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Abstract: Recently, the use of quadrotors has increased in numerous applications, such as agriculture,
rescue, transportation, inspection, and localization. Time-optimal quadrotor waypoint tracking is
defined as controlling quadrotors to follow the given waypoints as quickly as possible. Although
PID control is widely used for quadrotor control, it is not adaptable to environmental changes, such
as various trajectories and dynamic external disturbances. In this work, we discover that adjusting
PID control frequencies is necessary for adapting to environmental changes by showing that the
optimal control frequencies can be different for different environments. Therefore, we suggest a
method to schedule the PID position and attitude control frequencies for time-optimal quadrotor
waypoint tracking. The method includes (1) a Control Frequency Agent (CFA) that finds the best
control frequencies in various environments, (2) a Quadrotor Future Predictor (QFP) that predicts the
next state of a quadrotor, and (3) combining the CFA and QFP for time-optimal quadrotor waypoint
tracking under unknown external disturbances. The experimental results prove the effectiveness of
the proposed method by showing that it reduces the travel time of a quadrotor for waypoint tracking.

Keywords: waypoint tracking; external disturbance estimation; quadrotor control; reinforcement
learning; deep learning; artificial intelligence

1. Introduction

In recent years, the use of quadrotor has rapidly increased in various fields, includ-
ing agriculture [1,2], rescue [3,4], delivery [5], inspection [6], and map construction [7].
A quadrotor, or drone, shows a versatile ability for various kinds of missions because of the
simple structure, the simple use of control, and useful properties, such as VTOL (vertical
take-off and landing).

Quadrotor waypoint tracking is defined as controlling quadrotors to follow the given
waypoints. To complete time-critical missions, such as rescue and delivery, time-optimal
quadrotor waypoint tracking is essential. Although PID control [8] is widely used for
controlling robots, including quadrotors [9-11], it is hardly generalizable to various envi-
ronments, such as various trajectories and dynamic external disturbances, which cannot be
precisely modeled due to the uncertainties [12]. Existing PID control methods for quadro-
tors use a fixed position control frequency, where the position errors are fed to the PID
periodically. However, in this work, we discover that different trajectories require different
control frequencies to achieve time-optimal tracking control. We also show that different
control frequencies are required as the external disturbances change.

There have been numerous efforts for adaptive control in environmental changes,
including cascade control [13,14], finite-time control [15,16], coordinated control [17,18],
PID gain scheduling [19,20], backstepping control [21,22], sliding mode control [23,24],
external disturbance estimation [25,26], and compensation [27,28]. However, no existing
studies consider finding the best control frequencies for time-optimal tracking control.
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Therefore, we suggest a method for scheduling PID control frequencies for time-
optimal quadrotor waypoint tracking in various environments under unknown external
disturbances. First, we propose the Control Frequency Agent (CFA), a deep reinforcement-
learning-based model to schedule the ratio of position and attitude control frequencies.
Given the information at the current timestep, the CFA finds the best control frequencies for
time-optimal waypoint tracking in various trajectories. Secondly, we suggest the Quadrotor
Future Predictor (QFP), a neural-network-based model that predicts the next state of a
quadrotor. Given the current state and action of a quadrotor, QFP predicts the next state
of the quadrotor. Finally, we propose a way to compensate the external disturbances by
combining CFA and QFP. Specifically, the current external disturbances are estimated by
QFP, and CFA schedules control frequencies given the estimates as additional information.
The proposed method is generalizable to various trajectories under various unknown
external disturbances. To the best of our knowledge, none of the existing studies deal with
scheduling PID control frequencies for improving quadrotor waypoint tracking control.

To evaluate the effectiveness of the proposed method, we make comparisons with
a conventional PID control method, whose attitude and position control frequencies are
fixed. For experiments, we use various trajectories with and without external disturbances.
The methods are evaluated in terms of the total travel time taken to follow the given
waypoints. The experimental results show that the proposed method outperforms the
conventional PID controller, which uses a fixed control frequency, in waypoint tracking
under external disturbances.

Our contributions are as follows: (1) discovering that the optimal control frequencies
may vary in different environments, (2) a deep reinforcement-learning-based Control Fre-
quency Agent (CFA) that adjusts the control frequencies of a quadrotor for time-optimal
quadrotor waypoint tracking in various environments, (3) a neural-network-based Quadro-
tor Future Predictor (QFP) that estimates the next state of a quadrotor, and (4) the com-
bination of CFA and QFP for time-optimal quadrotor waypoint tracking under various
unknown external disturbances.

