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Abstract: This paper presents an algorithm for real-time detection of the heart rate measured on a
person’s wrist using a wearable device with a photoplethysmographic (PPG) sensor and accelerometer.
The proposed algorithm consists of an appropriately trained LSTM network and the Time-Domain
Heart Rate (TDHR) algorithm for peak detection in the PPG waveform. The Long Short-Term Memory
(LSTM) network uses the signals from the accelerometer to improve the shape of the PPG input signal
in a time domain that is distorted by body movements. Multiple variants of the LSTM network have
been evaluated, including taking their complexity and computational cost into consideration. Adding
the LSTM network caused additional computational effort, but the performance results of the whole
algorithm are much better, outperforming the other algorithms from the literature.
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1. Introduction

The heart rate in portable or wearable devices is usually measured in two ways: with
the electrocardiography (ECG) or photoplethysmographic (PPG) method. In the ECG
measurement, the ECG electrodes are attached to the body. In a conventional 3-wire, 5-wire,
12-wire (or more) ECG, the electrodes (adhesive) are placed on the chest [1]. Portable
solutions can consist of a single electrode [2,3] or an array of electrodes [4]. It is also
possible to install the ECG electrode in a wristwatch in ECG-enabled smartwatches [5].
There are other methods of heart rate measurements, such as, for example, impedance-
plethysmography, magneto-plethysmography, temperature-based methods, mechanical
ballistocardiography, microwave ballistocardiography and ultrasound echocardiography.
A review of these methods can be found in [6].

The PPG method is predominantly used in portable/wearable devices; however,
devices with ECG measurements are also available. The PPG signals can be sensed and
measured from various body parts, e.g., the finger, ear, wrist, arm, etc. [7]. The optical
sensors for the measurement of the PPG signal consist of two parts: a light transmitter
(i.e., LED) and a receiver (photodetector), and they can be designed to work in transmission
or reflection modes. In the measurement of the heart rate, the light reflected from the skin
is measured, and its intensity should change with the change of blood pressure.

When using the PPG method, accurate pulse measurement is very difficult. This
method uses changes in the intensity of the reflected light in order to determine the heart’s
pulse; the change in light as a result of the heart’s work is small: around 2%. A sensor
placed on the index finger produces a much stronger signal, but wearing such a sensor is
not practical, and users prefer to use wrist-worn measuring devices; however, the signal
is much weaker, and the design of such devices is more challenging. This measurement
method is burdened with many errors, and there are many physical stimuli that distort the
proper result. The distortions are mainly caused by the movement of the person’s body
(and as a consequence, the change of the blood volume in the vessels) and the displacement
of the sensor on the surface of the skin. Even small hand gestures cause very large changes

Sensors 2022, 22, 164. https:/ /doi.org/10.3390/s22010164

https:/ /www.mdpi.com/journal/sensors


https://doi.org/10.3390/s22010164
https://doi.org/10.3390/s22010164
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2025-4505
https://doi.org/10.3390/s22010164
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22010164?type=check_update&version=2

Sensors 2022, 22, 164

20f18

in the reflected light that is measured on the wrist. An additional source of errors is
the attachment of the measuring device with the strap to the skin so that external stray
light coming from ambient sources can also reach the sensor. All kinds of mathematical
techniques can be used to correct the distorted signal. However, exact signal isolation
related only to the heart rate is very difficult. For example, a disturbance signal from a
steady walking rate of 100 steps per minute may be virtually indistinguishable from a
heartbeat of 100 beats per minute.

To minimise the impact of interference, additional sensors are used; for example, the
accelerometers that detect movement: the measurement is suspended when strong body
movements are detected. This is not a good solution because it is during intense movement
that the user is interested in measuring the movement by measuring the heart rate. Due to
the large number of disturbances, the obstruction of the measurement results is most often
used as a multi-minute running average.

Calculating the pulse from the PPG signal can generally be conducted in two main
ways. The first way is to analyse the PPG waveform in a time domain by detecting the
peaks and calculating the period of the heart rate. The second way uses the analysis in a
frequency domain, where the dominant frequencies of the PPG signal are tracked, and the
most promising one is used as the result of the heart rate measurements.

