sine wave (pure tone) on
different frequencies.

3.2.4. Mobile Application for Sound Measurement

In order to mimic the behavior of the TYT app for the experiments, the corresponding
code for the sound measurement was extracted and integrated into a new sound mea-
surement mobile application. In addition, this allows to implement a more convenient
way of extracting the results, as well as more insights into various parameters of the
sound measurement. Equivalent to the TYT app, the sound measurement application
utilizes the previously described MediaRecorder.getMaxAmplitude() method to capture
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the “maximum absolute amplitude that was sampled since the last call to this method” [42]
every 500 ms for a total of 30 values (15 s). These values, in turn, are then averaged into a
single value. This averaging step was found to be erroneous in the original application,
as will be discussed in Section 4.2, and has been corrected for the application used in the
experiments. Furthermore, the first two values of the sound measurement have shown to
be erroneous for several smartphone models (see Section 4.2) and are therefore discarded
for the measurements. A screenshot of the sound measurement application is shown in
Figure 1. The user interface of the application allows to start the measurement and displays
the measured single amplitude values as well as the resulting average value after the
measurement is done. As shown in the screenshot, the first two values that are discarded
and excluded from the average are highlighted by displaying them as crossed out in red. In
addition to the features used for the experiments in the scope of this work, the application
allows further configurations for experimental purposes (e.g., the option to change the
audio encoding as well as to remove any audio compression) and offers the possibility to
perform a continuous measurement of the sound level.

Figure 1. Screenshot of the sound measurement mobile application used for the experiments. The
values displayed represent the individual amplitude values for each of the 500 ms periods as well as
the average amplitude over the entire 15 s measurement period (the large number in the center of
the screen).
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Table 2. The 30 most commonly used mobile device models, ordered descending by the number of
measurements for each device model in the TYT database. The devices that were selected to perform
the experiments are highlighted in gray. The devices in light gray were initially selected but could
not be used because we were not able to acquire them.

Device ID Device Name Number of Users Number of ∅ Measurements
Measurements per User

Moto G * 9 2113 235
Galaxy S5 * 38 1779 47

LGL34C LG Optimus Fuel 1 1548 1548
Galaxy S3 mini * 15 1491 99

SM-G800F Galaxy S5 mini 14 1173 84

XT1032 Motorola Moto G 7 1113 159

Galaxy S3 * 28 1059 38
GT-I8190 Galaxy S3 mini 8 1030 129
SM-G900F Galaxy S5 24 998 42

GT-I9300 Galaxy S3 23 858 37

Galaxy S9 * 24 838 35
SM-A300FU Galaxy A3 2 779 390
HTC One HTC One 9 776 86

GT-I9195 Galaxy S4 mini 10 756 76

Galaxy S4 mini * 11 756 69

SM-A520F Galaxy A5 6 637 106
PRA-LX1 Huawei P8 Lite 1 620 620
WAS-LX1A Huawei P10 Lite 4 614 154

SM-C115 Galaxy K Zoom 1 606 606

Moto G Moto G 1 510 510
SM-T810 Galaxy Tab S2 2 506 253
XT1028 Moto G 1 490 490

Galaxy S4 * 30 464 15

SM-G960F Galaxy S9 16 462 29

LG-P970 LG P970 1 461 461

LT26i Sony Xperia S 3 458 153
Moto G (5) Plus Moto G5 Plus 2 446 223
SGH-M919 SGH-M919 3 444 148

Galaxy S7 * 21 442 21
Galaxy S6 * 30 433 14

* marks device models that summarize multiple device IDs under a common device name (e.g., “Moto G *”
summarizes the device IDs “Moto G”, “XT1028” and “XT1032”). These models can appear both as a single device
model and as part of their group.

Table 3. Final selection of device models and respective installed Android versions used for
the experiments.