2. Related Work

PID control [8] is generally used in many industries because of its simplicity [9,11].
However, conventional PID control may not be applicable under dynamic external forces.
There have been numerous studies for adaptive control in dynamic environmental changes,
such as cascade control [13,14], finite-time control [15,16], coordinated control [17,18], PID
gain scheduling [19,20], backstepping control [21,22], sliding mode control [23,24], external
force estimation [25,26], and compensation [27,28]. However, none of the studies consider
scheduling control frequencies. Since this paper is focused on finding the optimal control
frequencies in different environments, the existing methods are not directly comparable.
Instead, the proposed method can be combined with the existing methods for further
improvements.

One of the prominent approaches for handling unknown external disturbances is esti-
mating external disturbances [25,26] and compensating the estimated disturbance [21,27,28].
Similarly, we train the external force estimator to predict the next state of a quadrotor given
the current state and action. Then, we compensate the estimated external disturbance by
scheduling PID attitude and position control frequencies. Although we follow the model
architecture that consists of an external force estimator and a compensator, none of the
existing studies compensate the estimated force by adjusting PID control frequencies.

3. Background
3.1. Quadrotor Dynamics

The kinematics of a quadrotor can be described in an inertial frame .A with a triad aj,
ap, and a3 and a body frame B with triad b1, by, and bs. The geometric view of two frames
is presented in Figure 1. The quadrotor has 6 degrees of freedom in the position § = [x, y, z]
and the orientation 17 = [¢, 0, ], where { is the position of the body frame with respect to
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the inertial frame A and 7 is the rotation coordinates of the body frame with respect to the
inertial frame. These values are denoted as roll, pitch, and yaw [29].

b;

Center of mass

b, (Front)

Figure 1. The description of the inertial frame .4 with triad a;, ap, and a3 and the body frame B with
triad by, by, and bs. The position [x, y, z] is the vector from O to M.

We use the Z — X — Y Euler angle convention to model the rotation of a quadrotor in
the inertial frame, following [29]. By Newton’s equations of motion, we have

0 0
mé=1| 0 | +4Rp 0 1)
—mg F+Eh+FB+E

where m is the mass of the quadrotor, g is the gravity, and “Rp is the rotation matrix from
A to B. Each F; is a vertical force produced by each rotor of the quadrotor with angular
velocity w;. A rotor also produces a moment M;.

F; = kew; @

Here, kr and k), are constants that should be experimentally tuned. By summing the
forces, we can control the acceleration of the quadrotor. Therefore, we have the first input
U

4
up =) F 4
i=1

Rotor 1 and 3 rotate in the —bj3 direction and produce moment M; and M3, whose
directions are opposite to the direction of rotation. Furthermore, rotor 2 and 4 rotate in the
bj direction and produce moment M, and M3. M; and M3 act in the b3 direction, while M,
and My act in the —bj direction. By Euler’s equations of motion, the angular acceleration
is defined as

p L(F — Fy) p p
Ig| = L(F; - F) —|q| x1I|q )
4 My — My + Mz — My r r

where X is the outer product, L is the length of the blades, and I is the inertial matrix of the
quadrotor. We have the second input vector u, using Equations (2) and (3) as follows.

0 L 0 L ?
w=| -L 0 L 0 é (6)

km/ke  —km/ke  km/kp  —km/kr E,
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The control of a quadrotor can be separated into the position and the attitude control.
In general, attitude control is ~10 times more frequent than the attitude control [30]. The
implementation of the stable control keeps the attitude of the drone as [0, 0, ] while con-
trolling the position of the drone to follow the reference trajectory. The hover configuration
isgivenas & = &y, 0 = ¢ = 0,¢ = 0and ¢ = ¢ = 6 = 0. In this state, the force for each
robot is %.

3.2. PID Control

When there is an error ¢(f) at a time step t between the sensed position y(t) and the
desired position r(t), the controller calculates the motor speed to reduce the error to 0.
When the control only uses the current error, it usually fails to reach the desired setpoint,
and thus, integral and derivative terms are additionally required. A Proportional-Integral-
Derivative (PID) controller has three gains. The proportional term is used to reduce the
currently observed error. The integral term is used to accumulate errors to reach the desired
position faster. The derivative term is used to stabilize the control. The overall PID control
process is shown in Figure 2.

