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Abstract: Machinery condition monitoring and failure analysis is an engineering problem to pay
attention to among all those being studied. Excessive vibration in a rotating system can damage the
system and cannot be ignored. One option to prevent vibrations in a system is through preparation
for them with a model. The accuracy of the model depends mainly on the type of model and the
fitting that is attained. The non-linear model parameters can be complex to fit. Therefore, artificial
intelligence is an option for performing this tuning. Within evolutionary computation, there are many
optimization and tuning algorithms, the best known being genetic algorithms, but they contain many
specific parameters. That is why algorithms such as the gray wolf optimizer (GWO) are alternatives
for this tuning. There is a small number of mechanical applications in which the GWO algorithm has
been implemented. Therefore, the GWO algorithm was used to fit non-linear regression models for
vibration amplitude measurements in the radial direction in relation to the rotational frequency in a
gas microturbine without considering temperature effects. RMSE and R2 were used as evaluation
criteria. The results showed good agreement concerning the statistical analysis. The 2nd and 4th-order
models, and the Gaussian and sinusoidal models, improved the fit. All models evaluated predicted
the data with a high coefficient of determination (85–93%); the RMSE was between 0.19 and 0.22
for the worst proposed model. The proposed methodology can be used to optimize the estimated
models with statistical tools.

Keywords: machine diagnosis; mechanical sensors; vibration; non-linear model; grey wolf optimizer
(GWO); metaheuristics algorithms

1. Introduction

Nowadays, the modernization of industry is encouraging researchers to deploy tech-
niques to increase energy efficiency [1]. This has made it possible to integrate distributed
energy resources (DER) to reduce fossil fuel-based energy generation by using renewable
energies [2]. DER technologies are mainly designed for small-scale energy generation
systems to provide a local solution by enacting smart management of the available energy
and storage systems [3,4].

Microturbines play an important role in distributed generation applications which are
small-scale due to their great performance in terms of efficiency and small size [1,5]. The
control of a microturbine is a challenge due to the unbalanced forces, internal self-excitation,
external excitation and complex work environment, to name a few. In particular, excessive
vibrations in rotating systems cannot be ignored [6]. In this context, the study of vibrations
can improve the control of a microturbine to obtain high efficiency in these systems [7,8].

Conventional models for the study of vibrations of a microturbine in different ap-
plications focus only in the dynamic model [9–11]. However, obtaining better energy
management requires optimizing the efficiency of DER systems. Several investigations
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have implemented algorithms to optimize significant parameters in engineering problems.
Metaheuristic algorithms perform well in various engineering problems. For example,
the have been applied in gear system design, cam design, wind turbine blade design,
aeronautical equipment and combustion systems [12]; and in engineering areas such as
robotics, data mining, security and many others [13].

To handle vibrations, metaheuristics algorithms can be used to increase the efficiency
by maximizing the amplitude of the defect frequency [14]. Another work in [15], found that
by optimizing the parametric shape of a cam for any mechanism by genetic algorithm (GA),
one can minimize vibration and improve dynamic performance. Li et al. [16] implemented
a GA to find the vibration modes of different composite laminated elements and showed
that computational cost could be reduced compared with finite element analysis (FEA).
The parameters were the unbalance force, axial position and phase. If there is no difference
between the amplitude and phase of the experimental and calculated signals, the model
represents the physical system well.

It has also been shown that many authors develop analyses using Design of Experi-
ments (DOE) and optimize regression polynomials using metaheuristic algorithms [17,18].
The gray wolf optimizer (GWO) algorithm is among the new generation metaheuristic
algorithms and is adaptable to multiple problems [19]. The GWO is considered one of the
fastest-growing algorithms among the swarm intelligence (SI) algorithms. The algorithm
is inspired by gray wolves in nature, seeking the optimal way to hunt their prey [20]. In
this sense, the parameters that best fit a model to the desired value can be found. Heuristic
optimization methods focus on a near-optimal solution to the problem but do not focus on
the best solution. The number of publications using the GWO algorithm in the last decade,
including machinery analysis applications, remains small [21]. The GWO algorithm’s
performance has been demonstrated in a study on the tension/compression of a spring
in a welded beam, and in the design of pressure vessels; specifically it works in unknown
search spaces and finds the optimal parameters quickly [22].

All rotating machines maintain a residual unbalance that results in the rotational or
synchronous frequency. The frequencies of vibration associated with the most common
faults in rotating machinery, such as imbalance, misalignment, backlash and bearing
orbits, are multiples or percentages of the rotation frequency. The unbalance increases the
amplitude of the rotational frequency mainly in the radial direction [23]. To conclude, we
may say that there are very few mechanical applications where the GWO algorithm has
been implemented, and even fewer in vibration analysis [24].