Device Name Device ID Android Version
Moto G XT1032 5.1

Galaxy A3 SM-A310F 7.0
Galaxy S7 SM-G930F 8.1

Moto G 5S Plus Moto G (5S) Plus 8.1
Pixel 2 Pixel 2 10.0
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3.3. Experimental Setup and Procedure

Before conducting the actual experiments, various measurements were taken with
different frequencies (125–2000 Hz), frequency weightings (A & C), distances to the sound
source, and different smartphones to find the optimal settings for the experiments. The
measurements indicate that—using the correct settings—the smartphones measure sound
frequency-independently in the study’s frequency range of 125–2000 Hz, allowing a single
frequency to be used for the experiments. The final settings are shown in Table 4. A pure
tone with a frequency of 1000 Hz was chosen for the sound source to obtain an unweighted
result with the given SLM, since it supports only A- and C-weightings and these frequency
weightings do not apply offsets at 1000 Hz [45]. Note that, for this reason, dBSPL, dB(A) and
dB(C) at 1000 Hz are all equal and may therefore be used interchangeably for measurements
at this frequency. For purposes of clarity, dB(C) is used for the remainder of this paper. To
promote and facilitate the overall reproducibility, it was decided against a professional
sound laboratory in favor of a simpler test environment for the experiments. Thus, for the
measurement range, a lower limit of 50 dB(C) was chosen because the background noise in
the test environment was measured at approximately 46 dB(C). 80 dB(C) was chosen as
upper limit to avoid hearing damage for the experimenter (without additional protective
measures). A distance of 30 cm between sound source and SLM/smartphone was chosen
due to spatial restrictions to avoid reflections in the test room.

Table 4. Settings for the experiments.

Parameter Value
Sound source

Frequency 1000 Hz
Sound pressure level 50–80 dB(C)

Increments 5 dB
Distance 30 cm

SLM
Frequency weighting C

Time weighting Fast
Measuring range 32–80

The experimental setup is shown in Figure 2. The experiment is performed in a room
of 15 square meters. The speaker is positioned at the edge of a 76 cm high table to avoid
reflections by the table surface. Furthermore, it is fixated in a way that accounts for its
slightly upward design and results in a vertical positioning of the speaker cone. The SLM
and each of the smartphones are screwed onto tripods and positioned as close as possible
to each other and 30 cm from the speaker, with their microphones pointed at the speaker.
The SLM is thereby rotated 90 degrees so that its display can be read from a distance by the
experimenter. The speaker and the smartphone are controlled remotely with a notebook
that is positioned 2 m away from the table to avoid reflections by the equipment and
the experimenter.

Before conducting the experiments, the SLM is calibrated with the calibrator to ac-
count for the room conditions such as temperature and air pressure. Thereby, the calibrator
is attached to the SLM and turned on, producing a sound at 94 dB and 1000 Hz. The SLM is
then configured to measuring range 50–100 dB, time weighting “Fast” (the measured sam-
ples are averaged every 125 ms) and frequency weighting A. The SLM is then potentially
fine-tuned until the display also shows 94 dB.
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2m

0.3m

Speaker

Table

SLM

Smartphone

Tripods

Remote Control

Experimenter

Figure 2. Setup for the experiments.

The experimental procedure is structured as follows and was repeated for each of the
five smartphones.

1. The tone generator software is used to create a 1000 Hz sinus signal (pure tone) with
the speaker.

2. The volume is then adjusted until the SLM shows the desired sound pressure level.
3. Subsequently, the measurement is started on the smartphone. As described in

Section 3.2.4, the mobile application captures 30 measurement values (while dis-
carding the first two values) for about 15 seconds, averages these values and stores
them in a table.

4. The steps 1.–3. are repeated for 5 dB increments between 50 and 80 dB(C) (an expla-
nation for the measuring range can be found in the first paragraph of this subsection),
resulting in seven values per smartphone.

4. Results

The final experiments resulted in a total of 35 values. The results are shown in
Figure 3. The y-axis shows the reference dB(C) value produced with the tone generator and
the speaker. On the x-axis, the output of the different smartphone models is displayed on a
logarithmic scale. It can be seen that the measured amplitudes of all smartphone models
show an almost linear slope on the logarithmic scaled axis, indicating a nearly logarithmic
slope of the values. Furthermore, it can be observed that the curves of the smartphones
are almost parallel, indicating that the slopes are nearly identical. The only noticeable
deviation is shown by the Pixel 2, where the curve seems to bend at 70 dB(C). Overall, the
curves appear to differ only by an offset on the x-axis.
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Figure 3. Measured amplitude values for C-weighted sound pressure levels between 50–80 dB(C) for
the different mobile devices used in the experiments. The x-axis is logarithmically scaled.

The results of the experiments are then analyzed in terms of their interpretation. In
this context, first, the experimental results are used for a logarithmic regression to derive
respective equations for the different device models. Second, the legacy application code
of the TYT app is analyzed for relevant implementation errors and poor design decisions
that should be improved. Finally, the derived equations are used to transform the existing
data in the TYT database into (partially) comparable dB(C) values.