N

P K,e(t) ]

¢ u(t) Drone y(®)
— 1%

b k.20 |

4™t J/

Figure 2. The basic PID controller. The error term ¢; is the difference between the desired position

Set point r(t) e(t)

K——\ o /_—\

r(t) and the sensed position y(t). Each PID term is computed based on the current and past errors.
The force of each rotor is computed from Equations (4) and (6). After processing the input, we have
the current output y(¢). This feedback loop decreases e; gradually.

3.3. Position and Attitude Control

For the quadrotor control, the position and attitude control can be separated. Therefore,
it is possible to run the attitude control more frequently than the position control using the
nested feedback loops. An example of the feedback loop is illustrated in Figure 3.

ul(t)
Position Control Desired Drone Input
r(t) e(t) roll/pitch/yaw . u2(t) Processor 30)
. Attitude Control e ——— JEASIAN

I

Figure 3. The PID feedback loop for position and attitude control of a quadrotor. Given the desired

point r(t) and sensed point y(t), the error term e(t) is computed and fed to the position controller.
Next, the position controller produces a control input u1(#) and determines the desired roll, pitch,
and yaw angles. Then, the attitude controller produces a control input u2(t) given the desired angles.
The control inputs u#1(t) and u2(t) are fed to the drone input processor to control the rotors.

The position control is to follow the reference trajectory in three dimensions. Addi-
tionally, the desired yaw angle can be specified independently. For position control, PID
coefficients must be properly tuned for each dimension and yaw angle. Then, the position
control algorithm will produce the desired roll and pitch angles.

The attitude control is to track a trajectory following the desired roll, pitch, and yaw
angles. The attitude should approach the nominal hover state, where the roll and pitch
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are near zero. PID coefficients must be properly determined for each of the raw, pitch,
and yaw angles.

4. Method

In this section, we propose a method to schedule PID control frequencies for time-
optimal quadrotor waypoint tracking under unknown external disturbances. The proposed
method includes (1) the Control Frequency Agent (CFA), (2) the Quadrotor Future Predictor
(QFP), and (3) combining CFA and QFP (Figure 4).

Environment
without external effect

Current State Next State .
i W i i i b i
| S | z |
| ? % PID Control | ﬁ & |
i i i
\, -~ : Y

Train Target

Quadrotor Future Predictor (QFP)

/

Control Frequency Agent (CFA) \

\_

Environment Predict
with external effect

PID Control

a .
-——— -——
an an

T

Control

Position Control Hz

Reinforcement Learning
k —[ Attitude Control Hz

Figure 4. The proposed QFP and CFA models. QFP is trained to predict the next position of a

quadrotor controlled by PID in the environment without external effects. After training, the next state
estimated by QFP is used as the input of CFA. Then, CFA is trained to adjust the ratio of the position
and attitude control frequencies against external effects by maximizing the given reward function.
The approximated external effect is computed as the difference between the current state (in a red
dashed box) and the estimated state (in a green dashed box). CFA is trained to balance the position
and attitude control frequencies for time-optimal waypoint tracking control.

4.1. Control Frequency Agent

A quadrotor mainly has two controllers, an attitude controller and a position controller.
The inner attitude control loop controls the Euler angles and the outer position control
loop controls the trajectory in three dimensions. In general, the attitude control frequency
is 5~10 times larger than the position control frequency [29]. As the attitude control
frequency becomes larger than the position control frequency, the quadrotor flies more
stably, but it follows the target position slowly. On the other hand, as the position control
frequency becomes larger than the attitude control frequency, the flight becomes unstable,
so it may fall. In addition, we find that the optimal control frequencies may vary according
to the environmental changes. Therefore, finding the optimal ratio of control frequencies is
essential for time-optimal control in quadrotor waypoint tracking.

Therefore, we propose a Control Frequency Agent (CFA), which is a deep reinforcement-
learning-based model that schedules the ratio of control frequencies of the position and
attitude of the quadrotor. We define the observation as the current state of a quadrotor,
which includes rotations in roll, pitch, yaw angles, a linear and angular velocity vector,
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and the motors’ speeds. The action space is defined as a discrete action space with three
possible actions: (1) increase the attitude frequency, (2) decrease the attitude frequency,
and (3) keep the current frequency ratio. The reward is the sparse reward and the agent
obtains 10/ (1 + reach time) when it reaches the last waypoint. We use a conventional
implementation of the on-policy model for the CFA model. Although we adopt the Proximal
Policy Gradient [31] for its simplicity, any deep reinforcement learning models can be
adopted. The model is trained to maximize the reward, which is maximized when the total
travel time taken to follow the reference waypoints is minimized.