Frequency analysis can take into account nonlinear time series. In [8], a two-step
algorithm consisting of motion artefacts cancellation and spectral analysis is proposed.
Motion artefacts are cancelled using acceleration data, while the analysis of the signal
spectrum makes it possible to select spectral peaks corresponding to the heart rate. In
another algorithm, called the Spectral Filter Algorithm for Motion Artifact and Pulse
Reconstruction (SpaMA) [9], the power spectral density of the PPG and accelerometer
signals are calculated. The comparison of the PPG and accelerometer spectra enables the
removal of spurious peaks in the PPG spectrum based on the peaks in the accelerometer
spectrum. An interesting solution is presented in [10], where the authors extract the
respiratory component from the PPG signal with Fourier analysis.

An excellent review of the methods used to detect and remove motion artefacts in PPG
signals can be found in [11], describing methods based on a pure PPG signal, as well as
methods where additional acceleration data are used. When using only the PPG signal, the
motion artefacts are detected, marked and removed based on the statistical parameters of
the filtered input signal, such as kurtosis, skewness and standard deviation, which should
not change much. Other methods such as variable frequency complex demodulation or
Discrete Wavelet Transform (DWT) can also be used for that purpose. Another group of
methods is based on the acceleration sensor, where various types of adaptive filtering
are utilised to subtract the influence of the acceleration on the PPG signal. In [12], the
authors use Singular Value Decomposition (SVD) of a Hankel matrix, followed by finding
spectral peaks with FFT and using the probability function to distinguish the heart rate
from motion artefacts.

In this paper, the time-domain method of correction of the measured PPG signal is
proposed by reducing the disturbances caused by body movement. Machine learning
time series forecasting with a trained Long Short-Term Memory (LSTM) neural network
has been applied to correct the original PPG light reflected from the skin, based on the
additional signals obtained from a three-axis accelerometer. The use of an appropriately
trained neural network for PPG signal correction is a novelty to the methods described
in [11], where adaptive filtering is used.

Artificial neural networks are networks that carry out activities similar to the human
brain. Such a network consists of interconnected neurons. Data are passed to the neuron
through the input, and after processing, the data are sent as output. Artificial neural
networks help to perform tasks, such as data classification and pattern recognition. Classic
artificial sensor networks consist of three layers of neurons: the input layer receives the
data, the hidden layer uses weights to calculate the result, and then the result is transferred
to the output layer.
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In the case of a traditional neural network, we assume that all inputs and outputs
are independent of each other, and such a network does not have any internal memory
mechanism for previous states. If there is a need to predict the next state, it would be
useful to know which states have come up before. Recurrent Neural Networks (RNNs)
perform the same task for each element of a sequence, and the output depends on the
previous calculations. They have a memory that captures information about what has
been calculated so far. The main disadvantages of the RNN networks are the long training
time and the loss of memory of older input signals. The solution to the old data decay
problem is to add long-term memory to the cells. This idea is used in a special kind of
RNN, called a Long Short-Term Memory (LSTM) network [13], which is capable of learning
long-term dependencies. At the expense of added complexity, these networks are able to
store information for a period that depends on the weights and input information. The
insertion of a forget gate to the network’s memory cell proposed in [14] made it possible to
remove erroneously stored or unnecessary information from the cell’s state. A review of
LSTM networks and examples of use can be found in [15].

This paper can be considered as a continuation of work from [16], where the signal
analysis in a time domain was used to calculate the heat pulse rate from a photoplethysmo-
graphic sensor and the accelerometer was used to detect large movements and to suppress
the pulse measurement during those movements. In this article, the author uses informa-
tion from the accelerometer signals to improve the shape of the PPG signal that has been
distorted during body movement instead of suppressing the heart rate measurements. This
makes the PPG signal cleaner and results in easier and more robust peak detection in the
PPG waveform. The main contributions of this paper are:

e  Proposing the use of an LSTM network to improve the real-time PPG signals using
additional information from the accelerometer;

e Introducing a method to prepare the training dataset with reference signals, dedicated
to network training;
Preparing the training database, which has been published online;
Thoroughly evaluating multiple variants of the networks together with evaluating the
computational costs.

The layout of the paper is as follows: In Section 2, the main idea of the photoplethys-
mographic signal conditioning block is described, which is followed by the description of
the method of training data capture and processing. The LSTM network structure used for
this application is presented in Section 4, while Sections 5 and 6 contain the results of the
network training and testing on a real-world dataset.

