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Abstract: Utilizing context-aware tools in smart homes (SH) helps to incorporate higher quality inter-
action paradigms between the house and specific groups of users such as people with Alzheimer’s
disease (AD). One method of delivering these interaction paradigms acceptably and efficiently is
through context processing the behavior of the residents within the SH. Predicting human behavior
and uncertain events is crucial in the prevention of upcoming missteps and confusion when people
with AD perform their daily activities. Modelling human behavior and mental states using cognitive
architectures produces computational models capable of replicating real use case scenarios. In this
way, SHs can reinforce the execution of daily activities effectively once they acquire adequate aware-
ness about the missteps, interruptions, memory problems, and unpredictable events that can arise
during the daily life of a person living with cognitive deterioration. This paper presents a conceptual
computational framework for the modelling of daily living activities of people with AD and their
progression through different stages of AD. Simulations and initial results demonstrate that it is
feasible to effectively estimate and predict common errors and behaviors in the execution of daily
activities under specific assessment tests.

Keywords: memory impairment; dementia; Alzheimer’s disease; smart homes; cognitive architecture;
modelling; daily living activities

1. Introduction

The elderly population is increasing sharply, and even though most elderly people face
the ageing process normally there are specific groups that face different health challenges.
The number and the severity of these challenges are increasing, with the most common be-
ing chronic health conditions, mental health conditions, physical injuries, cognitive health,
malnutrition, social isolation, and cancer, among others [1]. All these challenges stand as
obstacles to normal, independent living. For example, impaired cognitive memory affects a
person’s ability to think, learn, remember, and perform actions in their everyday life. A
considerable number of chronic diseases, such as AD, are increasing in their preponderance
due to global population tendencies and will cause numerous problems in the future.

Dementia and AD are two different terms that are utilized broadly and are confused
when used in similar contexts [2]. The former refers to a set of symptoms or brain disorders
that negatively impact memory, performance in daily activities, social and communication
skills, decision making, emotion control, reasoning, etc. All these symptoms affect cognitive
functioning. The latter (AD) is one specific such disorder that progresses over time, usually
affecting memory and thinking in elderly people over 65 years old. Common symptoms
of AD include memory problems, concentration problems, aggression, depression, and
confusion, among others [3]. Doctors face difficulties determining whether someone suffers
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from AD or another type of dementia and currently there are no effective cures. Specific
types of dementia respond to some treatments that can ease or stabilize the symptoms,
preventing the condition from getting worse. AD is the most common cause of dementia.
The risk of developing AD is high in the elderly population and people with cognitive
impairment will usually progress to AD [4]. In addition, during normal ageing some
elderly people will develop cognitive changes or a decline that will be noticeable in their
environment but will not affect their ability to carry out their everyday activities. This is
referred to as mild cognitive impairment (MCI) in the literature and can lead to a specific
type of dementia or AD or sometimes can revert to normal cognition [5].

In AD, deficits in cognitive function can be found in working memory, task sequenc-
ing, attention, speed of processing, orientation, recalling, learning new things, etc. [6–9].
These deficits affect individuals in a way whereby they require more physical help from
family or a caregiver to perform basic activities of daily living (ADLs) or instrumental
activities of daily living (IADLs) as the disease progresses. These activities involve most
of their everyday tasks and include toileting and bathing, dressing up, feeding, receiving
medication, maintaining their finances, or communication tasks.

AD patients wish to be cared for at home, be independent as much as possible,
and avoid institutionalization. A report from the United Kingdom detailed that eighty-
five percent of people with dementia would prefer to remain at home following their
diagnosis [10]. An important segment of these people cannot afford professional care.
“Aging in place” as a subdomain of healthcare stresses the need for physical environments
capable of enabling the elderly to maintain their full potential [11].

The most common type of caregiver is a family member, and it is typical for people
with AD to be cared for at home. Nonetheless, these family members often experience
tough burdens and negative physical, psychological, and socio-economical effects [12].
These burdens are obstacles to their normal way of living, but for many socio-economic
reasons they need to take care of their loved ones.

SH and emerging technologies have considerable advantages as opposed to caring
centers and institutions as they can enhance the independence of the elderly within the
early stages or at a moderate stage of AD without the need for professional help. SH tech-
nology relies on systems such as telemonitoring, activity recognition, safety mechanisms,
enhancement of cognitive performance, behavior analysis, etc. [13]. Consequently, simu-
lating and predicting the behavior of people with AD introduces a great opportunity for
developers and researchers to design and develop interventions able to adapt dynamically
to the behavior of people with cognitive impairment and to improve activity recognition
systems by predicting common mistakes in impaired behavior. Attempts to accurately
recognize activities and common routines of people with AD are usually performed by sen-
sory data analysis with different techniques such as machine learning (ML) and recurrent
neural networks [14,15]. These activity recognition systems predict behavior at an abstract
level and generate outcomes related to the activity or the action someone is performing.
However, they are unable to predict human thought and its interruptions when someone
has cognitive problems. Combining predictions of human behavior with sensory-generated
predictions will lead to advanced prediction systems that can ultimately help smart homes
to provide better-adapted interventions and awareness for this specific target user group.

One of the prevailing ways to model human behavior is by utilizing cognitive archi-
tectures. They have been used extensively for many years in various research domains
such as memory research, artificial intelligence, problem-solving, and decision making,
and they all tend to summarize elements and frameworks of cognitive phycology to pro-
duce formalized models such as computer programs and generate intelligent behavior in
complex environments. Cognitive architectures are classified as symbolic, connectionist,
and hybrid [16]. They are all sets of modules that interact with each other and simulate
how the brain processes information. The main principle behind cognitive architectures is
that they can be utilized to represent task-independent constraints in a programmed way.
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State of the art in cognitive architectures include SOAR [17] and the adaptive control
of thought-rational (ACT-R) [18]. The first is high-level oriented with lower cognitive
level fidelity, making it less suitable for predicting human behavior based on cognitive
errors and limitations at the process level. Nonetheless, many other architectures exist
but are not so distinguished [19]. EPIC [20] is another example of a cognitive architecture
that is suitable for multiple-task performance using well developed perceptual and motor
modules. However, it is not goal-oriented, there are no learning capabilities, and it is poorly
documented. Turnbull et al. [21] evaluated these three architectures in terms of how suitable
and mature they are for use when assessing notification systems. They pointed out that
each of them concentrates on different tasks, with ACT-R and SOAR being more suitable
for human–computer interaction (HCI) tasks while EPIC is more suitable for simpler tasks
and multi-tasking.

