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Abstract: OctoMap is an efficient probabilistic mapping framework to build occupancy maps from
point clouds, representing 3D environments with cubic nodes in the octree. However, the map
update policy in OctoMap has limitations. All the nodes containing points will be assigned with
the same probability regardless of the points being noise, and the probability of one such node
can only be increased with a single measurement. In addition, potentially occupied nodes with
points inside but traversed by rays cast from the sensor to endpoints will be marked as free. To
overcome these limitations in OctoMap, the current work presents a mapping method using the
context of neighbouring points to update nodes containing points, with occupancy information of a
point represented by the average distance from a point to its k-Nearest Neighbours. A relationship
between the distance and the change in probability is defined with the Cumulative Density Function
of average distances, potentially decreasing the probability of a node despite points being present
inside. Experiments are conducted on 20 data sets to compare the proposed method with OctoMap.
Results show that our method can achieve up to 10% improvement over the optimal performance
of OctoMap.

Keywords: mapping; SLAM; data sets for SLAM

1. Introduction

As an environment perception approach for autonomous mobile robots, occupancy
mapping is widely used in path planning [1,2], navigation [3,4] and autonomous driv-
ing [5,6]. In most applications, occupancy maps are generated from point clouds. Sensors
such as LIDAR [7,8] can produce high-quality point clouds to represent the 3D world. How-
ever, such sensors are normally expensive, which has restricted their application. Currently,
point clouds are becoming increasingly popular in the research community as cheaper
solutions become available. An RGB-D camera [9,10] can simultaneously produce both
colour and depth images, the latter of which can be used for point cloud reconstruction.
Similarly, point clouds can be reconstructed from a stereo camera [11,12] with the disparity
map derived by left and right images.

To build occupancy maps from point clouds, OctoMap is a popular mapping algorithm.
OctoMap is octree-structure-based and uses probabilistic occupancy estimation to update
maps [13]. An octree is a hierarchical data structure in which each node is recursively
divided into eight children [14,15]. In OctoMap, the volumes of a 3D space are represented
by the cubic nodes in the octree and the probability of each node is updated with the
measured endpoints in point clouds. It is assumed that the endpoints correspond to
obstacle surfaces and there are no objects between sensor origin and endpoints. A ray-
casting operation from the senor to endpoints will be performed to determine which nodes
should be updated. A node will be updated accordingly with the probabilities in the
inverse sensor model if the node is traversed by the beam cast from the sensor or the beam
is reflected in the node.

However, the map update policy in OctoMap has limitations when dealing with nodes
containing points. Normally, point clouds are either generated by sensors directly or by
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implementing algorithms on the original data from sensors. Due to sensor noise and the
limitations of point cloud generation algorithms, a point cloud normally contains both
points on the external surfaces of objects and noise points. One one hand, in OctoMap,
the nodes containing points are updated with the same probability regardless of points
being noise. On the other hand, with a single frame of point cloud, the probability of a
node with points inside can be increased but is never allowed to be decreased. In addition,
potentially occupied nodes containing points but traversed by rays will be marked as free.
The limitations of the update policy in OctoMap have a negative impact on the mapping
performance. Since OctoMap classifies the nodes in a map into occupied and free ones, it
can be treated as a binary classifier. The classification performance can be described by
a confusion matrix [16] in which elements are categorised into true positives (TP), false
positives (FP), true negatives (TN) and false negatives (FN). The occupied nodes related to
noise points will be classified as FPs and nodes with points inside but traversed by rays are
likely to introduce FNs.

Considering occupancy mapping using point clouds has a wide range of applications
in multiple fields, and the map update policy can be improved to enhance the mapping
performance. Point cloud filters such as those in the Point Cloud Library (PCL) [7] can
be used for denoising. Instead of building a map with the original point clouds, the
quality of the map can be improved using the filtered point clouds. However, the details
in environmental features may not be preserved when the outliers or clusters in point
clouds are removed by filters. To refine occupancy maps, Recurrent-OctoMap is proposed
in [17], with each cell in OctoMap modelled as a Recurrent Neural Network (RNN). The
learning approach is used to fuse semantic features. In [18], learning-aided 3D occupancy
mapping is introduced to deal with sparse and noisy range sensor data. The occupancy
states of the unobserved regions can be predicted to build dense occupancy maps. Previous
studies reported in the literature also focused on the improvement of the efficiency of
occupancy mapping. In [19], a computationally efficient probabilistic map update policy
utilising the sparse nature of the environment is proposed. The efficiency of the OctoMap
framework can also be improved by the Fast Line Rasterisation Algorithm [20].