2. Idea of Signal Correction with LSTM Neural Network

In order to compensate for signal disturbance, a correction model should be used that
takes into account the influence of the disturbance. Such a model should make it possible
to eliminate the influence of the interfering signals. Unfortunately, in many cases, it is not
possible to develop such an exact model, despite the fact that we often know the causes of
the disturbances. In such a case, machine learning can be used to forecast the correct value
of the signal.

Classic neural networks have a purely one-directional signal flow. Adding loops in the
signal flows inside the neural network makes it recurrent and allows information from the
past to persist in the network. This feature of the recurrent neural network could provide
the continuity of the quasiperiodic PPG signal; when distortions appear, the network
should try to continue to generate the signal from the past but should also consider the
distortions from the body movement. For that purpose, the LSTM neural network can be
used, which is a special kind of recurrent network containing layers of neurons that interact
with each other making the LSTM capable of learning long-term dependencies. The details
about LSTM are given in [14,17].

The LSTM neural network can be used for time-series prediction, and it should be able
to reduce the distortions caused by the movement on the PPG signal, using the current and
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previous values of the PPG signal and acceleration as inputs. The signal from a three-axis
accelerometer is used to obtain information about the person’s body movement, and on this
basis, the PPG signal from the light sensor is corrected. The correction takes place through
an appropriately trained LSTM neural network. The idea of this operation is presented
in Figure 1.

Previous data persists
n the LSTM network

W////////

-lllllllllllll//,//'///, /I
t

Time senies movement input data

Time series PPG input data

LSTM Predicted output

FPPG

Input signals Prediction results
Figure 1. Idea of PPG signal correction with accelerometer signals and time series LSTM network.

3. Preparation of Training Data

For the solution presented in the paper, network training was conducted with a set of
real PPG signals with associated accelerometric measurements. The signals were captured
with the hardware described in [16] connected to a PC running a Matlab script, which was
processing the captured signals online and saving the captured data to files. A picture of
the data-capture setup is presented in Figure 2, using the hardware described in [16].

Figure 2. Picture of training data-capture setup. The hardware is described in [16].

For supervised learning, apart from the captured real signals, the reference ground-
truth signal is also needed. In the literature, ECG is usually used as the reference, but due to
the lack of access to ECG hardware, the author decided to manually generate the reference
signal in the special procedure described as follows:

e  Each captured signal consists of approx 32 s with a PPG waveform and three wave-
forms (X, Y and Z) from the accelerometer.

e  The captured signal was sampled with a 1/32 ms sampling frequency, giving approx.
1024 samples for each signal of an approximate length of 32 s.

e  The algorithm described in detail in [16], based on the method from [18], was used to
automatically detect the peaks of the input signal in real-time.
One hundred and twenty-nine waveforms were captured from 3 different persons.
For each 32 s signal, the person wearing the sensor was asked not to move for a few
seconds at the beginning and end of the sampling time. In this way, the automatic
peak detection algorithm was able to correctly detect the peaks at the beginning and
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the end of each signal. Those two movement-free periods at the beginning and end
are denoted as Time Window A and Time window B, respectively.

e  The middle part of each signal, which was distorted by the movement, contains
multiple false peaks that are the result of the movements. The target pulse needs to be
extrapolated based on the undisturbed data at the beginning and end of the waveform
during Time Window A and Time Window B.

For each captured signal with this procedure, the human operator needs to manually
mark Time Window A at the beginning and Time Window B the end of the waveform,
where the undisturbed signals can be observed. To speed up the task of manual selection of
the time widows A and B for each captured signal, a dedicated software tool was prepared
with the GUI interface shown in Figure 3. The user can see the signals and easily decide on
the lengths of the time windows. It is also possible to manually insert the peaks that were
missed by the automatic peak detection algorithm, which was a rare incident.
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Figure 3. Application for manual selection of undisturbed parts of the signals. Time Window A and
Time Window B are marked in yellow in the top graph. The fields “good to” and “good from” at the
bottom of the GUI window denote the sample number at the end of Time Window A and at the start
of Time Window B, respectively.

Those undisturbed periods are used for calculating the ideal signals. The tool uses the
peaks within the masked PPG waveform and extrapolates the missing peaks in the non-
masked part (where the disturbances caused by body movement occurred). The operator
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is able to manually add extra peaks if any of the peaks seem to be missing. Finally, the
software generates the artificial sinusoidal signal based on the established peaks.

In the two windows manually selected by the human operator—Time Window A and
Time Window B—the peaks of the signal should already be automatically correctly detected
online during signal capture by the peak detection algorithm because the signals were not
disturbed. The time difference between the last two peaks of Time Window A is denoted as
T4. Similarly, the time difference between the first two peaks in Time Window B is denoted
as T, as shown in Figure 4.