Cognitive architectures such as the ACT-R framework provide a toolbox of com-
putational methods that can describe the cognition of humans in a behavior-predicting
manner. They achieve this by incorporating general theories of cognition that have been
developed over the last century. The main use of ACT-R within the domain of cognitive
psychology is to model problem solving, perception, attention, language, learning, memory,
etc. Lately, cognitive architectures have been very beneficial in the domain of HCI to
assess interfaces under different conditions (e.g., dementia) [22]. García-Betances et al. [23]
defined parametric cognitive virtual user models that describe interactions with people
with disability-derived functional impairments with information and computer technology
(ICT) applications. On the other hand, models have been extensively exploited in the
education domain to produce cognitive tutoring systems, such as systems that are able to
understand the possible difficulties of students [24]. ACT-R is a cognitive architecture that
is based on the ACT-R theory. The latter originates from cognitive psychology experiments
and observations. From the outside, the framework appears as a programming language
that reflects assumptions about human cognition. These actions are required to enable
researchers and developers who are starting to use the framework of ACT-R to:

• learn the coding language and style; this can vary depending on the language they are
using; nowadays there are useful ports in different languages, such as Java, Python,
Docker instances, etc. The main framework originated from Lisp. However, since each
ACT-R model predicts different elements of cognition, it is wise to consider studying
similar peer-reviewed models to understand the approach being followed.

• understand specific cognition elements that are essential such as working memory or
long memory in humans, memory retrieval in the brain, etc.

• compare with similar models if they exist or to compare and assess with human
experiments.

ACT-R operates on different modules and all of them communicate with each other.
Each module is responsible for handling a specific type of information. The communica-
tion between the modules is achieved only through buffers. The main modules are the
visual, the perceptual–motor, the procedural memory (with the pattern matching), and the
declarative memory. The procedural module is responsible for accessing the information of
the other modules. The cognition layer consists of the production module with the declara-
tive memory module. These modules correspond to the different cognitive functions of
the brain.

Related Work

Recent efforts focus on the decision-making process for smart healthcare environments.
Neto et al. [25] designed an offloading IoT-based novel algorithm for face recognition and
fall detection. They explored the data provision in a microfog to synchronize the data
processing and improve the decision-making process. Goncalves et al. [26] explored the
mapping between the physical and emotional state of home-cared-for users and applied
this to the elderly population. They considered a participatory design and included the
characteristics of the users, including their social, phycological, and therapeutic elements.
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The solution can identify the behavior of the users and act accordingly by notifying care-
givers in the case of abnormal situations. Filho et al. [27] presented an automation decision
system based on neural networks that can improve the accuracy of decisions and mini-
mize the energy consumption of intelligent infrastructures by utilizing wireless sensors
and actuators.

Attempts to use frameworks and systems utilizing cognitive modelling in the literature
exist but are limited. They usually provide coaching systems able to predict normal or
erroneous user behavior or they implement context-aware solutions in smart environments
to provide better sensing solutions. Amato et al. [28] introduced a personalized coaching
system based on cognitive modelling by utilizing ACT-R, which relies on problem solving
elements. The main novelty of the coaching system is the fact that the system can handle
dangerous situations and behaviors such as when cognitively impaired people perform
activities with kitchen objects and manipulate devices such as home appliances (e.g., the
oven). Likewise, as a coach it guides patients suffering predominantly from dementia to
perform better specific actions. Shaukat et al. [29] mentioned the importance of having
and implementing solutions that do not require training data, as they pose ethical, legal,
and economic issues, and implemented a solution for people with dementia (PwD) that
can provide synthetic data through cognitive modelling. These data are used to evaluate
and assess existing assistive solutions through behavior and navigation modelling. Wilson
and Turner [30] created artificial agents that simulate generic erroneous behaviors and are
focused on anticipated contextual changes in the environment. Yordanova and Kirste [31]
argued that existing activity recognition systems rely on probabilistic symbolic models
that use only the designer’s intuition and trial and error and that they lack a structured
methodology and knowledge on how to implement such performance models. As such,
they provide guidelines based on the waterfall model about how to build powerful models
with satisfactory results. Recently, Zaedally and Bello [32] summarized the importance of
the Internet of Things (IoT) in healthcare and provided an extensive review on existing
IoT-based healthcare architecture solutions. They proposed an architecture for a coaching
system for daily activities. The application logic of this architecture utilizes ACT-R as
the core element that can be used as a layer to highlight dangerous situations or propose
behavioral corrections.

Experiments have been carried out in the field of mobile health and active assisted
living utilizing cognitive architectures to predict human behavior with computational
models. Pirolli et al. [33] developed an mHealth smartphone-based coaching system that
was able to support healthy behavior change in diet and stress by using behavioral goals
and predicting long term behaviors. Baretta et al. [34] presented a mobile application with
a wearable system that targets physical activity promotion by using an adaptive hybrid
model that integrates the self-efficacy beliefs and physical activity behavior of the user.
Serna et al. [35] simulated the decrease in the execution performance of a kitchen-related
activity during the progression of AD and the amount of help required by the caregivers
to maintain the execution of this activity. This is the only attempt made in this domain to
simulate the cognitive decline across all AD levels. Morita et al. [36] created a reminiscence-
based model for the mental care of the elderly. This model uses old photos as memories
and generates similar reminiscence behavior. The outcome can be used to motivate the
users by guiding their memory recall with photos of healthy user modelling. Furthermore,
decision making as a process in the older population has been researched with cognitive
architectures and the results demonstrated that the decline in specific cognitive functions
contributes to the general decline in strategy execution and decision making [37].

The present study aims to deliver a set of models packaged as an easily extensible
framework, which serves as a context-aware tool and provides better accessibility support
for designers and developers when they design ICT healthcare solutions for people with
AD. Our interest domain is the smart home area, and this framework will serve as a base for
predicting the behavior of people with various levels of AD when executing daily activities.
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The novelty of the framework and its contribution are of paramount importance and
can be summarized as follows:

• There have been no similar frameworks in the literature in recent years dealing specifi-
cally with daily activity modelling and involving state of mind analysis and modelling.
Serna et al. [35] (2007) most recently produced a simulation of a decrease in cognitive
functioning across the AD spectrum when executing one kitchen task.

• The modelling of cognitive deterioration in the literature does not include phycolog-
ical elements as we analyze later, except the simulation of Serna et al. [35]. To our
knowledge, there are no recent attempts to simulate how much support is needed by
incorporating phycological assessments. This is necessary to provide an alternative
view to ICT stakeholders involved in the process of designing an intervention.