The purpose of this work is to overcome the limitations in OctoMap by representing
occupancy information with the average distance from a point to its k-Nearest Neighbours
(k-NN). The main contributions of this paper are:

• a k-NN method for occupancy mapping using the context of neighbouring points to
update nodes containing points;

• definition of the relationship between the average distance and the change in occu-
pancy probability, potentially decreasing the probability of a node despite the points
being present in the node;

• the proposed k-NN method is verified by the point clouds derived by the StereoSGBM
algorithm [21] implemented on the images produced from a stereo camera, and can
be potentially extended to other point-cloud-based mapping systems.

Both OctoMap and the k-NN-based mapping approach are governed by several param-
eters, the choice of which affects the quality of the final map. To compare the k-NN method
with OctoMap, it is reasonable to compare their optimal mapping performance, which
can normally be achieved by tuning parameters. A two-step methodology is introduced
in [22] to identify optimal parameter sets to improve occupancy mapping performance
by first reducing parameters of lower impact using Neighbourhood Component Analysis
(NCA) [23] and then optimising the residual most significant ones with grid search. In [22],
OctoMap is implemented on 20 data sets collected in two environments to show the ef-
fectiveness of the parameter reduction and optimisation method. In this work, the data
sets introduced in [22] are used to demonstrate the benefits of the novel k-NN method
over OctoMap by comparing their optimal performance derived by the two-step principled
methodology as per [22].

This paper is organised as follows. We first introduce the background of OctoMap
in Section 2. Then, the k-NN-based inverse sensor model is presented in Section 3, using
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the relationship between the average distance from a point to its k-NN and occupancy
probability. The relationship is defined with the Cumulative Density Function (CDF) of
average distances and the choice of the distribution is explained. The map update procedure
using the proposed model is given as well. In addition, considerations of parameter space
are specified, followed by the introduction of parameter reduction based on NCA and
optimisation using grid search. In Section 4, the details of the experiments are given. The
results of average distances fitted by different distributions, k-NN parameter reduction
and the comparison of the k-NN method and OctoMap are also presented. Finally, the key
findings of the CDF of the average distance nonsensitive to distributions, lower impact
of parameter : compared to other k-NN parameters and the improvement by the k-NN
method up to 10% over the optimal performance of OctoMap are discussed.

2. Background

We compare the k-NN method with OctoMap, the details of which have been explained
in [13]. A brief summary of the update policy of OctoMap is introduced here.

In OctoMap, sensor readings are integrated with the occupancy grid mapping method
introduced in [24]. Let I1:C denote sensor measurements up to time C. The probability of a
node <8 can be written as:

?(<8 | I1:C ) =
[
1 +

1 − ?(<8 | IC )
?(<8 | IC )

1 − ?(<8 | I1:C−1)
?(<8 | I1:C−1)

?(<8)
1 − ?(<8)

]−1

, (1)

where ?(<8 | IC ) is the probability given measurement IC , and ?(<8) denotes the prior
probability and is commonly set to 0.5.

The log-odds notation

; (G) = ln
( G

1 − G

)
(2)

can be used to simplify (1) as:

; (<8 | I1:C ) = ; (<8 | I1:C−1) + ; (<8 | IC ) , (3)

where ; (<8 | IC ) is the inverse sensor model. As introduced in Section 1, the nodes that need
to be updated are determined by a ray-casting operation from sensor origin to endpoints.
The probabilities corresponding to nodes containing points and traversed by the beam are
given in the inverse sensor model:

; (<8 | IC ) =
{
;>22 if containing points

; 5 A44 if traversed by the beam
, (4)

where ;>22 and ; 5 A44 are the respective log-odds values to update occupied and free cells.
The log-odds value of the probability is limited by the clamping update policy proposed
in [25]:

; (<8 | IC ) = max(min(; (<8 | I1:C−1) + ; (<8 | IC ), ;max), ;min) , (5)

where ;max and ;min are the upper and lower bounds on the probability in log-odds notation,
respectively.