Time Window A: Time Window B:
manually selected area manually selected area
with undisturbed part of with undisturbed part of
the signal at the beginning the signal at the end of the

of the captured waveform captured waveform

D/ T T VE] \‘

A Va4 TN\ YAYAY

1

0
e - automatically detected peak
% - interpolated peak

e — e t
T, “ B o1

Figure 4. Graphical illustration of calculation of the interpolated peaks’ positions.

The values of T4 and Tp are used to calculate the average value of the time difference
between the peaks in the signal between the manually selected Time Windows A and B:

_TA+TB

T
M 2

)

To validate if a simplified average can be used, the following inequality must be satisfied:

|n—|n]| <05 (2)
with n calculated as: ; ;
_tp—ta
"= (3)
|n| = round(n) 4

where |n| = round(n), t, is the time of the last peak in Time Window A, and tp is the time
of the last peak in Time Window B.

If Condition (2) is satisfied, there will be |n] — 1 peaks inserted in the time period
between time windows A and B. The time differences T; between the consecutive peaks,
wherei=1,2,...,|n], are calculated using linearly changing values of T; from T4 to Tp
according to the following equation:

it~ Ta
. n
Tl = TA + ZZW (5)

The detected and calculated peaks are used to generate an ideal sinusoidal waveform
crossing all of the peaks at the sinus wave maxima. This ideal sinusoidal signal is corrected
according to Equation (6) to resemble the real PPG signal, which is slightly flattened at the
bottom part.

5 = { s; fors; >0

Gs; fors; <0 (6)
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The result of this correction is shown in Figure 5. This simple approach has been proven
empirically to be very close to reality and sufficient, with a heuristically evaluated constant

G = 0.3. The input signals and the resulting ideal (target) PPG are shown in Figure 6.

input PPG

0.4 — farget PPG

=== ideal sinus
0.2 4
0.0 4
—0.2
—0.4

Figure 5. Correction of ideal target sinusoidal waveform to resemble real PPG signal. The target
waveform is calculated from the ideal sinusoidal waveform (ideal sinus) according to Equation (6)

and normalised (target PPG). In this simple way, the target PPG better resembles the real PPG signal
(input PPG).
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Figure 6. Normalised signals from PPG sensor (raw PPG) and accelerometer (acceleration XYZ) and
manually generated target signal based on ideal sinus (target PPG).

All of the captured signals, together with the calculated reference signals, have been
published in a database available online [19].
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4. LSTM Network Setup

For the purpose of PPG signal improvement described in this paper, the LSTM network
was implemented using the TensorFlow [20] software with the Keras [21] library as the
interface to Python [22]. The network was built with the Sequential class, grouping a linear
stack of layers; this class also provides training and inference methods. The model consists
of the Input layer, one or two LSTM layers and the final Dense layer, as shown in Figure 7.
Using more layers showed no improvements, so only one- and two-layer networks were
used in further evaluations.

Istm_input: InputLayer Istm_input: InputLayer
Istm: LSTM Istm: LSTM
dense: Dense Istm 1:LSTM

dense: Dense

Figure 7. Models of Sequential class used in this paper.

The Input layer decides the format of the input data to the neural network. Each
captured signal: raw PPG, acceleration X, acceleration Y and acceleration Z, accompanied
by the target PPG, was normalised and segmented into training sequences of length L, as
shown in Figure 8.

&
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Figure 8. Overview of segmenting single captured signal and its ideal target into training sequence.
The distance between samples used for the training sequence shown in the figure is S = 1.

Each training sequence contains L samples, where each sample consists of the captured
signals: raw PPG, acceleration X, acceleration Y, acceleration Z and the target PPG signal.
Every S-th sample from the input signals is used to compose the training sequence of L
samples; thus, it spans over LS samples of the input signal. The training sequences were
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taken from 100 captured signals, while for evaluation, the remaining 29 signals were used.
The signals are from the database [19] with their ideal targets, evaluated as described in
Section 3 of this paper. The training sequences were put together to form a 3D tensor with
the shape: (batch, timesteps, feature).

The LSTM layers contain the Keras implementation of the LSTM from [13]. LSTM
network structures with N; hidden LSTM layers and Nj, neurons in each hidden layer were
prepared for evaluation.