4.1. Deriving Equations from the Experimental Results

As can be seen in Figure 3, the curves for each device model have approximately the
same slope. A logarithmic regression analysis was performed to fit a logarithmic function
to the relationship between amplitude values of each device model and the respective
sound level in dB(C) measured with the SLM. The resulting equations are listed in Table 5
and plotted on top of the measured data in Figure 4. As can be seen in the table and the
figure, the regression curves have similar slopes (s = 1.33), but differ in their intercept.
Only the Samsung Galaxy S7 and A3 models seem to have an almost identical curve,
which suggests that the manufacturer used the same or similar hardware and software
components for the devices. For the other device models, the results indicate that the
Android devices process sound levels equally except for an offset of 0–15 dB. Furthermore,
the slopes of the equations appear to be similar to that of the definition of sound pressure
level (SPL), shown in Equation (1), where p is the root mean square sound pressure and
p0 = 20µ Pa = 2 ·10−5 Pa is the reference sound pressure [46]. For sound measurements
by the device models used in the experiments, the equations from Table 5 can be used to
transform an amplitude value of the respective device model into a corresponding dB(C)
value. As the slopes of the equations are similar, a simple calibration of any additional
device model in order to determine the respective offset might already be sufficient in order
to obtain approximately comparable measurements.

Lp = 10 · log10

(
p2

p02

)
dB = 20 · log10

(
p
p0

)
dB (1)
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Table 5. Equations for the different device models as results from the logarithmic regression. R2 is
the coefficient of determination.

Device Model Logarithmic Regression
Model Equation R2

Galaxy S7 y = 20.5379 · log10(x) + 1.3481 0.9995
Galaxy A3 y = 20.7228 · log10(x) + 1.2215 0.9997

Moto G y = 21.216 · log10(x) + 14.258 0.9994
Moto G 5S Plus y = 21.341 · log10(x) + 10.166 0.9998

Pixel 2 y = 23.8364 · log10(x)− 2.7633 0.9925

4.2. Analysis of the Legacy Application Code

As mentioned in Section 3.2.4, the code of the TYT mobile application that is used
to measure the sound level values that are later stored in the database was analyzed and
tested in an isolated environment before the beginning of the experiments. Thereby, several
errors were found in the process used to obtain these values, which are briefly described in
the following:

• Erroneous calculation 1: The 30 amplitude values sampled by the app as retrieved by
the Android MediaRecorder API are averaged arithmetically and stored as a single
value, which is supposed to represent the average sound level. This is erroneous, as
sound levels are logarithmic values, which must be transformed to their energetic
source values before they can be used for calculations [45].

• Erroneous calculation 2: The first two measured values of the app often contained
errors in the initial experiments. For multiple of the investigated devices, the first
measured value was consistently 0, while the second value was often too low. Further
experiments showed that these errors occur very frequently for measurements within
the first 1000 ms after the start of the recording. These findings indicate that these first
two values should be excluded from the calculations.

• Unsuitable audio codec: The audio encoder AMR_NB [47] is used for the measure-
ments, which is a narrowband audio codec optimized for a frequency range between
200 and 3400 Hz [48]. Lower and higher values may therefore be recorded in a
distorted manner.

• Lack of user transparency: The app does not indicate that the sound measurement
is ongoing. The user could therefore interact with the mobile device in an unfavor-
able way, which might interfere with the measurement (e.g., microphone is covered,
smartphone collides with object). For example, interacting with the touchscreen of
the mobile device during the measurement resulted in an increase of the measured
sound level by about 10 to 20 dB(C). Placing the device on a table led to values above
100 dB(C).

To estimate the magnitude of the error due to the erroneous calculation, a worst case
was simulated, for which 29 of the 30 measured amplitude values are used as input for the
calculation that are rather small and one value that is rather high. We chose the amplitude
values measured for 50 dB(C) and 80 dB(C) respectively, as these were the lowest and
highest sound level values used in the experiments. The resulting dB value that would be
calculated by the TYT app as well as the correct dB value are shown in Table 6. These values
can be interpreted to mean that the sound level values stored in the TYT database are up
to 9.4–9.8 dB lower than the actual measured loudness. Note that a difference of 10 dB is
perceived as approximately double loudness [45]. Therefore, the measured values in the
TYT database cannot be considered as representative environmental noise measurement
in dBSPL (or dB(C), respectively), and thus cannot be used for corresponding conclusions.
However, the values could still be used to compare them relatively (e.g., lower and higher
sound levels) and to investigate correlations with other data (e.g., the perceived tinnitus
loudness of a single user).
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Figure 4. Fitted regression curves for the measured sound levels of the different device models. The
x-axis is logarithmically scaled, resulting in linear curves.