3. Method

In this work, the context of neighbouring points is used to update occupancy maps.
We first define the relationship between the average distance from a point to its k-NN and
the occupancy probability. An inverse sensor model is proposed based on the relationship.
Using the proposed model, the mapping algorithm is governed by several parameters.
These parameters are reduced by NCA and optimised with grid parameter space to achieve
the best mapping performance.
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3.1. K-NN-Based Inverse Sensor Model

In a point cloud, a point is likely to be noise if it is isolated from the points nearby.
Based on this assumption, the average distance from a point to its k-NN can be used to
represent the occupancy information of this point. A point should be assigned with a
higher probability if it has a smaller average distance, and vice versa. We have defined
a relationship between the average distance and the change in probability in [26]. In
this paper, we make minor changes and redefine the relationship. Let 5 (G) denote the
distribution of the average distance. Then, the probability representing the occupancy
information of a point can be denoted as:

?(B) = ?D −

∫ B

−∞
5 (G)3G∫ ∞

−∞
5 (G)3G

(?D − ?;) B ?D − � (B) (?D − ?;) , (6)

where B is the average distance from a point to its k-NN, ?D and ?; are the upper and
lower bounds on the probability, and � (B) is the CDF of the average distance and � (B) =∫ B
−∞ 5 (G)3G.

Based on the relationship, we define the inverse sensor model as:

; (<8 | IC ) =



∑
9

;
[
?(B 9 )

]
if the 9th point in node <8

;8= if traversed by rays and endpoints within range B2
;>DC if traversed by rays and endpoints outside range B2

, (7)

where B2 is the maximum range for how long individual beams are inserted, and ;8= and
;>DC are the respective log-odds values assigned to the nodes traversed by rays cast from
the sensor to the points whose distances to the sensor are within and outside the range
B2 . If a node satisfies both the requirements of ;8= and ;>DC , it will be updated with ;8= only.
Then, we can use (3) and (5) to update an occupancy map.

With the above inverse sensor model and the OctoMap parameters introduced in [22],
the parameters of k-NN mapping are as follows.

• ?max is the upper clamping threshold, which is the upper bound on the probability.
• ?C is the threshold. A node will be marked as occupied when the threshold is reached.
• ?< is the probability of a “miss”. A node will be updated with ?< if it is traversed by

rays and corresponding endpoints are within range B2 .
• ?

′
< is the probability of a “miss”. A node will be updated with ?

′
< if it is traversed by

rays and corresponding endpoints are outside range B2 .
• ?min is the lower clamping threshold, which is the lower bound on the probability.
• ?D is the upper bound on the probability derived by the average distance from a point

to its k-NN.
• ?; is the lower bound on the probability derived by the average distance from a point

to its k-NN.
• : is the number of nearest neighbouring points.

3.2. Distribution of Average Distances

The average distance of a point is computed by searching its k-NN in the correspond-
ing point cloud among points whose distances to the sensor are within range B2 . We use
different distributions, i.e., Generalised Extreme Value (GEV) distribution, log-logistic dis-
tribution, Rayleigh distribution, Kernel Density Estimation (KDE) and normal distribution,
to fit the average distances of all the points within range B2 in a point cloud set generated
from one data set. The results are presented in Section 4.4. The CDF of the average distance
is nonsensitive to the types of distributions. Although KDE can fit the average distance
better than other distributions, it would be difficult to change the k-NN model if KDE



Sensors 2022, 22, 139 5 of 17

is applied due to its non-parametric property. Since there is no obvious change in CDF
when the distribution is different, we assume that the average distance is subject to a
normal distribution:

5 (G) = 1√
2cf2

exp

[
− (G − `)

2

2f2

]
, (8)

where ` is the mean and f is the standard deviation.
Using the model in Section 3.1 to update occupancy maps, the mean and the standard

deviation of the average distances are required. To avoid brute force calculation and
improve accuracy, the method for calculating corrected sums of squares and products noted
in [27] is implemented, which can reduce rounding errors in computer implementation. As
a result, a series of values of mean and standard deviation will be generated as the number
of points grows. Let = denote the number points. For 8 = 1, 2, . . . , =, the following process
will be performed: 