• There is no existing framework that combines several daily activities. We introduce
three daily activities in this study and we plan to incorporate more in the upcom-
ing version.

• It is imperative to keep producing and maintaining computational models as opposed
to modern techniques that require a large amount of training data. Neural networks
would require huge fMRI datasets to perform the same predictions, which would be
almost impossible to gather.

• This framework can be combined with activity recognition systems to conduct a
futuristic detailed state of mind analysis when performing daily activities. We believe
in the paradigms of “Personalized Medicine” and “Aging in Place” as future-proof
senior living arrangements and this framework is a milestone towards better dynamic
adapter interventions.

• Considering future plans, more insights will be discovered when new assessment
tests are incorporated into these models. In addition, more dementia types should be
added to model different situations.

The following sections are organized as follows: Section 2 presents the value cognitive
models bring to the awareness of SHs, and introduces a generic description of the frame-
work with the functional tests; Section 3 delivers the methodology and the implementation
details; Section 4 gives an overview, runs through the details, and looks at how our method
is different from previous models; Section 5 depicts our initial results and validation; and
Section 6 delivers our conclusions and discusses our future plans.

2. Advancing the Awareness of SHs with Cognitive Models

SHs can provide assistance in the autonomous completion of various tasks by either
detecting abnormal behavior and informing a caregiver or by telemonitoring and aiding
people from a distance using telemedicine techniques. Predicting the behavior of people
with cognitive deficits caused by AD is an important milestone towards the homogenization
of emerging technologies, smart homes, and cognitive assistance, with the end target being
to provide automated, dynamic, personalized interventions. The researchers and the
developers must be aware of the status of the cognition of people with cognitive problems
in order to perform quantitative predictions regarding latencies and accuracies in their
activities in real life. The end goal is to provide a framework for researchers and developers
to exploit when designing superior adapted interventions. The more personalized, adapted,
and dynamic the intervention is for the final user, the higher the approval rate will be—
meaning that the intervention can be adopted by the user adequately. The proposed
conceptual framework acts as a context-aware tool that provides valuable information to
the intervention designers and researchers.

This paper aims to demonstrate a computational parametric framework that is able
to simulate the cognition sequence and errors during the execution of an ADL or an
IADL. Hence, the framework currently consists of three daily activities’ models and the
common input parameters that the user can modify and run in each model separately.
This framework serves as a base that will be further expanded to create more complicated
environments of daily activities in the context of SHs. The models provide the necessary
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information needed by smart home developers and researchers to adapt consistently and
enhance or provide new interaction paradigms that can be understood by the final users.
Eventually, the SH will act dynamically and automatically and will control the devices and
home appliances on behalf of the users. Furthermore, the framework can be used to enhance
standard artificial intelligence (AI) machine learning activity recognition algorithms and
produce a top-level advanced context-aware framework for the house for this specific group
of users.

The implemented models as of now are tea preparation activity, washing hands activity,
and dressing activity. Research has been undertaken showing that different parts of the
brain control different activities and perform different actions [38,39]. Hence, depending
on the level of cognition deterioration, each user will have slightly different symptoms.
However, memory problems are the predominant issue that occurs at most AD levels.
Hence, we proceed mainly with the memory and functional behavior deficits of AD (e.g.,
repeating actions) as they are the most common. We chose to model these three important
activities as users find it difficult to cope with and caregivers also find it challenging to assist
them with these activities if they do not have the proper training required and adequate
time for them. The washing hand activity was chosen as it is a typical routine for someone
during the day and belongs to the basic daily care plan of caregivers. The dressing activity
was chosen as it is affected more at the later stages of AD and is an action that people with
AD are ashamed to admit that they require assistance with. The tea preparation activity
was chosen as a base activity as it belongs to the cooking and kitchen-related activities
category and there are suitable occupational therapy tests available in order to help us
expose common errors.

An important element that is necessary to comprehend is the way occupational ther-
apists assess functional performance, disability and its severity, and the amount of help
needed by people when they perform their daily activities. The current way to do this is
by utilizing functional tests designed and scientifically approved to generate outcomes
based on the performance of the participants. Some of the available tests are the E-ADL
test [40], the Arnadottir OT-ADL neurobehavioral evaluation (A-ONE) test [41], the execu-
tive function performance test (EFPT) [42], and the kitchen task assessment test (KTA) [43].
Accordingly, our models incorporate psychological observations from EFPT and KTA that
can translate all problems into an abstract level of different categorized problems. Finally,
yet importantly, it is the base of our evaluation technique since we are comparing the mean
and standard deviation (SD) results to the KTA [43] and the ACT-R model developed by
Serna et al. [35] in a similar pattern.

Parametrizing the models with the ACT-R input values allows us to simulate all the
levels of AD and produce the simulated behavior across all the stages and receive valuable
information regarding the sequence execution of daily activities. The outcome is a close
mind step analysis of human thought and production-style sequences as executed by the
models. The output execution of each model provides common errors found in different
categories as exposed by the functional test of EFPT and KTA. The models can be executed
by as many people as are given as inputs.

Incorporating Phycological Properties in the Models

The executive functional tests assess different skills such as working memory, organi-
zation skills, attention, concept formation, inhibitory control, etc. Different tests exist in the
neuropsychology domain and each one aims to evaluate a group of skills [44]. They are
performed in real settings, usually require 30–60 min to administer, and are widely used
to discover functional problems in different populations such as children with learning
difficulties, elderly people with cognitive problems, people who were treated for cancer
and developed cognitive problems, or patients who suffered a stroke.

As mentioned before, the models of this framework incorporate psychological prop-
erties found in common assessment tests, namely EFPT [45] and KTA [43]. The EFPT
(executive function performance test) is designed to evaluate executive functioning in these
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four tasks: cooking, bill payment, telephone usage, and medication management. EFPT is
a performance-based standardized assessment for cognitive function using instrumental
activities of daily living. It uses a top-down approach in real world settings and can identify
the impaired cognitive functions, the capacity of the person to function independently,
and the amount of help needed to complete a task. This test originated from occupational
therapists (OTs) as a means of observing and monitoring performance in daily activities. It
was initially used in stroke patients [46]. The kitchen task assessment (KTA) is a similar
test to the EFPT. However, it is more oriented towards people with senile dementia of
the Alzheimer’s type (SDAT) and is used to evaluate their cognitive functions [47]. The
test asks the participants to cook a package of pudding and it measures the changes in
performance. This is a standardized test for patients with AD to assess their cognitive
abilities when they perform their daily activities. Likewise, it is used to record the cognitive
changes during the progression of AD. Both tests operate similarly and mainly examine
these cognitive functions: initiation, organization, performance of all steps, sequencing,
judgment and safety, and completion. Each of these categories receives a score depending
on the amount of help required to complete a step of a specific task. Table 1 depicts the
scoring according to the official KTA test and describes how each category is assessed [43].