Table 6. Worst case errors due to the erroneous calculation of the TYT app for the dB(C) values used
in the experiments.

Device ID Device Name dB(C) Value
TYT App

dB(C) Value
(Correct)

Difference
(Error)

SM-G930F Galaxy S7 55.9 65.3 9.4
SM-A310F Galaxy A3 55.9 65.5 9.6

XT1032 Moto G 55.9 65.6 9.7
Moto G (5) Plus Moto G (5) Plus 55.4 65.2 9.8

4.3. Interpretation of the Existing Data

The equations from Section 4.1 can be used to transform the soundlevel data from
the TrackYourTinnitus database (see Section 3.1) for the respective device models into
(partially) comparable sound level dB(C) values (although these values are erroneous, as
shown in Section 4.2). Table 7 shows the minimum (min), maximum (max) and average
(avg) dB(C) values for the amplitude values stored for the device models. Note that noise
exposure of 85 dB(A) over a period of 8 hours is considered hazardous [49].

Table 7. Minimum, maximum, and average recorded environmental noise levels in the TYT database
for the different device models used in the experiments.

Device ID Device Name dB(C) Min dB(C) Max dB(C) Avg
SM-G930F Galaxy S7 31.0 94.7 79.1
SM-A310F Galaxy A3 38.4 93.4 81.1

XT1032 Moto G 40.4 105.4 82.7
Moto G (5) Plus Moto G (5) Plus 52.6 93.9 78.0

5. Discussion

In the following, the results are discussed. On the one hand, considerations towards
comparability of sound measurements with smartphones are discussed. On the other hand,
limitations of the experiments in the scope of this work are considered.
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5.1. Towards Comparability of Sound Measurements with Smartphones

The results have shown that measuring sound levels with mobile devices (e.g., smart-
phones) is possible if the devices are calibrated correctly beforehand. However, there are
several aspects that should be considered. The mobile application used to measure the
sound level should be carefully revised regarding the following aspects:

• If system-APIs are used, it should be verified whether these APIs provide the correct
values and whether these values are in the desired format. If the recording requires a
setup time, the measurement should only be started after this setup is completed.

• Audio codecs that distort the measurements should not be used.
• Consideration should be given to whether average or peak values are of interest.
• If sound level averages are calculated, the logarithmic nature of the amplitude values

must be taken into account and the correct formula must be used.
• The mobile application should transparently indicate via the user interface that the

sound measurement is in progress to avoid the user unintentionally interacting with
the mobile device in a way that interferes with the measurement. The user should be
instructed to act appropriately to minimize the interference.

5.2. Limitations

The experiments performed in the scope of this work are subject to several limitations.
First, the measurements were not performed in a laboratory to foster and facilitate the
overall reproducibility. Therefore, measurement errors, especially due to sound reflections
or background noises (e.g., traffic noise), might have distorted the results. Second, the
measuring distance of 30 cm from the sound source was chosen for spatial reasons. It was
not verified whether a greater distance would lead to more accurate measurement results.
Third, the measurements were limited to levels between 50 and 80 dB(C). Values below or
above these limits cannot be verified. Fourth, the measurements were performed with a
single sinus signal (pure tone) sound source at 1000 Hz. Generalizations for other sound
signals and different frequencies might not be accurate. In addition, pure tones might lead
to room modes and standing waves that could have distorted the results, which was not
considered in the experiments. Fifth, in this context, dB(C) values as measured by the
SLM are treated as dBSPL in the experiments, which cannot be generalized for frequencies
other than 1000 Hz. Furthermore, for environmental noise measurements usually the
A-weighting filter is used to better reflect the hearing of the human ear. Sixth, the output of
the mobile application is a peak value and not an effective value as measured by the SLM.
These values should not be compared directly, but were nevertheless used to simulate the
behavior of the TYT app. Seventh, it is assumed that the Android API used to retrieve the
amplitude values behaves the same on each Android version, since the experiments were
performed with the maximum version that was officially supported by the acquired devices
(see Table 3). This assumption is supported by the fact that the API has been present since
Android API level 1 (Android 1.0) [42], but could not be verified.