`8 =
8 − 1
8
`8−1 +

1
8
B8

&8 = &8−1 +
8 − 1
8
(B8 − `8−1)

2

= &8−1 + (B8 − `8−1) (B8 − `8)

, (9)

where B8 is the average distance from the 8th point to its k-NN in the corresponding point
cloud, `8−1 and `8 are the mean values for 8 − 1 and 8 points, &8−1 and &8 are the sums of
the squares of the deviations for 8 − 1 and 8 points, and `0 = 0 and &0 = 0. Then, the mean
and the standard deviation of the normal distribution can be derived by:

` = `=

f =

√
&=

=

. (10)

3.3. Map Update

Algorithm 1 shows the mapping process with the k-NN-based inverse sensor model
in Section 3.1. Here, IC represents the point cloud at time C. The corresponding position of
the vision sensor is denoted as GC . < is the occupancy map. Lines 3 through 10 update the
nodes containing points. Lines 11 to 20 update the nodes traversed by rays cast from the
sensor to endpoints. The traversed nodes are updated with log-odds values ;8= and ;>DC ,
corresponding to the probabilities of ?< and ?

′
<.

3.4. Parameter Space Considerations

In this work, we use grid parameter space for analysis, which has been introduced
in [22]. Each parameter is generated by the corresponding maximum, minimum and step.
A set, as introduced in [22], can be used to describe the possible values of any parameter:{

)

���� ) = )min + (8 − 1))B , 8 <
⌊
)max −)min

)B

⌋
+ 1, 8 ∈ N+

}
, (11)

where )max and )min are the upper and lower bounds on the parameter, and )B is the step.
The algorithm-required relations with other parameters should also be considered

when generating parameters. ?′< ≥ ?< since ?′< corresponds to points further from the
sensor than ?<. A reasonable set of the parameters of the k-NN method should satisfy:

1 > ?max ≥ 0.5 > ?
′
< ≥ ?< ≥ ?min > 0

?max ≥ ?C ≥ ?min

?D ≥ ?;

. (12)



Sensors 2022, 22, 139 6 of 17

Algorithm 1: Map Update
Input: IC , GC , : , <, `, f
Output: <

1 I8= ← �4C�==4A%>8=CB(IC , GC , B2)
2 I>DC ← �4C$DC4A%>8=CB(IC , GC , B2)
3 <

′← ∅
4 for %8 ∈ I8= do
5 B8 ← �4C�E4A064�8BC0=24(I8=, %8 , :)
6 <

′.*?30C4#>34
(
%8 , ;

(
?(B8)

) )
7 for <8 ∈ <

′ do
8 %8 ← <8 .�4C#>34�4=CA4�>>A38=0C4B()
9 ;8 ← <8 .�4C!>6$33B%A>1018;8CH()

10 <.*?30C4#>34(%8 , ;8)
11 <8= ← <.�4C)A0E4AB43#>34B(I8=, GC )
12 for <8 ∈ <8= do
13 <.*?30C4#>34(<8 , ;8=)
14 <>DC ← <.�4C)A0E4AB43#>34B(I>DC , GC )
15 <

′
>DC ← ∅

16 for <8 ∈ <>DC do
17 if <8 ∉ <8= then
18 <

′
>DC .8=B4AC (<8)

19 for <8 ∈ <
′
>DC do

20 <.*?30C4#>34(<8 , ;>DC )

Two functions are defined in [22] to describe the combinations of parameters:

6()) =
⌊

max()) −min())
)B

⌋
+ 1 (13)

and

ℎ() ,) ′, =) = min
[ ⌊

min()) + (= − 1))B −min() ′)
)
′
B

⌋
, 6() ′) − 1

]
+ 1 , (14)

where ) and ) ′ are the possible values of two parameters, )B and ) ′B are corresponding
steps, and = is an input combination number.