Table 1. The KTA functional test with the scoring elements.

Component Independent Required Verbal
Clues

Required Physical
Assistance Not Capable

Initiation: Can the person begin the task? 0 1 2 3

Organization: Can the person gather all
necessary items to perform the activity? 0 1 2 3

Performs all steps: Can the person
perform all the steps necessary to

complete the task?
0 1 2 3

Sequencing: Can the person perform the
actions in the correct sequence? 0 1 2 3

Judgment and Safety: Does the person
perform the tasks safely? 0 1 2 3

Completion: Does the person know that
the task is completed? 0 1 2 3

As such, the maximum score this functional test can obtain is 18 points (summing
up the score of each one of the six cognitive functions). The higher the score, the more
cognitively impaired/incapable the person is and hence they require more help. For
instance, a person with mild AD would score an average of 4–5 points on one activity, as can
be seen later in our validation in Section 5.2. These tests provide realistic scenarios on the
amount of help someone requires. The SH solutions should incorporate this psychometric
data to better contextualize the environment and provide better dynamic interventions.

3. Methods and Implementation

The models simulate activities employing different sequences of steps and execution
stages to discover common cognitive and behavioral errors that people with AD make. It is
essential to model the most important cognitive and behavioral errors that these people
perform. A top-down approach is applied in order to break down the most essential
elements required for this framework. The elements identified are the exact cognitive
processes involved when performing activities, the view of the problems from a caregiver
perspective, and the occupational therapy tests focusing on the cognitive aspects only that
do not require further motor or perceptual skills to assess. Since the brain operates in
different domains such as smell, motor, etc., when we describe the cognitive processing of
the brain, we focus mostly on the information flow rather than the motor skills and how
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the brain uses the information to operate effectively in the world by taking the information
as an input and processing it in a continuous way that enables humans to interact with the
world [48]. For example, an activity of receiving medication involves steps such as looking
for a specific medicine, choosing one from among similar medicines, preparing some water,
taking the medicine, and finishing the task. These operations are cognitive processing
actions, and the models work similarly. We incorporate in our model the EFPT test coupled
with the KTA. Both tests assess the task completion problems that someone can face during
the execution of daily activities. We utilized KTA as a validated information source that
presents us with the most common mistakes that people with AD make when they cook.
Every problem that occurs during the execution of an activity belongs to one or more of
these judgment components (e.g., organization problems), as explained previously.

The methodology followed was based on these steps: (1) model a healthy person
performing the ADL as a sequence of steps with different stages utilizing the goal-oriented
design paradigm [49]. The steps utilized in the activities are normal behavior steps someone
has to follow to perform an activity such as dressing. For example, in the case of dressing
activity: one has to find an upper dressing item in the environment, apply it, finish this
action, complete this stage, and move on to the next action such as finding a low dressing
item (e.g., trousers). These steps are applicable and typical in occupational therapy or
physical therapy sessions (e.g., for stroke or brain damage or physical damage) and in
rehabilitation techniques [50,51]; (2) inject the memory errors (forgetfulness and similarity
of items, according to the most common errors made in KTA, and according to the EFPT
error categories); (3) incorporate the memory behavior errors (based on the common
errors people with generic cognitive impairments (MCI or dementia or AD) face, such
as repetitive tasks, not able to start/finish tasks, and confusion of the sequence of tasks
of an activity); (4) model the help provided by the caregiver to the user according to the
EFPT/KTA; (5) parse the results by incorporating the occupational therapy assessment
category problems into the models; (6) analyze the results according to the type of problem
that occurred; (7) propose interventions in the scope of SHs according to the misbehavior
and the severity of the AD. The structure of the steps of each model favors a modelling
method with a goal-oriented design paradigm where each step is modelled as a goal (a
production in the ACT-R terms) and this goal can be suspended, executed, repeated, or
confused with other steps. Figure 1 depicts the high-level framework architecture for a
better understanding.

Figure 1. High-level architecture of the framework and the methodology overview.
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3.1. Describing Intelligence through Cognitive Modelling

The general goal of AI is to create computers able to do “human things” or to explain
how intelligence works and re-produce it in the computer or within simulated environ-
ments. Since the early stages of computer science and finite-state machines, AI has con-
tinually evolved towards human intelligence. In the cognitive theories, the models try to
reproduce this human intelligence in simulated environments and exploit it in favor of dif-
ferent domains of science such as the health domain or the biomedical domain. Principally,
a cognitive model is a mathematical interpretation of a set of principles that originate from
a theory of cognition. This interpretation enables us to make qualitative and quantitative
measurements that are comparable to measurements from human participants through
experiments. Memory disorders interfere with many aspects of a person’s life such as recall-
ing, learning new things, triggering apathy, paying attention, recalling, etc. The framework
of ACT-R includes aspects of both symbolic and sub-symbolic theory. These aspects are
essential to represent the cognition of humans on an intellectual continuum. In addition,
sometimes they refer to as “connectionist systems” and they include the metaphors of the
neurons, meaning, they are a collection of a small perceptron that operate in parallel in the
brain to recognize the input [52]. Nowadays, the sub-symbolic systems are used in modern
AI systems to achieve more robustness against noise and for better performance through
deep learning, ML, and neural networks. Symbolic systems may refer to explicit symbolic
programming, rules, ontologies, plans, etc., whereas sub-symbolic systems refer to systems
such as Bayesian learning, deep learning, big data, neural nets, etc.

The sub-symbolic system with the production system of ACT-R enables us to go
through alternative directions when developing predictive realistic behavioral models.
A misconception arises here, and someone might argue that nowadays the paradigm of
machine learning can produce more accurate results regarding the modelling of behavior.
Nonetheless, we are modelling people with AD focusing on their memory and thus it is
impossible to gather such big datasets for supervised learning activity simulations and
predictions. ML and deep learning techniques can successfully model the generic tasks with
sensors (e.g., detect sleep activity and patterns in SH) or they can predict early symptoms
such as changes in the brain analyzing MRI images with great success, but they are unable
to reproduce the execution of the steps and the cognition sequence.