4.2. Quadrotor Future Predictor

Although PID control is simple and effective, the input of the controller is derived
from the linear equation of quadrotor’s kinematic information, not considering external
forces. Therefore, we suggest a way to separate the total setpoint error in the error caused
by the PID controller and the error caused by the external effects. Let SP; and CP; be the set
point and the current position of the quadrotor at a timestep f. The PID controller computes
the target RPMs for each rotor, and the quadrotor moves to the next position CP; 1. Here,
the error is defined as E; = SP; — CP;41 if and only if there is no external effect. However,
when there are external effects, the current position CP;;1 becomes CP{ | = CPiy1 + €4,
where ¢; is the additional movement of the drone by external effects. The error E}’ in the
environment with the external effects can be written as

E{’ = SP — CP, @)
=SP — (CPi1 +€) (8)
= (SPt — CPyq) + et 9
=Ei+ e (10)

Therefore, the error term can be decomposed into the error term E; produced by the
PID control and the error €; produced by the external effects. Even though PID control is
simple, predicting the next position of the quadrotor controlled by the PID control is not
trivial. This is because PID control is dependent not only on the current position but also
on the past information of the control.

Based on the setpoint error decomposition defined above, we propose the Quadrotor
Future Predictor (QFP), which predicts the next state of the drone based on (1) the kinematic
information of the quadrotor, including CP; and SP;, (2) the current PID errors before
multiplying gains, and (3) the gain for each PID term. The model is trained to predict
the next state of the drone, which includes the next position CP;;1 and the Euler angles.
Specifically, the training samples are generated by moving to a random position near the
current position, where the random position is within the range of where the quadrotor can
move in a single timestep. The model is composed of three feedforward layers with a ReLU
activation function in-between. Batch normalization and dropout are applied after the first
and second layers. The observation of the QFP is defined as the current state of a quadrotor,
including roll, pitch, yaw angles, the linear and angular velocity vector, and the motors’
speeds. The QFP estimates a relative vector of the next position from the current position.
Specifically, the QFP model is trained with mean squared error (MSE) loss to predict the
next position @Hl of the quadrotor based on the current state information.

CP{, =CPi1 +é€ (11)
~ CPyi1+ e (12)
Since CP is an observed value, we can approximate €; ~ CP{ | — ajt+1. Accord-

ingly, we can approximate the external effect with the QFP model. Note that the model is
trained in the environment where there is no external effect.
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4.3. Trajectory Tracking with CFA + QFP

After training both the QFT and CFA models, it is possible to use a feedback loop
that combines the QFP, CFA, and a conventional PID controller for waypoint tracking.
The overall procedure is illustrated in Figure 5. Given the current state of a drone and
the motor RPMs computed by the PID controller, the QFP model predicts the next state
and approximates the external disturbances. Then, given the estimated external effects as
additional information, the CFA model adjusts the position and attitude control frequencies
periodically. Then, the PID controller runs with the adjusted control frequencies.

/Trajectory Tracking wit QFP + CFA \

Figure 5. An illustration of trajectory tracking with the QFP+CFA model. At each time step, the QFP
model predicts the next state of the quadrotor controlled by the PID, and the CFA model outputs a
ratio 7y to balance the position and attitude control frequencies.

5. Experiments

We use the the gym-pybullet-drones [32] drone simulation platform to conduct experi-
ments. It is an open-source, OpenAl Gym-like [33] multi-quadrotor simulator based on
the Pybullet Physics [34]. We use the Bitcraze Crazyfile 2.x, which is one of the default
quadrotor models.

The QFP model comprises three layers of a fully connected neural network with ReLU
activation. The sizes of the hidden dimensions are 16, 32, and 64, respectively, for each
layer. To train the QFP model, we use the 4803 samples for training and 24,019 samples for
validation that are generated by random moves. For hyper-parameters, we use the Adam
optimizer with the learning rate of 0.001, the dropout probability of 0.2, the batch size of
256, and the number of epochs as 100. The CFA model is composed of three fully connected
layers with ReLU activation. The sizes of the hidden dimensions are tested with 256, 256,
and 256, respectively, for each layer. For training the CFA model, we use the batch size of
256, the horizon size of 4000, the lambda as 0.99, the gamma as 0.99, the learning rate of
0.00001, and the number of epochs as 1000. Each episode is 10 seconds long at maximum.
We compare the proposed model (CFA+QFA) with the conventional PID baseline and the
CFA without QFA model (CFA-QFA). The CFA-QFA adjusts the position control frequency
without information about the external effects estimated by the QFA model. By comparing
the CFA+QFA model with the CFA-QFA model, we verify the effectiveness of the QFA
model. Finally, we show the effectiveness of combining the QFP and CFA models by
comparing the conventional PID and the CFA+QFA model.