The final Dense layer implements the element-wise linear activation function, calcu-
lating the dot product between the inputs and a weights matrix created by the layer and
adding the bias. In this application, the result of this layer is the predicted value of the
pulse signal. This predicted signal is filtered using the eight-order digital bandpass filter of
Butterworth characteristics, applied twice: once forwards and once backwards, to obtain
the zero phase.

5. Network Training

The LSTM network was trained by presenting the training sequences using the Keras
training APL The training quality was controlled by evaluating with a separate set of data
not used in the training.

The algorithm has multiple hyperparameters for the network itself and the sampling
of the input data. Initially, the ranges of the hyperparameters were estimated by random
trials, keeping in mind the complexity of the calculations. The variants with large com-
plexity were abandoned; moreover, the complex network configurations had problems
achieving acceptable training and evaluation results. This step resulted in the ranges of the
hyperparameters shown in Table 1. A grid search was then used to find the most promising
architecture, which gave, in total, 240 variants to be trained and evaluated.

Table 1. Values of hyperparameters used for testing the variants of LSTM networks and input

signal sampling.
Parameter Values
L 4,8,16,24,32
S 1,2,4,8,10,16
N, 1,2
Ny, 4,8,16,32

The Adam algorithm [23] was selected as the optimiser with the loss function calculat-
ing the mean absolute error between the target and predictions. This selection produced
the best results among the other methods and loss functions available in Keras.

The proposed variants were trained with the training signals described in Section 4
of this paper. The selected results of the training as a function of the number of the
training epochs for the simplest (L = 4, N}, = 4) and the most complex (L = 32, N;, = 32)
configurations are shown in Figure 9. As can be seen, most of the networks show saturation
of the evaluation after at most 60 epochs or earlier, which seems to be a satisfactory
training length.
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Figure 9. Selected evaluation results of the networks during training as a function of the number of
epochs. Evaluation was performed with the set of 29 evaluation signals, separate from the training
data, for the selected configurations of networks: N; = {1, 2}, N, = {4, 32} and input data size: L = {4, 32}
and sampling: S = {1, 2, 4, 8, 10, 16}. The loss is calculated as an average evaluation loss of all of the
evaluation signals.
The analysis of the evaluation results can help select the most interesting setups of the
network and input signal sampling for this application. The graph in Figure 10 shows all
of the tested configurations as a function of input signal length L.
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Figure 10. Cont.
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Figure 10. Evaluation of the networks during training as a function of the length of the input

sequences L. The evaluation was made using the set of 29 evaluation signals, not used for training,

for all of the configurations of the networks considered in this paper. The loss is calculated as an

average evaluation loss of all evaluation signals. For the loss values on vertical axes in the graphs,

the best evaluation loss found after the given number of epochs was used.

The same data but with the loss presented as a function of number of neurons in

hidden layer Nj, are presented in Figure 11.
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Figure 11. Evaluation of the networks during training as a function of the number of neurons in the
hidden layer(s) Nj,. The evaluation was made using the set of 29 evaluation signals, not used for
training, for all of the configurations of the networks considered in this paper. The loss is calculated
as an average evaluation loss of all evaluation signals. For the loss values on the vertical axes in the
graphs, the best evaluation loss found after the given number of epochs was used.

As can be seen in Figure 10 from the results of the evaluation, the most promising
candidates for heart rate signal improvement are the configurations with dense sampling:
S =1, S = 2. The number of neurons does not influence the evaluation results much, as
can be seen from Figure 11, which suggests that a smaller number of network cells should
suffice for this application.

6. Testing on the Dataset

The trained networks were tested with the longest dataset available to the authors:
the PPG-DalLia database [24], containing more than 35 h of data recorded from 15 persons.
The database contains the PPG and accelerometer signals with an accompanying ECG used
as the ground truth. The signals in this dataset were collected during eight different types
of typical daily-life activities under controlled conditions that closely approximated real
life. The signals from the PPG-DalLia dataset (PPG and acceleration) were presented to the
trained LSTM networks. The output from the trained networks containing the corrected
PPG waveforms was processed by the peak detection algorithm from [16]. An example of
the PPG signals before and after processing by the LSTM network is shown in Figure 12.