Considering the relations in (12), the number of combinations of the parameters in the
k-NN model is:

#: = 6(:)
©«
6 (?D)∑
8=1

ℎ(?D , ?; , 8)
ª®¬©«
6 (?max)∑
8=1

6 (?′<)∑
9=1

ℎ (?′<,?<, 9)∑
@=1

ℎ (?<,?min,@)∑
F=1

6(?C )
ª®¬ , (15)

where the possible values of ?C correspond to the ?max value, min(?max) + (8 − 1)g(?max),
and ?min value, min(?min) + (F − 1)g(?min), and g()) = )B .

Our investigation of parameters is presented based on different data sets, an overview
of which is given in Section 4.1. Let #3 denote the number of data sets. We first generate a
random permutation of the indices of all the possible combinations of k-NN parameters
and then divide the combinations into #3 groups according to their indices. The number of
combinations for each data set is:

#C =
#:

#3
. (16)

3.5. Parameter Reduction and Optimisation

We use the method in [22] for parameter reduction and optimisation, first identifying
the most significant parameters and then optimising them with grid search.
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Both point cloud parameters and mapping parameters will affect the mapping perfor-
mance. However, given that mapping parameters have a higher impact on the mapping
performance than point cloud parameters [22], in this work, we only focus on the reduction
and optimisation of k-NN mapping parameters. We use 20 data sets introduced in [22] for
experiments. Since the data sets in this work are collected in outdoor environments, most
elements in an occupancy map belong to TNs. As introduced in [22], we use the Receiver
Operating Characteristic (ROC) variant true positive rate (TPR)–false positive rate (FDR) as
a performance metric to deal with such unbalanced data sets.

For parameter reduction, the combination of point cloud parameters remains the same
on different data sets. We choose point cloud sets with FDR derived by the non-parametric
naive mapping approach proposed in [22] based on their ranks. The choice of the point
cloud set or the combination of point cloud parameters for k-NN parameter reduction will
be given in Section 4.3. For each combination of k-NN parameters, an occupancy map can
be generated using Algorithm 1. By comparing the map with ground truth, the nodes in
the map can be classified into four categories, i.e., TPs, FPs, TNs and FNs. Metrics TPR and
FDR are computed from the number of nodes in each category. NCA feature selection [23]
will be applied to analyse parameter weights under the performance metrics TPR and
FDR, which has been introduced in [22]. For ease of comparison, we normalise the weights
derived by different data sets as per [23].

Based on the above parameter reduction and the optimisation results of OctoMap
parameters in [22], parameters to be optimised can be determined and will be introduced in
Section 4.3. Parameters can be optimised by grid search in the parameter space defined in
Section 3.4. The area under the curve (AUC) of TPR–FDR variant is used as the performance
metric for optimisation. Three point cloud sets in each data set will be selected using the
naive approach in [22] to compare the best AUC derived by the k-NN method and that
derived by OctoMap.

3.6. Run Time

For OctoMap, the time elapsed is proportional to the number of points processed, so
the run time can be denoted as:

C = 0# + 1, (17)

where 0 and 1 are coefficients, and # is the number of points in the point cloud set used for
generating an occupancy map.

The run time of the k-NN-based mapping approach is proportional to parameter :
and the number of processed points # . The run time can be derived by:

C = (0: + 1)# + 2, (18)

where 0, 1 and 2 are coefficients.

4. Experiments
4.1. Overview of Data Sets

We have introduced the data sets collected with a controlled procedure in [22]. Boxes
with either a plain cardboard texture or Voronoi diagrams [28] are the targets to be explored.
With a pair of boxes, five layouts can be created with the free tetrominoes in the Teris
game [29,30], i.e., I, O, T, L and S. Data sets are collected in two environments, in front of
buildings and in a parking lot, with a ZED stereo camera (Stereo Labs, USA) moving along
the circle on the ground and orbiting the targets twice. The resolution of a single image is
HD (1280 × 720 pixels). The number of data sets is 20 considering textures, layouts and
environments. Figure 1a shows one example of 20 data sets, O tetromino layout boxes
with the Voronoi pattern in the parking lot. The corresponding camera trajectory for data
collection is presented in Figure 1b.
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(a)

(b)

Figure 1. Overview of data sets. (a) O layout boxes of Voronoi diagrams in the parking lot. (b) Camera
trajectory of O layout boxes of Voronoi diagrams in the parking lot.