We first empirically show that the optimal PID position frequency may vary for
different trajectory types. We show the results on the four trajectory types shown in
Figure 6. The first three of them are 2D movements, and the last one is 3D. The distances
between waypoints are equally distributed. When the quadrotor is close enough to the
current target waypoint, the target waypoint is set to the next waypoint. Next, we measure
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the prediction performance of the QFP model. We then compare the performance of the
CFA+QFP, CFA-QFP, and PID models in waypoint tracking in various environments.

Rectangle Circle Zigzag Up
2,2,1 e
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(cos(t),sin(t),t)
Figure 6. Four types of trajectories for the test of position frequency.

6. Results

First, we test the effect of the position control frequencies for the four different tra-
jectory types. The results are shown in Figure 7. We discover that the optimal control
frequencies vary for different trajectories. Specifically, the rectangle and zigzag types re-
quire smaller position control frequencies than the circle and up types to minimize the reach
time. In addition, there are some cases where the position control frequency significantly
affects the reach time, as shown in the third row (zigzag).

trajectory: rectancle

'
'
!
1 hertz: 63
| reach time:761
L]
. ° . . . 4 . . . . e . . . ) . ° L] hd L4
\
40 60 80 100 120

trajectory: circle

'
'
'
. . ' hertz: 83
° ° o . R ° . o . e o | reach time:422 e ® . ®
° i . L4 ° ®
, L]
'
40 60 80 100 120
trajectory: zigzag
. '
'
'
'
. 1+ hertz: 55
. 1 reach time:760
o . ' ° ° .
, L]
'
40 60 80 100 120
trajectory: up
'
'
'
. . ! hertz: 83
. . . R . . ° . . . . ° ° : reafh t\r:1e:4§4 R . ° ° . .
4
'
40 60 80 100 120

Hertz

Figure 7. The results of best position frequencies for the four trajectories. X-axis represents a
frequency (in hertz) for the position control, and Y-axis represents the reach time of the last waypoint.
The dashed red line indicates the optimal position frequency that minimizes the reach time.

Next, we show the results of the QFP performance for four randomly generated
trajectories in Figure 8. The blue line indicates the real trajectory, and the orange line
indicates the predicted trajectory. We observe that the QFP model perfectly predicts the
direction of the next position, whereas there are some errors in the magnitude. However,
it is sufficient statistics because it is important for a quadrotor to know the direction of
external forces, such as drag and wind.

Then, to verify the effectiveness of the proposed method (CFA+QFP) under unknown
external disturbances, we test the performance of the CFA+QFP model under different
wind types. Specifically, the results on the up-trajectory with two different types of wind
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are shown in Figures 9 and 10. We compare the proposed method (CFA+QFP) with the
conventional PID controller and CFEA-QFP, which uses the CFA model without the external
effects estimated by the QFP model. Figure 9 shows the results of the trajectory and the
reach time of the last waypoint. The first wind type is a circular wind type, which is not
trivial to estimate the external effects. The second wind type is a linear wind type, which
is simpler than the first one. The results show that the proposed method outperforms the
conventional PID controller by scheduling the PID control frequencies. We also observe
that the CFA performs worse than the conventional PID controller without the QFP model.
This stipulates that the external effects estimated by the QFP model are essential for finding
the optimal control frequency against the external disturbances. Additionally, we observe
that the performance gap is larger in the first wind type, which is more complex. This
indicates that the proposed model is more effective as the environment changes become
more complex. For more detailed analysis, Figure 10 shows the XYZ-positions and raw,
pitch, and yaw angles on the first wind type. We see that the CFA-QFP model fails to find
the optimal control frequency without the information estimated by the QFP model, and so,
it fails to stably follow the waypoints at some point. We also show the average reward graph
for two models for episodes in Figure 11. Although the reward of the CFA-QFP increases,
there is a gap between the reward of CFA+QFP and that of CFA-QFP. This is because the
estimated external effects are essential information to find the optimal control frequency.