The literature has proposed different techniques to prevent vibrations by applying
metaheuristic solutions in the dynamic model, but it is still challenging to get a response
fast enough in vibration analysis. This article presents a GWO algorithm to improve the
performance of a microturbine. It is used to adjust non-linear regression models to measure
the amplitude of vibration in the radial direction in relation to the rotational frequency in a
gas microturbine without considering the effects of temperature. The novelty of the work
is the analysis of six different types of non-linear model, all of which were highly adjusted
thanks to the GWO. The adjustments were carried out using data obtained experimentally
with high variability, making the regression consider the standard errors expected in the
measurements. The results show a mean RMSE of 0.20 for all models and regression
coefficients of 85% for the worst model and 92% for the best.

The rest of the work is organized as follows. In Section 2, we report the methodology
for data collection, the non-linear models and the use of the GWO as a parameter adjuster.
Section 3 describes the results obtained for each coefficient of the non-linear models and
their performances as estimators of vibration. Section 4 briefly discusses the results, and
finally, Section 5 shows the conclusions of this investigation.

2. Materials and Methods

This section describes the process used to estimate the parameters of the non-linear
models, for which the first step is the collection of experimental vibration data. For the
data acquisition, the gas microturbine shown in Figure 1 was used. It has a compressor
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made of PLA 3D printing material, a 304 stainless steel turbine and HSS steel shaft. A
piezoelectric accelerometer (PCB Piezotronics, Model: 333B30, sensitivity: 98.2 mV/g) was
used to measure the acceleration response. Table 1 summarizes the technical data of the
microturbine used in the experimentation. The data acquisition system consisted of the
National Instruments NI-9234 module and a cDAQ-9174 chassis. The signal processing
was performed using LabVIEW. The accelerometer was positioned close to the bearing on
the side of the compressor wheel—see Figure 1—avoiding contact with the support straps
of the system. In this position, it would be away from the highest temperature zone if tests
involving combustion are required. It is worth mentioning that the scope of this study did
not include combustion tests.

Table 1. Technical data of the microturbine.

Parameter Description

Fuel Butane/propane gas with
maximum pressure of 3.5 kg/cm2

Turbine blades outer/inner diameter 68.6/40.5 mm
Compressor wheel outer/inner diameter 64.5/32.8 mm

Turbine wheel diameter 70 mm
Burner hole spacing 10 mm

Number of gas outlet holes 16

Most rotor or shaft failures occur at speeds coinciding with the rotational frequency or
multiples of the latter, harmonics or subharmonics [25]. It was decided to use a constant
air supply source at the inlet of the microturbine because the effect of temperature will
not be considered, and therefore, no combustion causes acceleration. The maximum speed
reached in this way was 127 Hz. Consequently, it was decided to use the nominal rotational
frequencies of 27, 76 and 127 Hz, equivalent to 1620, 4560 and 7620 rpm, and thus have
different factor levels. A total of 10 reps were performed for each frequency. The established
frequencies were similar to those used in Kumbhar et al. [26], although they mainly focused
on bearings.

Figure 2 shows, on a linear-linear scale, the average vibration amplitude response for
each nominal frequency.

The amplitude values in Figure 2, as specified above, are the averages. This tends
to graphically smooth the value of the peak that each repeat had. However, due to the
variability in the measurements, the real average frequency values consider the peak of
each repetition. The average amplitude, considering the peaks of each repetition and its
variations, are shown in Table 2.

Figure 1. Test bench of the used microturbine.
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Figure 2. Amplitude of vibration with respect to each nominal frequency level.

Table 2. Peak average frequency and amplitude values with their standard deviations.

Avg. Frequency (Hz) Standrad Deviations Avg. Amplitude (µm) Standard Deviations

26.9 0.5676 1.7891 0.2009
77 1.1547 5.2697 0.7028

125.9 0.5676 2.0426 0.3287

A series of non-linear models were selected to adjust the vibration amplitude mea-
surements and evaluate the best score through the root mean square error (RMSE) and the
correlation coefficient R2. A total of 10 repetitions were performed for each model. The
proposed models consist of 2nd, 3rd and 4th-order polynomials; and exponential, Gaussian
and sinusoidal models.

The equations are summarized from (1) to (6), respectively, where the frequency is
handled as x and the letters a,b,c,d and e are the unknown coefficients.

a(x)2 + b(x) + c (1)

a(x)3 + b(x)2 + c(x) + d (2)

a(x)4 + b(x)3 + c(x)2 + d(x) + e (3)

a(exp)b(x) + c(exp)d(x) (4)

a(exp)
−1

(x − b)2

2(c)2
(5)

a(sin(b(x) + c)) (6)

The objective was to compare the results with the statistically estimated model in [27]
regardless of whether or not there are non-significant terms in the latter.