The framework models and operates through the whole spectrum of AD, focusing
on the memory aspects and the psychometric properties as exposed by the functional
tests. The starting point is the early cognitive impairments that may arise as a pre-AD
stage (such as MCI) and the endpoint is severe AD. This is the progressive spectrum of
the disease achieved by modelling the working memory of users when they perform daily
activities [53].

The mechanism to model short and working memory in ACT-R is realized by the
concept of activation [35,54]. The memory module of ACT-R, namely the “declarative
memory”, holds basic information such as facts known to the user. Combining the declara-
tive memory of ACT-R with the concept of activation gives the working memory concept.
Declarative memory can hold a lot of information but only the information that has an
activation value greater than the threshold can be retrieved and used by the subject (acti-
vation concept). The information is represented by the concept of chunks. A chunk is the
smallest piece of information that the memory module of ACT-R can contain and remember.
Using this mechanism of information representation, we can transform the memory into
a semantic network of information modelled and accessed only in certain circumstances
depending on the activation values. For impaired cognition, this network of chunks is
usually broken, difficult to retrieve, or confused by other similar chunks of information.
Furthermore, in cognitively impaired users we ought to model incorrect and unexpected
behavior. The appropriate mechanism to implement this in ACT-R is by creating conflict
situations for the actions that the users perform. These two mechanisms play a major role
in implementing our models, which are described later in more detail.
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The conceptual framework currently contains three daily activities and can be easily
extended. To be more precise, we modelled one IADL activity (tea preparation) and two
ADL activities (washing hands and dressing). As mentioned before, the chosen base activity
modelled was the “tea preparation” and this activity benefits from an adequate number of
retrievals of the memory module, and we are interested in validating the results with real
user data at a later stage. In addition, the tea preparation activity being a kitchen-related
activity helped us to better identify the problems by exploiting previous research [35,43]
and thus maintain a balance between memory errors and behavior conflicts. The sequence
of actions and all the stages of tea preparation are based on the recipes’ instructions that can
be found on commercial packages over the market. Future design considerations as part
of our methodology are to assess possible amendments to the cognitive parameters when
switching from ADL to IADL and possible adjustments to the framework output to provide
different results within different dementia types (this might require the modelling of the
surrounding environment of the patient as well as the use of perceptual motor modules).

3.2. Modelling Cognitive Errors—Organizational and Behavior Errors

The ACT-R framework is suitable for modelling cognition, the flow of information,
and errors using either its sub-symbolic system with the production system or the concept
of activation. The errors related to cognitive deterioration are differentiated roughly into
three categories according to the nature of the ACT-R and its modules. These categories are
omission errors, commission errors, and behavior errors. The omission and commission
errors correspond to errors related to the semantic memory exclusively and are hence
organizational errors (forgetfulness and confusion by similarity), while behavioral errors
refer to cognitive errors that affect behavior. For instance, to confuse the sequence of the
steps, confuse the different stages of the activity, not execute specific steps, or not start the
activity at all is a behavioral error. Modelling these three categories of errors is enough
to provide a broad picture of how the cognition flow works and how and when the user
is going to fail when performing specific tasks. This provides adequate information and
awareness to the SH for the designers to provide more patient-centric interventions and
combine the new interaction paradigms more successfully. As a consequence, we chose
to model using only the memory module of ACT-R and avoid using other modules such
as the perceptual-motor module because the hypothesis is that cognition and memory are
responsible for the majority of the errors in persons with AD and is present in all stages,
whilst at the same time most cognitive rehabilitation techniques target memory deficits.
Moreover, the end framework must be simple, easy to understand, and extensible for other
researchers to use and further develop.

Figure 2 depicts the high-level architectural model-making process we followed and
all the mechanisms involved in the models as well as the parameters that the framework
requires to work. The users are free to introduce their own parameters as inputs into the
models and observe the difference in the output results. However, the default parameters
are already pre-defined in the framework as a result of evaluation-matching with the scores
of previous attempts at the KTA and a previous ACT-R model. An important element to
note is that through the simple graphical interface we provide this framework can be used
without programming knowledge, which perfectly satisfies the designers’ needs or those
of other stakeholders involved in the design process of these interventions.
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Figure 2. High-level representation of architectural model making in ACT-R.

As mentioned previously, this conceptual framework models the errors of people with
AD within different daily activities and across different levels of AD. Additionally, it models
the help provided by the caregiver according to the functional tests. The procedure and the
mechanism to model the omission and commission errors is the same, and we accordingly
modify the parameters of ACT-R to achieve greater decline and simulate different levels of
cognition deterioration (MCI, mild AD, moderate AD, severe AD). During the execution of
the daily activity, the user forgets specific elements caused by the decline in their working
memory. The category of omission errors corresponds to the errors by the user when he
forgets specific items necessary to complete a task. For example, in the model of the tea
preparation, the user will forget some items (e.g., forgets where the tea bag is located)
that are needed to complete all the steps. This is an important category of forgetfulness
error as without the necessary elements, someone cannot execute any given activity with
success. The second type of error is commission errors and corresponds to the errors done
when the user confuses two similar items (e.g., mug and kettle) or confuses the locations
of different items (this is not represented in the models; however, the similarity of two
objects is used and has the same effect). These two categories are very important when
modelling cognition in humans and in ACT-R both are modelled by the concept of the
calculation of the activation value of chunks in the declarative memory. Every chunk has
an activation value. When this value is greater than the predefined modelled threshold
then the chunk is retrieved by the memory and the user “remembers” it. Each time the
user accesses one chunk of the memory, the activation value gets higher and in the next
memory request it will be easier for this specific chunk to be retrieved rather than be
confused/forgotten. Manipulating the concept of activation in ACT-R is the way to model
omission and commission errors. More specifically, a chunk (i), and the given elements (j)
that are part of the goal/focus chunk, has a total activation value A, which is calculated
with the following equation provided by the modules of ACT-R:

Ai = Bi +
n

∑
J=1

W
n

Sji + ∑
k

Pk Mki + ε (1)

Each of the four elements in the equation is a modelling mechanism in the world of
ACT-R modelling. Every developer and researcher can exploit them and parametrize them
as they wish to produce their models as close as possible to the real use case scenarios and
environments. This equation is used to create the semantic network of information and
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chunks with their activation values. The following points describe this equation and its
components in more detail (1):

• The first term B in Equation (1) describes the following: each element in the declarative
memory has a base level activation value B, which is the activation level that can be
retrieved and in ACT-R and simulates the process of forgetting and remembering.
Every time the chunk is harvested, the total activation attains a higher value. The
base-level activation B can decay the memory over time, which we are not interested
in in the case of AD since their memory is already in decline. In general, the base
level activation reflects the usefulness of the chunk in the past and its relevance to the
exact context. We do not modify this parameter in our model and we keep it default
and stable.