The peaks were then converted to the pulse rate in (bpm) and compared to the pulse ob-
tained from the ECG (ground truth). The accuracy of all of the considered variants of LSTM
networks was evaluated against the method commonly used in related work [9,24-26] as
the mean absolute error (MAE) of beats per minute, calculated with a sliding window of
length 8 s with a 2 s shift, as in [16]. The results of the accuracy evaluation of the 5 best
variants are presented in Table 2, together with the accuracy of the other algorithms known
from the literature.

Table 2. Comparison of the accuracy of the 5 most promising variants of the solution presented in
this paper to the algorithms from the literature on the large PPG-DaLia dataset as MAE (bpm). The
heart rate measurements were recorded every 2 s. Each LSTM network was trained for 60 epochs on
the training dataset described in Section 3 of this paper.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 All

SpaMa [9]

SpaMaPlus [24]

15.56
+75
11.06
+48

11.86 14.75 9.53 17.2 39.28 16.78 1588 152 17.19 9.08 21.63 1263 9.5 10.73 12.23

8.86 9.67 64 141 2406 1134 631 11.25 16.04 6.17 1515 12.03 85 776 829
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Table 2. Cont.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 All

Schaeck2017 [26]
CNN average [24]
CNN ensemble [24]
TDHR N = 1024 [16]
TDHR N =512 [16]
TDHR N = 256 [16]

TDHR N = 128 [16]

TDHR N = 1024

[16] with LSTM:
L=4,S=2,N,=32,N; =1

TDHR N = 1024

[16] with LSTM:
L=4,S=2,N,=8,N;=1

TDHR N = 1024

[16] with LSTM:
L=4,5=2,N,=16,N,; =1

TDHR N = 1024

[16] with LSTM:
L=4,8=2,N;, =16 N, =2

TDHR N = 1024

[16] with LSTM:
L=8S=1,N,=16N;=1

33.05 27.81 18.49 28.82 12.64 872 20.65 21.75 2225 126 21.05 22.74 2771 12.05 16.4 Zi();L?
845 792 596 786 1897 1355 516 1149 10.65 6.07 9.87 995 525 585 525 jngi
773 674 403 59 1851 1288 391 1087 879 4.03 922 935 429 437 417 i7.46152
810 798 10.51 11.82 20.60 12.11 7.62 11.71 1479 492 20.05 876 7.88 9.15 845 ioffg
8.61 749 1155 1193 20.79 1424 796 1191 1495 583 19.60 886 822 9.10 8.66 :i14'3411
11.08 10.84 11.63 14.06 21.67 15.63 8.86 13.30 15.12 7.27 21.08 1049 954 10.24 9.04 i24'6265
13.13 13.57 13.11 15.59 25.55 18.05 10.25 16.19 19.23 10.32 19.39 12.64 11.63 12.33 12.80 :i449126
6.51 575 4.67 628 1392 1159 444 1219 1124 502 8.61 726 424 478 504 i7§§6
691 605 414 621 1413 11.71 428 1355 11.09 482 822 815 416 476 517 i7’3527
707 687 459 6.7 1464 11.05 442 1352 1091 502 745 862 424 494 535 :t7'3627
6.67 633 441 629 1454 1214 45 1347 10.62 478 947 782 415 506 5.18 i7':6)’95
638 633 448 6.83 1615 1146 454 1295 11.7 6.09 768 7.18 448 494 517 172’»66

Together with the accuracy, the complexity of the calculations was estimated so that
this can be taken into account, which is important for real-time mobile applications. To
estimate the calculation complexity, the number of mathematical operations was estimated
for each network variant. The LSTM network can be described with the following equations
depicting the operation of each LSTM network cell with the forget gate [13,17]:

fo = o (Wpxe + Uphy 1 + by ) @)
iy = o(Wixy + Uihe—1 + b;) ®)
o = o (Woxt + Uphy—1 + by) 9)
¢t = tanh(Wexy + Uchy—q + be) (10)
ct=frOc1+itOC (11)

hy = 0y © tanh(cy) (12)

where: d is the number of input features, / is the number of hidden cells, x; € R? is the
input vector, f; € (0, 1)h is the forget gate’s activation vector, iy € (0, 1)h is the input
gate’s activation vector, o; € (0, 1)h is the output gate’s activation vector, h; € (—1, 1)h is
the hidden state, ¢; € (—1, 1)h is the cell input activation vector, ¢; € R” is the cell state
vector, W € R"4 and U € R"*" are the weight matrices, b € R’ is the bias vector and
o is the sigmoid function. The symbol ©® denotes the element-wise Hadamard product.
For the networks presented in the previous section, the values of d = 4L and h = NN
were used (each input sequence of L length consists of four values: PPG and the X, Y and
Z accelerations).
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Figure 12. Example of PPG signals before and after processing with the trained LSTM network (a)
and example of input acceleration signals (b). For this example, the following network variant was
used: L =4, S =2 N, =32, N; = 1 with the input waveforms from the validation dataset.