X - next position Y - next position Z - next position
0.005 real 0.005 - 0.005
predlcted
0.000 1 0.000 1 0.000 -
—0.005 —0.005
—0.005 A
1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
0.01 J
0.005 1 0.005
0.00 A 0.000 4 0.000
-0.01 —0.005 —0.005 A
1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
0.01 4 ]
0.005 1 0.005
0.00 0.000 A 0.000 1
-0.01 0003 . . . . . —0.0051, . . . .
1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
0.005 | 0.005 1 0.005
0.000 1 0.000 1 0.000 -
—0.005 —0.005 -
—0.005 A
—0.010 - T —0.010 1, T : : : T T : : :
1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000

Figure 8. The performance of QFP for the four random trajectories. Each row represents one of the
four trajectories, respectively. X-axis is a time step, and Y-axis is a relative position (next position
minus current position). These results show that the QFP model predicts the direction of the next
position perfectly, whereas there is a little gap in magnitude.
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Wind Type 1 Wind Type 2
Reach Time Reach Time =~ Reference
PID: 9598 PID: 9268 PID
-QFP: 9874 -QFP: 9424 —~—- -QFP
+QFP :9388 +QFP :9232 ——- +QFP

Figure 9. The result trajectory of the quadrotor for models PID, CFA-QFP, and CFA+QFP. Wind
type 1 is the circular wind, and wind type 2 is the line wind. The number is the reach time of the
last waypoint.

X-position

0 2000 40 6000 8000 10,000

00, "
Y-position

-0.2

-0.3
000 8000 10,000 0 2000 4000y, 6000 8000 10,000

0 2000 4000, .6
Z-position

0 2000 4000 6000 8000 10,000 0 2000 4000 6000 8000 10,000

Figure 10. The position and the attitude angles of the quadrotor of the up-trajectory with circular
wind type. The X-axis is the time step. The CFA+QFP model reached the last waypoint first.

500 1000 1500 2000 2500
iteration

Figure 11. The reward graph of the CFA+QFP and CFA-QFP models. The reward graph shows that
the disturbance information predicted from the QFA is useful to the CFA model.

7. Conclusions

In this work, we discover that the optimal control frequencies may vary in different
environments. Accordingly, we suggest a method for scheduling PID control frequencies
for time-optimal quadrotor waypoint tracking in various environments under unknown
external disturbances. The proposed method is composed of (1) the Control Frequency
Agent (CFA), which adjusts the PID control frequencies according to environmental changes
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based on deep reinforcement learning, and (2) the Quadrotor Future Predictor (QFP),
which estimates the external disturbances based on neural networks. Combining the CFA
and QFP, the proposed method finds the best PID control frequencies for time-optimal
quadrotor waypoint tracking under various environmental changes. The experimental
results verify that the proposed method outperforms the conventional PID controller in
waypoint tracking in various environments.

Author Contributions: Conceptualization, B.P., C.K. and ].C. methodology, C.K. and B.P,; software,
B.P; validation, B.P. and J.C.; formal analysis, B.P. and C.K,; investigation, C.K.; resources, B.P., C.K.
and J.C.; data curation, B.P.; writing—original draft preparation, B.P. and C.K.; writing—review and
editing, B.P.,, C.K. and ]J.C.; visualization, B.P.; supervision, J.C.; project administration, J.C.; funding
acquisition, J.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported by the Unmanned Swarm CPS Research Laboratory
program of Defense Acquisition Program Administration and Agency for Defense Development
(UD190029ED).

Data Availability Statement: You can find the code implementation in https://github.com/fxnnxc/
mdpi_drone_control (accessed on 27 December 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Radoglou-Grammatikis, P; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A compilation of UAV applications for precision agriculture.
Comput. Netw. 2020, 172, 107148. [CrossRef]

2. Tokekar, P,; Vander Hook, J.; Mulla, D.; Isler, V. Sensor planning for a symbiotic UAV and UGV system for precision agriculture.
IEEE Trans. Robot. 2016, 32, 1498-1511. [CrossRef]

3. Schedl, D.C.; Kurmi, I.; Bimber, O. An autonomous drone for search and rescue in forests using airborne optical sectioning. Sci.
Robot. 2021, 6. [CrossRef] [PubMed]

4.  Lygouras, E.; Santavas, N.; Taitzoglou, A.; Tarchanidis, K.; Mitropoulos, A.; Gasteratos, A. Unsupervised human detection with
an embedded vision system on a fully autonomous UAV for search and rescue operations. Sensors 2019, 19, 3542. [CrossRef]
[PubMed]

5. Lee, J. Optimization of a modular drone delivery system. In Proceedings of the 2017 Annual IEEE International Systems
Conference (SysCon), Montreal, QC, Canada, 24-27 April 2017; pp. 1-8.