• The second term in Equation (1) is the summation equation of the source spreading
activation concept of ACT-R [55]. We make use of this summation parameter as it
introduces errors into the memory regarding the association between chunks. This
formula is used to increase the activation value of the chunks that are similar to the
existing chunks already in the buffers (e.g., if the current goal has a chunk A + B and
the memory module requests chunk B then B gets a higher activation value and it
is more possible to receive it). The S term defines the associative strength equation
of activation for the buffers and the W term defines the attentional weight equation
to adjust for how many slots to spread the buffer from. W is usually set to 1, so the
attentional weight is 1/n, where n is the number of sources/terms. S is usually 2
and represents the number of facts associated with the chunk. This is the concept
that creates the semantic network of chunks in memory, and similar chunks might be
confused and forgotten when noise is introduced. In our models, we keep the S with a
stable value of 2 and we modify the W parameter by reducing it at each progressive
stage of AD to achieve higher cognitive decline regarding the association of chunks
and goals; a lower value of W translates to problems with chunk association and by
extension information retrieval.

• The third summation in Equation (1) is the partial matching concept of ACT-R [56].
With this mechanism, we introduce similarities between chunks in memory. For
instance, the kettle and the mug are very similar in the model of the tea preparation.
The matching scale P defines the strength of similarity, and the M defines the similarity
between two chunks. We use both parameters to define which chunks should look
similar and their strengths.

• The last term in the equation is also very important as it introduces the noise required
for the memory to create parametrized decline—to simulate different levels of AD.

The other mechanism being utilized, as can been seen in Figure 2, is the production
system with the sub-symbolic processes offered by ACT-R. The behavior errors are exposed
through occupational therapy tests and are common errors that confuse the behavior of
people with cognitive problems. ACT-R uses a production system paradigm [57], which
can be parametrized to have many productions available to run at the same time.

This creates conflicts in the sequence of tasks and produces behavior errors. Each time
only one production runs (step), but we configure the models to have more than one run at
the same time; the model must choose which one to run every time. Each production has a
utility value, which is calculated by the probability of successes and failures with additional
noise; the higher the utility value, the higher chances the production will fire. We exploit
this mechanism to produce conflict situations with the users. We predefine the utility values
for specific productions to run. Having a parameter pre-defined before the model run, we
define the values of how often we desire the subject to confuse the productions. The utility
value can change on the fly while the model is executing depending on the production that
is executed. Finally, this mechanism enables our framework to cover the different stages of
cognitive deterioration within the different AD levels, parametrizing the utility values of
the production system. More specifically, we use the classic “PG-C” system of ACT-R; each



Sensors 2022, 22, 166 13 of 22

utility value is responsible for determining which productions are selected when a conflict
appears. The utility value of a production i is calculated by the following equation:

Ui = PiG − Ci + ε (2)

where P defines the expected probability of a successful firing; G is the value of the goal
(in ACT-R is in time); C is the cost in time; and ε is the transitory noise of the production.
In our models, we parametrize the utility value U to achieve a probabilistic firing of the
productions leading to misbehavior. In addition, we add the transitory noise by default in
all productions—as the level of cognitive decline progresses, the noise increases.

3.3. Modelling the Help Required by a Caregiver

The functional tests require the help of the caregiver to estimate how much help is
required and at which stage when the user is performing the activity. In principle, the
functional test is based on the level of help needed by the user. There are two kinds of
assistance in these functional tests: verbal and physical help. The help required is modelled
in a similar way to the errors.

We have two main categories of errors—memory errors (organization errors) and
conflict situation errors (all behavior errors). Firstly, help with memory errors is modelled
with chunk activation: when a chunk cannot be retrieved because of a failure (forget or
confusion with similar items), a new production (“boost activation”) is called and it once
again adds the chunk to the declarative memory and makes a new request for the memory.
In this way, the activation value of that specific chunk increases and it is easier to retrieve
next time without problems. Depending on how many times this production is run (boost
activation), we determine whether the help needed is verbal or physical. For example,
if the production is required only one time, we interpret it as verbal help, whereas if it
is required more than two times it is physical help as the chunk is very difficult retrieve.
On the other hand, the behavioral errors are based on the utility values that are given
as parameters before the model’s initiation. Each production that fails to run (a conflict),
creates new productions that serve as verbal and physical help productions. Both have the
same utility values predefined so, for instance, let us assume that the utility value for a
production to run is 40 for success and 60 for failure. This production may fail and require
help. The new verbal help production will run with the value of 40 on success and 60 on
fail. However, we have embedded an extra factor (extra value) that will be added to the
verbal help production. This extra factor is to be defined by the user; an increase of 20–30
in the utility value leads to the desired results in the verbal help, depending on the level of
the AD. Physical help is modelled similarly by using the production utility values. Table 2
describes two representative steps as an example in the tea preparation activity. The first
one is a memory retrieval step where the subject requests an item from his memory, while
the second one is a behavior step where the subject simply tries to execute this step and
move on to the next one. The steps are production goals that must be executed, and the
possible outcomes are given together with the approach with which the help is injected. The
last column describes the help interpretation as verbal, physical, or incapable, facilitating
the score generation.
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Table 2. Steps of the tea preparation activity with the outcomes and the help interpretation.

Activity Sequence
Steps Normal Behavior Injected Errors Help Injected Help Interpretation

Step: Find the teabag.
Expected task for this

step: Memory retrieval.
Possible organization
errors: Omission and

commission.

The subject requests
and finds the teabag
from the declarative

memory.

The subject forgets and
cannot retrieve the

teabag.

Chunk activation to
help the subject

remember the teabag.

Verbal Help: One chuck
activation boost.

The subject confuses
the teabag with the

water. Similarity
confusion injected
between these two

items.

Physical Help: More
than one chunk

activation.

The subject confuses
the teabag with
something else.

Incapable for
performing: More than
two chunk activations.

Step: Let the tea rest for
3–4 min.

Expected task for this
step: Behavior
execution and

completion goal.
Possible behavior

errors: Completion
error.