4.2. Map Generation and Node Classification

Figure 2 shows the experimental method for comparing two mapping methods. As
explained in [22], the StereoSGBM algorithm [21] in OpenCV is implemented on the images
of the keyframes derived by ORB-SLAM [31] to generate disparity maps, from which point
clouds can be reconstructed with a stereo camera model. These point clouds are then
downsampled with the Voxel filter in the PCL [7]. The resolution of the Voxel filter is set to
0.1 m. With time stamps, each point cloud can match with the keyframe pose generated
by ORB-SLAM. The resolution of occupancy maps and maximum range B2 for how long
individual beams are inserted are set to 0.1 m and 4 m, which has been discussed in [22].

For k-NN parameter reduction, the combination of point cloud parameters remains
the same on different data sets. Point cloud sets are chosen with FDR derived by the non-
parametric mapping approach proposed in [22] based on their ranks. The choice of the point
cloud set or the combination of point cloud parameters for k-NN parameter reduction will
be given in Section 4.3. For each combination of k-NN parameters, an occupancy map can
be generated from Algorithm 1. By comparing the map with ground truth, the nodes in the
map can be classified into four categories using the method in [22]. Metrics TPR and FDR are
computed from the number of nodes in each category. NCA feature selection proposed in [23]
will be applied to analyse parameter weights, which has been introduced in [22]. For ease of
comparison, the weights derived by different data sets are normalised as per [23].

Parameters can be optimised by grid search in the parameter space defined by the
method in Section 4.3. Based on the above k-NN parameter reduction results and the
optimisation results of OctoMap parameters in [22], parameters to be optimised can be
determined and will be introduced in Section 4.3. The AUC of TPR–FDR variant is used as
the performance metric for optimisation. Three point cloud sets in each data set will be
selected using the non-parametric approach to compare the k-NN method with OctoMap.

In the end, the time estimation models introduced in Section 3.6 will be verified.
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Camera
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Figure 2. Design of experiments.

4.3. Parameter Space for Analysis

In [22], there are 1600 combinations of point cloud parameters, which means that
1600 point cloud sets can be generated for each data set. As specified in Section 3.5, we
ranked the point cloud sets by FDR derived by the non-parametric mapping approach as
per [22]. (1) For the reduction of k-NN parameters, we can fix the combination of point cloud
parameters since they are less important than mapping parameters in performance [22].
We choose the combination of parameters corresponding to the 800th ranked point cloud
set of the data set collected with I layout Voronoi boxes in front of buildings. (2) For
the optimisation of the mapping parameters, we choose the 1st, 800th and 1600th (lower
number indicates better quality, i.e., cleaner point clouds) ranked point cloud sets from
each data set to compare the optimal performance of OctoMap and the k-NN method.

The configuration of mapping parameters is shown in Table 1. ?max, ?<, ?C and
?min are shared by the two mapping approaches. The choice of the step of the OctoMap
parameters has been discussed in [22]; 0.12 is a reasonable step and will not affect the results.
Smaller steps have been tested in [22] but no obvious difference has been observed in the
results. The step is small enough for the grid search to give valid results. To investigate
k-NN parameter weights, ?max, ?min and : are varied with corresponding steps, and ?C
changes with ?max and ?min. With (15), the total number of combinations is 112,500. To
optimise the k-NN parameters, based on the results in Section 4.4, : is constant since it
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has a lower impact on the performance metrics. ?max and ?min are set to 0.98 and 0.02
since these values show the highest frequencies in the optimal values in [22]. Moreover,
?max and ?min are the upper and lower bounds on the probability but not the parameters
for inverse senor models, and they are shared by both the k-NN method and OctoMap.
Therefore, locking these two parameters does not benefit any approach but can decrease
the number of combinations of parameters to reduce the computational time. Besides ?max
and ?min, the setup of other OctoMap parameters is dependent on the configuration in [22].
To compare the k-NN method and OctoMap, the combinations of parameters for the two
mapping algorithms are 4050 and 180, respectively.