The computational expense of each operation was estimated by running the dedicated
test algorithm written in C multiple times and measuring its execution time in a way similar
to that presented in [27]. This C test algorithm was compiled without optimisations and run
on Xilinx’s Zynq platform with an Arm processor and the Ubuntu Linux 16.04 operating
system. The results are presented in Table 3.

Table 3. Estimated computational costs of basic operations, normalised to the cost of the ‘+" operation.
The costs were calculated by running the basic maths operations multiple times in the C software
(compiled without optimisations) on Xilinx’s Zynq platform with an Arm processor and Ubuntu

Linux and measuring the execution time.

Approximate Computational Cost (Relative

Operation to the Cost of the “+’ Operation)
+ 1
- 1
multiplication 1.2
division 3
exp 15

The cost of the ¢ and tanh operations were calculated using the costs of the basic
operations from Table 3, and the number of basic equations was inferred from the equations
used to calculate ¢ and tanh:

1
o(x) === per (13)
ex _ e*X

The results from testing the trained networks on the PPG-DaLia dataset together with
the computational cost are presented in Figure 13.
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Figure 13. Results of the tests of the LSTM network variants on the PPG dataset [24], trained on the
dataset described in Section 4 for the following parameter values: (a) N, =4, (b) N, =8, (¢) N, =16
and (d) Nj, = 32. The evaluation results (vertical axis) were confronted with the computational costs
(horizontal axis) estimated as the approximate number of basic maths operations [27].
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Among the tested LSTM network variants, several configurations reveal good perfor-
mance. They are comprised of a moderate length of the input signal L =4 ... 8 and a small
value of inter-sampling S =1 ... 2. However, the number of cells Nj, and the number of
layers Nj differ significantly, which is consistent with the conclusions from the network
training phase described in Section 5. It must be noted that similar results were obtained
with the variants requiring both low and high levels of computational effort, so the analyses
presented in this paper can help to find the solutions appropriate for an application and
available computing resources. As can be seen from Table 2, the use of the LSTM network
significantly improves the results of the TDHR algorithm, making its performance better
than any other compared algorithms.

7. Discussion

Adding the LSTM network to the PPG processing path significantly complicates the
calculation. This complication has severe consequences because the processing is performed
in real-time and usually takes place in low-power devices. However, modern technology
has led to the development of more efficient processor systems. Nowadays, it is common
to implement critical parts of the data path in hardware in the form of custom coprocessors
to further increase the performance, so the proposed solution is feasible to implement in a
wearable device. The complexity of the algorithm was taken into account, as indicated in
Section 6, where the selection of the geometries of the LSTM networks and their arithmetic
complexity are compared with their accuracy. The curves from Figure 13 can help to achieve
a compromise between the accuracy and the complexity of signal processing.

Time-series prediction using statistical methods requires the data to be stationary.
Modern machine learning methods are used when classical methods fail. Nevertheless,
it is always worth making the time series stationary. In this paper, the input signals are
de-trended by applying a band-pass filter and limiter, as described in [16]. Seasonality and
variance of the input signals are not conditioned, so the overall result may be far from ideal,
but it is still promising and improves the accuracy of the algorithm. Any efforts towards
making the input signal stationary or more linear should benefit from a further increase in
the accuracy and will be a subject of further research.

8. Conclusions

The addition of the LSTM network to the TDHR algorithm resulted in a significant
improvement in its operational parameters. 240 LSTM network variants were trained
with the use of specially prepared sets of training signals, and the training results were
evaluated with a separate set. The final testing of the LSTM network variants together
with the TDHR heart rate detection algorithm was performed on the separate, real-world
PPG-Dalia dataset, which was completely different from the training dataset. As a result
of testing a large number of LSTM network variants, some of the most promising ones
could be selected. The obtained results appeared to be the best among the other compared
algorithms from the literature, tested on the same dataset. The presented results of training,
validation and tests, accompanied by the estimation of the calculation complexity, can be
used as an aid in the selection of LSTM network parameters when adjusting the algorithm
to the custom application.
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