The subject executes
this step successfully

and moves to the next
one.

The subject does a
completion error and
cannot complete this

step. The utility
probability to success

and fail is injected.

Increase the utility
success factor to help
the subject complete

the goal.

Verbal Help: Add extra
utility value for

successful firing of the
production.

Physical Help: If verbal
help fails with the extra

factor given, the
physical help

production runs with
an extra utility value

greater than the verbal
help.

Incapable of
performing: The

physical help failed.

4. Overview of the Framework

Contextualizing the SH requires an excessive amount of data and specific scientific
knowledge to understand and “feel” its users in different situations and moments of their
life. Common methods to contextualize the environments include developing activity
recognition systems or behavior prediction models. This manuscript presents a scalable
conceptual framework targeted towards researchers, professionals, and developers that ex-
ploits the common problems of people dealing with AD and memory problems. Currently,
the framework holds three activity models that are able to simulate unexpected behavior
and errors caused by a cognitive decline when executing them.

Our interest lies in the simulation of the whole spectrum of AD and extends to other
dementia types at a later stage; hence, all levels of cognitive deterioration are included
according to the Washington University Global Clinical Dementia Rating (CDR) Scale,
which is used as a standardized multicenter reference value. We refer to the levels as: MCI
or questionable AD (CDR-0.5), Mild AD (CDR-1), Moderate AD (CDR-2), and Severe AD
(CDR-3) [58]. The framework is parametric and requires the input of parameters related to
declarative memory and procedural memory. The mandatory inputs are the activity, the
AD level, and the number of people in the simulation. Using these inputs, the framework
produces the suitable behavior as explained in detail previously. No prior programming
knowledge is required to use the framework.

The initial screen of the framework can be seen in Figure 3 as the user is presented with
a dropdown menu of the three activities included and the parameters he can introduce. The
suggested value for the number of runs is one person or run for 100 people to demonstrate
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the mean scores. Although the input number can be any given number n, we recommend
these two options to get different outputs.

Figure 3. Main graphical interface of the conceptual framework. The required inputs are the activity,
the level of AD, and the number of people to run the experiment.

Running the experiment for one subject provides the score of the assessment test
KTA and additional memory problems the user encounters. These additional memory
problems refer to the number of times he forgot something in the activity, the number of
times he confused similar things, and the number of times he confused an item with a
different one. These results are presented in the terminal as a text output, whereas when
the experiment runs for more than 1 subjects (e.g., 100 or 1000), a figure is generated that
presents the results in the form of assessment categories, as can be seen in Figure 4. Last
but not least, a big obstacle observed with ACT-R programming was the unfamiliarity
and unwillingness of the researchers to learn and deal with Lisp. The framework was
implemented through the Python port of ACT-R to be easily accessible to all operating
systems, understandable, and scalable to other researchers since it is a common language
that researchers and designers utilize these days. A command-line execution option is
also provided.
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Figure 4. Main graphical output of the conceptual framework. The blue bars represent the number
of subjects who completed a category of steps independently. The orange and green bars represent
the number of subjects who requested help (verbal or physical) in a category of steps. The red bars
indicate the number of subjects who are incapable of performing theses steps under a specific category.
This activity corresponds to the tea preparation activity with mild AD.

Differentiation from Previous Models

The framework currently works with three different activities, simulating abnormal
behavior and exposing errors as a form of memory error and EFPT-categorized problems.
As stated before, there is a similar cooking model that was made by Serna et al. [35] and
the main objective was to simulate the decrease in the cognitive performance across the AD
spectrum and the support needed. This admirable work of Serna is a unique attempt in this
field of modelling daily activities with the psychometric properties of people with AD, and
they developed one cooking activity, which serves as a foundation for us. We go one step
further and provide a framework to exploit possible behavioral problems in many daily
activities and the help required, ultimately generating dynamic adaptive interventions, in
an easy way.

The main differences are listed below. We provide an easy-to-use framework with
a simple UI so that no prior programming/terminal knowledge is required to run the
software. The designers will be able to run it easily and observe the results. In addition, it
automatically generates a graph with categorized errors, which is intuitive. Furthermore,
we ultimately plan to incorporate almost all the important daily activities into this frame-
work. From a modelling perspective, we use a slightly different approach to model some
situations in the production and memory modules, as described in the previous section.
Another element is the assessment test. We chose to go with the EFPT test for problem
discovery as it is more generic and can cover more activities in the future. However, we
also generated a KTA score as a means of preliminary evaluation as will be described later.
Lastly, as a next step, the main outcome of the framework will be a rendered taxonomy of
possible interventions and interaction paradigms in a graphical intuitive way targeted for
researchers and designers. Future plans are presented in the last section.

5. Results

We demonstrate initial results using the framework to show the memory problems in
the daily activities of people with AD. As explained before, the utilization of functional
tests provides us with the psychometric properties we aim to exploit. This enables us to
connect to the real world and provide better contextualization for future smart homes
that can support people with AD. The problems in the daily activities are categorized and
presented as follows:

Initiation—problems when the subject cannot initiate the task. Sequencing—problems
when the subject confuses the sequence of the stages. Judgment and safety—behavior prob-
lems when the subject is in danger (e.g., forgets to turn off a cooking device). Organization—
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all the omission and commission errors. Completion—when the subject performs one step
over and over. In Figures 4 and 5, we demonstrate the figure output of the framework after
a model run for 100 people with the activity of tea preparation with mild AD level and
after a model run for 100 people with the activity of washing hands with moderate AD
level. For each graph output, the KTA score mean and standard deviation (SD) is generated
and is used to provide us with comparison information. The graph depicts the number
of users n out of 100 that required at least some help (e.g., in Figure 4, 40 users required
verbal help with their organization problems while 60 users remained independent; this
translates to the fact that 40 users needed verbal help at least once—this is the minimum
number). When the SD of the KTA score is greater than 2, we display an error bar. We are
interested in maintaining the results as close as possible to the mean of the KTA; hence, we
add a small error by two users since the minimum error is already depicted in this diagram
and we are counting persons.

Figure 5. Main graphical output of the conceptual framework. The blue bars represent the number
of subjects who completed a category of steps independently. The orange and green bars represent
the number of subjects who requested help (verbal or physical) in a category of steps. The red bars
indicate the number of subjects who are incapable of performing theses steps under a specific category.
This activity corresponds to the washing hands activity with moderate AD.