6. Summary and Outlook

In this work, an experiment was described with the objective to make a large data
set of environmental sound measurements captured with smartphones and stored in the
TrackYourTinnitus (TYT) database usable and comparable to enable meaningful interpre-
tations in the context of tinnitus research. To this end, the existing data were analyzed
to find the device models that contributed the most data entries. Four of these device
models were then acquired for the experiments and equipped with a mobile app that
mimics the environmental sound measurement of the TYT Android app. For the actual
experiments, a sound signal was generated, the volume was adjusted to different sound
levels using a professional calibrated sound level meter (SLM), and the values captured by
the source code of the app on the Android devices were recorded. The results indicate that
the amplitude values retrieved by the devices behave similarly except for a constant offset.
Furthermore, equations derived from the results with a logarithmic regression analysis can
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be used to transform the values in the TYT database to (partially) comparable dB values.
However, there are several limitations to the experiments due to the code of the TYT app
and the experimental setup.

Since the experiments within the scope of this work were only conducted for a num-
ber of selected Android device models, in future work, more device models should be
considered. This includes both Android as well as iOS device models. For the latter, there
are far fewer different models, which are all produced by a single manufacturer, which
simplifies the process. Once the values retrieved by the system APIs of the different device
models and operation system versions are known, respective equations can be derived
and used for any future measurements of the same models. Alternatively, along with
the recommendations in Section 5.1, a calibration feature could be integrated in a future
version of the TYT app that could lead to even more accurate results.

In conclusion, it has been shown that measuring sound levels with mobile devices is
possible and feasible for healthcare purposes, but there are many challenges to ensuring
that the measured values are accurate, comparable, and interpretable and thus more future
work towards the interpretation of mobile crowdsensing data should be conducted.

Author Contributions: Conceptualization, R.K. and R.P.; methodology, R.K. and R.P.; software,
R.K.; validation, R.K. and R.P.; formal analysis, R.K.; investigation, R.K.; resources, M.R.; data
curation, R.K.; writing—original draft preparation, R.K.; writing—review and editing, R.K. and R.P.;
visualization, R.K.; supervision, R.P.; project administration, M.R. and R.P.; All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy reasons.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kraft, R.; Schlee, W.; Stach, M.; Reichert, M.; Langguth, B.; Baumeister, H.; Probst, T.; Hannemann, R.; Pryss, R. Combining

mobile crowdsensing and ecological momentary assessments in the healthcare domain. Front. Neurosci. 2020, 14, 164. [CrossRef]
2. Kraft, R.; Birk, F.; Reichert, M.; Deshpande, A.; Schlee, W.; Langguth, B.; Baumeister, H.; Probst, T.; Spiliopoulou, M.; Pryss, R.

Efficient processing of geospatial mhealth data using a scalable crowdsensing platform. Sensors 2020, 20, 3456. [CrossRef]
3. Kraft, R.; Birk, F.; Reichert, M.; Deshpande, A.; Schlee, W.; Langguth, B.; Baumeister, H.; Probst, T.; Spiliopoulou, M.; Pryss, R.

Design and implementation of a scalable crowdsensing platform for geospatial data of tinnitus patients. In Proceedings of the
2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), Cordoba, Spain, 5–7 June 2019; pp.
294–299.

4. Schlee, W.; Pryss, R.C.; Probst, T.; Schobel, J.; Bachmeier, A.; Reichert, M.; Langguth, B. Measuring the moment-to-moment
variability of tinnitus: The TrackYourTinnitus smart phone app. Front. Aging Neurosci. 2016, 8, 294. [CrossRef] [PubMed]

5. Pryss, R.; Reichert, M.; Herrmann, J.; Langguth, B.; Schlee, W. Mobile crowd sensing in clinical and psychological trials—A case
study. In Proceedings of the 2015 IEEE 28th International Symposium on Computer-Based Medical Systems, Sao Carlos, Brazil,
22–25 June 2015; pp. 23–24.

6. Kraft, R.; Stach, M.; Reichert, M.; Schlee, W.; Probst, T.; Langguth, B.; Schickler, M.; Baumeister, H.; Pryss, R. Comprehensive
insights into the TrackYourTinnitus database. Procedia Comput. Sci. 2020, 175, 28–35. [CrossRef]
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