6. Besada, ].A.; Bergesio, L.; Campafia, I.; Vaquero-Melchor, D.; Lépez-Araquistain, J.; Bernardos, A.M.; Casar, ].R. Drone mission
definition and implementation for automated infrastructure inspection using airborne sensors. Sensors 2018, 18, 1170. [CrossRef]

7. Schmuck, P,; Chli, M. Multi-UAV collaborative monocular SLAM. In Proceedings of the 2017 IEEE International Conference on
Robotics and Automation (ICRA), Singapore, 29 May-3 June 2017; pp. 3863-3870.

8. Ang, KH.; Chong, G.; Li, Y. PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 2005,
13, 559-576.

9. Bouabdallah, S.; Siegwart, R. Full control of a quadrotor. In Proceedings of the 2007 IEEE/RS]J International Conference on
Intelligent Robots and Systems, San Diego, CA, USA, 29 October-2 November 2007; pp. 153-158.

10. Salih, A.L.; Moghavvemi, M.; Mohamed, H.A.; Gaeid, K.S. Flight PID controller design for a UAV quadrotor. Sci. Res. Essays
2010, 5, 3660-3667.

11. Li, J.; Li, Y. Dynamic analysis and PID control for a quadrotor. In Proceedings of the 2011 IEEE International Conference on
Mechatronics and Automation, Beijing, China, 7-10 August 2011; pp. 573-578.

12.  Liu, H.; Zhao, W.; Zuo, Z.; Zhong, Y. Robust control for quadrotors with multiple time-varying uncertainties and delays. IEEE
Trans. Ind. Electron. 2016, 64, 1303-1312. [CrossRef]

13. Szafranski, G.; Czyba, R. Different approaches of PID control UAV type quadrotor. In Proceedings of the International Micro Air
Vehicle Conference and Competitions 2011 (IMAV 2011), 't Harde, The Netherlands, 12-15 September 2011; Delft University of
Technology and Thales: Delft, The Netherlands, 2011.

14. Wang, N.; Su, S.F; Han, M.; Chen, W.H. Backpropagating constraints-based trajectory tracking control of a quadrotor with
constrained actuator dynamics and complex unknowns. IEEE Trans. Syst. Man Cybern. Syst. 2018, 49, 1322-1337. [CrossRef]

15.  Zhu, W,; Du, H.; Cheng, Y.; Chu, Z. Hovering control for quadrotor aircraft based on finite-time control algorithm. Nonlinear Dyn.
2017, 88, 2359-2369. [CrossRef]

16. Wang, N.; Deng, Q.; Xie, G.; Pan, X. Hybrid finite-time trajectory tracking control of a quadrotor. ISA Trans. 2019, 90, 278-286.
[CrossRef] [PubMed]

17. Do, K.D. Coordination control of quadrotor VTOL aircraft in three-dimensional space. Int. J. Control 2015, 88, 543-558. [CrossRef]

18. Wang, N.; Ahn, C.K. Coordinated Trajectory Tracking Control of a Marine Aerial-Surface Heterogeneous System. IEEE/ASME

Trans. Mech. 2021, 26, 3198-3210. [CrossRef]


https://github.com/fxnnxc/mdpi_drone_control
https://github.com/fxnnxc/mdpi_drone_control
http://doi.org/10.1016/j.comnet.2020.107148
http://dx.doi.org/10.1109/TRO.2016.2603528
http://dx.doi.org/10.1126/scirobotics.abg1188
http://www.ncbi.nlm.nih.gov/pubmed/34162744
http://dx.doi.org/10.3390/s19163542
http://www.ncbi.nlm.nih.gov/pubmed/31416131
http://dx.doi.org/10.3390/s18041170
http://dx.doi.org/10.1109/TIE.2016.2612618
http://dx.doi.org/10.1109/TSMC.2018.2834515
http://dx.doi.org/10.1007/s11071-017-3382-8
http://dx.doi.org/10.1016/j.isatra.2018.12.042
http://www.ncbi.nlm.nih.gov/pubmed/30736957
http://dx.doi.org/10.1080/00207179.2014.966324
http://dx.doi.org/10.1109/TMECH.2021.3055450

Sensors 2022, 22, 150 12 of 12

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Astrom, KJ.; Hdgglund, T.; Hang, C.C.; Ho, WK. Automatic tuning and adaptation for PID controllers—A survey. Control Eng.
Pract. 1993, 1, 699-714. [CrossRef]

Thanh, V.N,; Vinh, D.P; Nam, L.H.; Nghi, N.T.; Le Anh, D. Reinforcement Q-learning PID Controller for a Restaurant Mobile
Robot with Double Line-Sensors. In Proceedings of the 4th International Conference on Machine Learning and Soft Computing,
Haiphong City, Vietnam, 17-19 January 2020; pp. 164-167.