5.1. Smart Homes, Interaction Paradigms and Design Considerations

Technological advances in the domain of SH enable users with AD to leverage inter-
ventions that better suit their needs and desires. These interventions will better fulfil the
needs of these people, especially the desire to avoid institutionalization, and will reduce
the burden on caregivers. In this section, we provide possible interaction paradigms and
design recommendations that arise as a result of the problems generated by our framework,
as demonstrated previously. Firstly, regarding robotic strategies, they appear to be a well-
suited solution to perform a wide range of tasks, such as cognitive training and motivation
tasks, and for performing more advanced tasks like assistance with daily activities such as
providing medication at set times. For example, an assistive programable humanoid robot
can assist in the activity of washing hands by presenting steps and actions required of the
user. An example of an interaction paradigm would be a house that can sense when the
user is about to initiate the washing hands activity. At that moment, the robot would follow
him to the bathroom and assist with steps and items required to successfully perform the
daily activity. Likewise, robots have the capability to work as a monitor mechanism and
a caregiver will be able to monitor the user at any time if necessary. Furthermore, home
automation and digital home assistants nowadays provide an intuitive way to interact
with the house and control different appliances, as well as providing reminders, calendars,
alarms, and other information critical for people who deal with memory problems.

The conceptual framework presented is an example of the basic awareness the house
needs to have to interact better with people who have specific needs, such as memory
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problems caused by AD. Researchers, designers, and developers often find it challenging
to understand these needs and thus their interventions are not well adapted to the needs of
this group of users. This framework provides an alternative view of the memory problems
someone is facing. Therefore, having run a moderate dementia daily activity simulation,
a researcher/developer will keep in mind that safety problems are more important at
this stage rather than mild cognitive impairment; thus, the implementation of emerging
mechanisms is needed. Additionally, verbal and visual prompts all over the house are
the main priority in order to tackle organizational errors and assist the user with daily
activities. Moreover, house awareness tips arise as a result of this framework’s outputs. As
an example, the developers will be aware of which AD levels present people with more
organizational problems and thus their interventions will be more adapted to the needs of
the user. Lastly, design considerations also arise as a result of the simulation of these models.
For instance, in the case of severe cognitive decline, users face initiation problems with one
activity most of the time. This leads to anxiety, depression, and emotional challenges that
the developer can tackle when he is designing his interventions. The main contribution of
this scalable conceptual framework is the provision of information across different daily
activities that enables future smart homes to genuinely serve the user, improve his quality
of life, and avoid the burden of caregiving or institutionalization.

5.2. Validation with Previous Models

The framework presents quantitative categorized outcomes related to cognitive prob-
lems caused by AD at different levels. At this stage of the framework, the quantitative
outcomes are the only results depicted in the graphs with the terminal providing some more
memory-specific (omission and commission) errors. As such, the experimental validation
requires us to run the EFPT or the KTA test with real users and compare the results to
those of our model. These functional tests act as a bridge to validate the effectiveness of the
framework. Hence, an experiment with 10 users with mild AD would need to be conducted
and their results would need to be compared to those of a 10-user simulation. The correla-
tion of the scores leads to the validation of the models at an adequate preliminary level.
Nonetheless, due to various difficulties caused by the pandemic, it is difficult to perform
experiments with this particular group of people at present. We proceeded to compare our
results with the unique previous attempt made by Serna et al. in his model of a cooking
activity with the KTA validated test with 106 real users. The mean scores demonstrate the
strong correlation between our framework and the model by Serna et al. (r = 0.99). Table 3
presents the mean values and the standard deviation of KTA scores at all levels of AD,
obtained by KTA, Serna et al.’s model, and our model (using the tea preparation activity).
It can be seen that the models of our framework provide good results that can serve as
pre-validation. In fact, the mean results of KTA have been used as the groundwork to start
forming models and injecting errors, as explained earlier. We identify the limitations of this
validation as the KTA does not provide a distribution of errors between stages or among
different criteria. Nonetheless, the aim of this framework is to give an overall image to
researchers, stakeholders, and designers of interventions of how AD patients face cognitive
problems in many of their everyday activities and to provide a better contextualization of a
future smart house that can provide advanced interaction paradigms.

Table 3. Comparison of the KTA and Serna et al.’s model with our framework values; mean values
and standard deviations.

Level of AD KTA Mean (SD) Serna et al. Mean
(SD)

Framework Mean
(SD)

CDR 0.5—MCI 1.75 (2.21) 1.69 (1.12) 1.73 (1.32)
CDR 1—Mild AD 4.65 (3.73) 4.52 (1.72) 4.6 (2.27)

CDR 2—Moderate AD 9.81 (4.57) 9.87 (2.33) 9.67 (2.28)
CDR 3—Severe AD 13.88 (4.61) 13.84 (2.41) 13.36 (1.63)
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6. Conclusions

We presented a conceptual computation framework that simulates common cognitive
errors committed by people with AD when performing a daily activity. The initial results
demonstrate that specific errors are committed more frequently, especially in the organiza-
tion category, which is responsible for all the memory retrieval requests in the sequencing
stages of the tasks. The purpose is to deploy an awareness framework targeted towards
developers of SHs to implement adapted dynamic interventions by perceiving the most
common cognitive errors of people with AD. Although the framework has not been fully
validated with real users yet, the pre-evaluation results and score matching with the mean
and SD of KTA, which was validated with 106 real users with senile dementia, provide
us with confidence to develop this framework further and contribute to future dynamic
interventions of technologically advanced smart homes. Future plans include:

• Validation with users in our smart home.
• The inclusion of more activities.
• A rendered taxonomy of possible interventions and paradigms as the standard output

of the framework.
• The incorporation of extra occupational therapy tests or performance/functional tests,

such as the E-ADL test [59] and the cognitive performance test (CPT) [60], in the
modelling process, which will give more insights into the help required.

• The combination of activity recognition and coaching systems for a complete dynamic
provision of well-suited interventions.

This manuscript delivered a set of models combined as a framework with a simple UI
to create a useful simulation of the daily activities of people with cognitive deterioration
caused by AD. The objective of the conceptual framework was to help all stakeholders
involved in the process of designing interventions to better understand the memory prob-
lems that arise during the completion of daily activities and to contextualize the behavior
of people with cognitive problems. At this early stage, the framework contains three im-
perative activities, which are tea preparation, washing hands, and dressing. The ultimate
target is to provide a framework that can reinforce the execution of daily activities with
assistive technologies by having adequate awareness of the missteps, interruptions, and
unpredictable events involved in the execution of various activities of people with cognitive
problems caused by AD.
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