For the adjusting, the GWO was used. The original diagram of the GWO algorithm can
be seen in Figure 3, and its full description can be found in [22]. Within the metaheuristic
algorithms, the GA is the most widely used. However, it presents the significant disad-
vantage of having multiple specific parameters to adjust. In contrast, the wolf algorithm,
in addition to the advantages indicated in the introduction, does not have any specific
extrinsic parameter, which becomes one of the options for calculating the coefficients.
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All metaheuristic algorithms are susceptible to local optima, which is why cross-
referencing with different initial values was used to verify that the algorithm was not
remaining fixed in a local optimum. Through the GWO algorithm, the coefficients with the
lowest RMSE in a fixed number of iterations were calculated. All the models were adjusted
with the same search parameters, which are summarized in Table 3. The general search
parameters allowed us to adjust how the GWO finds the solution. The number of agents
and iterations remained fixed for all models. A large number of agents helps in the search
and avoids local optimum, but increases the computational cost. The upper and lower
search limits determine the search limits of the parameters of each model, and these must
be adapted to the type of model.

START

Initialize the populations of 
Alpha, Beta, Delta and Omega wolves

Evaluate the grey wolf position 
with respec to target position

Update the grey wolf position by 
the equation s(t+1)=(s1+s2+s3)/3

No

Initialize parameters (number of gray wolves,
 number of iterations, limits, etc.)

Save the best solution

iteration< Max iterationsYes

Estimate the target positions, SA, SB, and SD
 by Alpha, Beta, and Delta wolves respectively

END

Figure 3. Flow chart for the GWO-based optimization.

Table 3. Search parameters for the model adjustment.

Parameter 2nd Order 3rd Order 4th Order Exponential Gaussian Sinusoidal

SearchAgent 300 300 300 300 300 300
Iterations 500 500 500 500 500 500

Dimension 3 4 5 4 3 3
LowerBoundary [−5 −5 −5] [−5 −5 −5 −5] [−5 −5 −5 −5 −5] [−2 −5 −2 −5] [0 0 0] [−10 −5 −5]
UpperBoundary [5 5 5] [5 5 5 5] [5 5 5 5 5] [2 5 2 5] [10 100 100] [10 5 5]

It can be observed that the search parameters from Table 3 that the search was carried
out with a fixed number of iterations and with the same number of search agents, while
slightly varying the search limits in the parameters according to the part they represent in
each non-linear model. It is important to note that as stated in the no free lunch theorem,
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there is no algorithm superior to any other if they are averaged in all cases [28]. This is why
any metaheuristic algorithm without specific parameters can solve the task.

3. Results

Table 4 displays the values of the coefficients calculated for each model. These cor-
respond to the samples that resulted in the best scores. The results for the second, third
and fourth-order polynomial models clearly show that the coefficients of the higher-order
terms than the quadratic are much less significant, which is why these coefficients’ values
are much lower than those of the terms quadratic, linear and independent. The exponential
results model indicates similar exponent values. However, a different sign is shown in the
coefficients to allow the change in slope direction with this model. This model shows a
slowly rising slope and a slow descending slope, unlike a polynomial. This is caused by
the difference in the magnitude of the coefficients of both exponentials. For the Gaussian
function, the three parameters calculated were coefficient a, which is the value of the highest
point of the bell; b is the position of the center of the bell; and c is the standard deviation.
Thus, parameter a was determined by the magnitude of the measurements, and the average
frequency of the measurements determined parameter b. Finally, parameter c reflects the
variability of the model. For the sinusoidal function, parameter a is the amplitude, which is
why in magnitude, it is virtually the same as the parameter an of the Gaussian model. The
angular velocity is coefficient b, and the phase is coefficient c. The regression of each model
on the data is depicted in Figures 4–9 as follows:

• Figure 4a corresponds to the quadratic regression, and Figure 4b shows how the RMSE
is reduced as the number of iterations is increased for the 2nd-order model.

• Figure 5a corresponds to the cubic regression, and Figure 5b presents how the RMSE
is reduced as the number of iterations is increased for the 3rd-order model.

• Figure 6a corresponds to the quartic regression, and Figure 6b shows how the RMSE
is reduced as the number of iterations is increased for the 4th-order model.

• Figure 7a corresponds to the exponential regression, and Figure 7b displays how the
RMSE is reduced as the number of iterations is increased for the exponential model.

• Figure 8a corresponds to the Gaussian regression, and Figure 8b depicts how the
RMSE is reduced as the number of iterations is increased for the Gaussian model.

• Figure 9a corresponds to the trigonometric regression, and Figure 9b shows how the
RMSE is reduced as the number of iterations is increased for the sinusoidal model.
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Figure 4. Results from the GWO using a 2nd-order model: (a) Regression of the 2nd-order model.
(b) Number of iterations in which the RMSE converged with the 2nd-order model.
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The number of iterations in which the minimum RMSE was reached varied in each
repetition for each model. For the 2nd-order model, it ranged from 322 to 474; for the
3rd-order model, it ranged from 430 to 500; for the 4th-order model, it ranged from 458 to
498; for the exponential model, it ranged from 449 to 500; for the Gaussian model, it ranged
from 438 to 496; and for the sinusoidal model, it ranged from 338 to 485.