Table 1. Configuration of mapping parameters

Parameter Minimum Maximum Step Method

?max
a 0.5 0.98 0.12 k-NN

?max
b 0.98 0.98 N/A Both

?ℎ 0.5 0.98 0.12 OctoMap
?< 0.02 0.38 0.12 Both
?
′
< 0.02 0.38 0.12 k-NN

?min
a 0.02 0.38 0.12 k-NN

?min
b 0.02 0.02 N/A Both

?C ?min ?max 0.12 Both
?D 0.02 0.98 0.12 k-NN
?; 0.02 0.98 0.12 k-NN
:

a 1 7 2 k-NN
:

b 1 1 N/A k-NN
a Configuration for the reduction of k-NN parameters. b Configuration for the optimisation of OctoMap parame-
ters and k-NN parameters.

4.4. Results

We first show the results of the average distance fitted by different distributions,
i.e., GEV distribution, log-logistic distribution, Rayleigh distribution, KDE and normal
distribution. An example is given by the average distance derived by the 800th point cloud
set of I layout Voronoi boxes in front of buildings. The corresponding CDF is presented in
Figure 3. Results show that the CDF of the average distance is nonsensitive to the types of
distribution. Results from other point cloud sets also show a similar conclusion.
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Figure 3. Cumulative Density Function (CDF) of the average distance fitted by different distributions.

Then, the results of the weights of k-NN parameters under performance metrics TPR
and FDR are presented. As specified in Section 4.3, point cloud parameters are consistent
in the 20 data sets. With the configuration of mapping parameters in Table 1, the weights
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of k-NN parameters are computed by implementing NCA feature selection on TPR and
FDR derived by the node classification results. With (15) and (16), the number of parameter
combinations for each data set is 5625. The normalised weight of each k-NN parameter is
shown in Figure 4. Overall, parameter : is less important than the other parameters. Its
weight is under 0.1 in both performance metrics. Therefore, parameter : can be excluded
from the optimisation for the best mapping performance.
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Figure 4. Normalised weights of k–Nearest Neighbours (k–NN) parameters on different performance
metrics. (a) True positive rate (TPR). (b) False discovery rate (FDR).

We also compare the performance of the k-NN method and OctoMap. The 1st, 800th
and 1600th ranked point cloud sets generated from each data set are selected to optimise
the performance of each mapping algorithm. The optimal performance of the two mapping
algorithms is then compared. All the parameters except ?max, ?min, ?C and : will be
optimised by searching the optimal AUC of TPR–FDR variant using the grid parameter
space defined with Table 1. ?C is varied to generate points on the TPR–FDR curve. For
any combination of parameters in each mapping algorithm, nine points will be produced.
A point will be discarded if its metric is not a number. Figure 5 shows the improvement
achieved by the k-NN method over the optimal AUC derived by OctoMap on 20 data sets.
The improvement increases as the optimal AUC of OctoMap decreases, but can be negative
when the AUC of OctoMap is relatively large. With the parameter configuration in Table 1,
we can achieve an improvement up to 10%. Overall, the mapping performance of Voronoi
boxes is better than that of plain boxes.
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(a)

(b)

Figure 5. Improvement by the k–Nearest Neighbours (k–NN) method over the optimal area under
the curve (AUC) of OctoMap. (a) Building. (b) Parking lot.

Figure 6 shows an example of the occupancy maps derived by OctoMap and the k-NN
method. The TPR–FDR curves of the two mapping algorithms are presented in Figure 6a,
corresponding to the improvement using the first point cloud set of the data set of the O
tetromino layout of Voronoi boxes in the parking lot in Figure 5. We pick up two points of
similar FDR on the two curves, and corresponding maps are shown in Figure 6b,c.
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(a)

(b) (c)

Figure 6. Occupancy maps derived by different algorithms using the data set of O layout Voronoi
boxes in the parking lot. (a) Receiver Operating Characteristic (ROC) variant true positive rate (TPR)–
false positive rate (FDR). (b) Occupancy map derived by OctoMap. Blue: TPs, red: FPs and yellow:
FNs. TNs are not included for clarity. (c) Occupancy map derived by the k–Nearest Neighbours
(k–NN) method.