Chen, F; Jiang, R.; Zhang, K ; Jiang, B.; Tao, G. Robust backstepping sliding-mode control and observer-based fault estimation for
a quadrotor UAV. IEEE Trans. Ind. Electron. 2016, 63, 5044-5056. [CrossRef]

Zhao, W.; Meng, Z.; Wang, K.; Zhang, H. Backstepping Control of an Unmanned Helicopter Subjected to External Disturbance
and Model Uncertainty. Appl. Sci. 2021, 11, 5331. [CrossRef]

Mofid, O.; Mobayen, S.; Wong, WK. Adaptive terminal sliding mode control for attitude and position tracking control of
quadrotor UAVs in the existence of external disturbance. IEEE Access 2020, 9, 3428-3440. [CrossRef]

Thanh, H.L.N.N.; Lee, C.H.; Hong, S.K. Adaptive Perturbation Estimator based Dynamic Control using PID Sliding Manifold for
a Quadcopter UAV. In Proceedings of the 2021 International Conference on Advances in Electrical, Computing, Communication
and Sustainable Technologies (ICAECT), Bhilai, India, 19-20 February 2021; pp. 1-7.

Chen, F; Lei, W,; Zhang, K,; Tao, G.; Jiang, B. A novel nonlinear resilient control for a quadrotor UAV via backstepping control
and nonlinear disturbance observer. Nonlinear Dyn. 2016, 85, 1281-1295. [CrossRef]

Tomi¢, T.; Ott, C.; Haddadin, S. External wrench estimation, collision detection, and reflex reaction for flying robots. IEEE Trans.
Robot. 2017, 33, 1467-1482. [CrossRef]

Wang, Y.; Sun, J.; He, H.; Sun, C. Deterministic policy gradient with integral compensator for robust quadrotor control. IEEE
Trans. Syst. Man Cybern. Syst. 2019, 50, 3713-3725. [CrossRef]

Pi, C.H.; Ye, W.Y,; Cheng, S. Robust quadrotor control through reinforcement learning with disturbance compensation. Appl. Sci.
2021, 11, 3257. [CrossRef]

Valavanis, K.P.; Vachtsevanos, G.J. Handbook of Unmanned Aerial Vehicles; Springer: Berlin/Heidelberg, Germany, 2015;
Volume 2077.

Gurdan, D.; Stumpf, J.; Achtelik, M.; Doth, K.M.; Hirzinger, G.; Rus, D. Energy-efficient autonomous four-rotor flying robot
controlled at 1 kHz. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10-14
April 2007; pp. 361-366.

Schulman, J.; Wolski, F; Dhariwal, P; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

Panerati, J.; Zheng, H.; Zhou, S.; Xu, J.; Prorok, A.; Schoellig, A.P. Learning to Fly—A Gym Environment with PyBullet Physics
for Reinforcement Learning of Multi-agent Quadcopter Control. arXiv 2021, arXiv:2103.02142.

Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, ].; Tang, J.; Zaremba, W. Openai gym. arXiv 2016,
arXiv:1606.01540.

Coumans, E.; Bai, Y. Pybullet, a Python Module for Physics Simulation for Games, Robotics and Machine Learning. 2016. Available
online: https://docs.google.com/document/d/10sXEhzFRSnvFcI3XxNGhnD4N2Sedqwd AvK3dsihxVUA / edit#heading=h.
2ye70wns7io3 (accessed on 27 December 2021).


http://dx.doi.org/10.1016/0967-0661(93)91394-C
http://dx.doi.org/10.1109/TIE.2016.2552151
http://dx.doi.org/10.3390/app11125331
http://dx.doi.org/10.1109/ACCESS.2020.3047659
http://dx.doi.org/10.1007/s11071-016-2760-y
http://dx.doi.org/10.1109/TRO.2017.2750703
http://dx.doi.org/10.1109/TSMC.2018.2884725
http://dx.doi.org/10.3390/app11073257
https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.2ye70wns7io3
https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.2ye70wns7io3

	Introduction
	Related Work
	Background
	Quadrotor Dynamics
	PID Control
	Position and Attitude Control

	Method
	Control Frequency Agent
	Quadrotor Future Predictor 
	Trajectory Tracking with CFA + QFP

	Experiments
	Results
	Conclusions
	References