Finally, the time model in Section 3.6 is verified. Here, the point cloud parameters are
the same as those used for k-NN parameter reduction, introduced in Section 4.3. Figure 7a
presents the linear fit for the run time of OctoMap. Corresponding coefficients in (17) are
0 = 2.3371 × 10−5 and 1 = 6.9527 × 10−1. Then, 5% of the parameter reduction results with
the aforesaid point cloud parameters in [22] are randomly selected to plot Figure 7a. The
result shows that the run time is proportional to the number of points processed by the
OctoMap algorithm. Figure 7b verifies the time estimation model (18). In each data set, 5%
of the k-NN parameter reduction results are randomly selected to estimate the time model.
The coefficients in the model are 0 = 7.3592 × 10−7, 1 = 2.7681 × 10−5 and 2 = 1.5148. The
result shows that run time increases with parameter : and the number of points processed.
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Figure 7. Run time. (a) Linear regression for the run time of OctoMap. (b) Polynomial regression for
the run time of the k–Nearest Neighbours (k–NN) method.

4.5. Discussion

The CDF of the average distance is nonsensitive to different distributions. Given that
the CDF is implemented to define the relationship between the average distance and the
change in the occupancy probability, we use a parametric distribution for ease of adjusting
the k-NN model. This can be potentially useful since the distribution of the average distance
might be different when the environment is changed. With a parametric distribution, the
k-NN model can be changed to adapt to different environments.

Among all the k-NN parameters, parameter : has a lower impact on the perfor-
mance metrics and thus can be fixed. In addition, based on the optimisation of Oc-
toMap parameters in [22], ?max and ?min can be set as constants to further reduce the
computational complexity.

The optimal AUC of k-NN shows an improvement of up to 10% over that of OctoMap.
The improvement achieved by the k-NN method increases as the optimal AUC of OctoMap
decreases but can be negative when the optimal AUC of OctoMap is relatively large.
Overall, the mapping performance is better in the environment with buildings since there
are more image features on the objects nearby and the quality of point clouds is better. In
each environment, the mapping performance is normally better when targets are covered
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with Voronoi diagrams due to the extra features introduced by the diagrams. There is no
obvious trend among different layouts.

In Figure 5, the improvement by the k-NN method against OctoMap can be observed
on most data sets in terms of AUC. However, when the k-NN method achieves optimal
improvement, the TPR–FDR curves derived by the two mapping algorithms may intersect,
i.e., points on the curve derived by the k-NN method are always better than those on the
curve derived by OctoMap when FDR is smaller than that of the intersection point, while
they are worse when FDR is larger than that of the intersection point. However, normally,
a combination of k-NN parameters can be found whose improvement against the optimal
AUC of OctoMap is less significant than that achieved in Figure 5 such that, for each point
on the TPR–FDR curve of OctoMap, a point of better performance can be found on the
curve derived by the k-NN method.

For both occupancy mapping methods, run time is proportional to the number of
points processed. OctoMap is faster than the k-NN method when processing the same
point cloud set. The run time of the k-NN method increases with parameter : . Since the
change in : has little impact on the performance metrics, a smaller : can be chosen to
reduce the computational time.

5. Conclusions

In this paper, we present an inverse sensor model for occupancy mapping using the
context of neighbouring points. The occupancy information of a point is represented with
the average distance to its k-NN. The relationship between the average distance and the
occupancy probability is defined with the corresponding CDF. By implementing NCA, the
parameter that has a lower impact on the mapping performance can be reduced. In addition,
by considering the optimal values of OctoMap parameters, the number of parameters to
be investigated can be further reduced. Through searching the grid parameter space, the
residual most important parameters can be optimised to achieve the optimal performance.
We implement the k-NN method on point clouds derived by different data sets. Results
show that the k-NN method is effective in improving performance over OctoMap. Through
our analysis, the key findings are as follows:

• The k-NN model is nonsensitive to different types of distributions.
• Parameter : is of lower impact than other k-NN parameters.
• Through grid search optimisation, the optimal performance of OctoMap can be im-

proved by the k-NN method.

In the future, the computational time can be optimised. The number of combinations
of parameters can be potentially reduced before computation. Point clouds generated from
other types of sensors will be used to test our method. In addition, the distribution of the
average distance in different environments can be investigated.
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