Table 4. Resulting coefficients for the algorithm for all models.

Model Coefficients
a b c d e

2nd order −0.00136 0.21149 −2.90663 · ·
3rd order 8.01950× 10−06 −0.00321 0.33308 −5 ·
4th order 2.85× 10−07 −7.46× 10−05 0.00502 0.00150 −0.58955
Exponential −0.37629 0.03966 1.30276 0.03008 ·
Gaussian 5.27487 77.94529 34.75833 · ·
Sinusoidal 5.27116 0.02421 0.30448 · ·
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Figure 5. Results from the GWO using a 3rd-order model: (a) Regression of the 3rd-order model.
(b) Number of iterations in which the RMSE converged with the 3rd-order model.
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Figure 6. Results from the GWO using a 4th-order model: (a) Regression of the 4th-order model.
(b) Number of iterations in which the RMSE converged with the 4th-order model.
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Figure 7. Results from the GWO using an exponential model: (a) Regression of the exponential model.
(b) Number of iterations in which the RMSE converged with the exponential model.
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Figure 8. Results from the GWO using an gaussian model: (a) Regression of the gaussian model.
(b) Number of iterations in which the RMSE converged with the gaussian model.

The results of the RMSE and R2 for all models are shown in Table 5. The computational
performance and mean bias error (MBE) are presented in Table 6. The standard deviation
is included in both due to repetitions being performed. The figures of the models show
symmetric behavior for the quadratic, gaussian and sinusoidal models. In contrast, the
cubic, quartic and exponential models show asymmetric behavior with different rising
and falling slopes. This effect can be observed more clearly in the Exponential model
(Figure 7a). The values of the parameters were adjusted based on the RMSE. However,
these do not reflect the data adjustment or the variability of the models. Therefore, the
R2 and the standard deviation of each model are in Table 4. It is observed that practically
all the models share the same RMSE, the exception being the exponential model, which
presents the most significant error. However, the third and fourth-order polynomial models
show the lowest standard deviation, and the cubic model the worst R2. In general terms,
the second-order, Gaussian, and sinusoidal models offer the best behavior—practically the
same in RMSE, R2 and standard deviation.
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Figure 9. Results from the GWO using a sinusoidal model: (a) Regression of the sinusoidal model.
(b) Number of iterations in which the RMSE converged with the sinusoidal model.

Table 5. Evaluation criteria comparison for the models, including standard deviation.

Model RMSE R2 Model RMSE R2

2nd order 0.19155 ± 8.0 × 10−07 0.92913 ± 2.9 × 10−07 Exponential 0.21936 ± 0.00343 0.91884 ± 0.00126
3rd order 0.19175 ± 0.00206 0.85524 ± 0.23333 Gaussian 0.19153 ± 8.1 × 10−07 0.92914 ± 3.0 × 10−07

4th order 0.19129 ± 0.00272 0.92922 ± 0.00100 Sinusoidal 0.19137 ± 2.3 × 10−06 0.92919 ± 8.5 × 10−07

Table 6. Computational performance and MBE with deviations.

Model Time (s) MBE

2nd order 0.86225 ± 0.01958 1.99 × 10−06 ± 0.00045
3rd order 1.69912 ± 0.04212 7.84 × 10−06 ± 0.00085
4th order 2.61961 ± 0.13905 0.00016 ± 0.00361
Exponential 1.27736 ± 0.44059 0.00059 ± 0.00334
Gaussian 0.95463 ± 0.02762 4.35 × 10−06 ± 0.00059
Sinusoidal 0.97166 ± 0.03725 7.20 × 10−06 ± 0.00085

If we use all the proposed models to predict the amplitudes of vibration at the specific
average frequencies from Table 2, the relative errors are those shown in the following
Table 7. This was done for a comparison with the results of the quadratic model reduced
in [27].

Table 7. Relative amplitude errors using average frequencies.

Model 26.9 Hz 77 Hz 125.9

2nd order [27] −0.53% 0.03% −12.88%
2nd order 0.163% 0.010% −0.059%
3rd order 0.204% 0.004% −0.012%
4th order 0.539% 0.010% −0.078%
Exponential 2.774% −0.675% 0.633%
Gaussian 0.271% 0.060% −0.263%
Sinusoidal 0.125% 0.035% −0.127%

4. Discussion

All the models predicted the data with almost 93% accuracy, except for the 3rd-order
model. This is very close to what was published in [26], where the vibration amplitude
variations were predicted with 95% accuracy.

The 4th-order model is the one that required the longest computation time. However,
it is the one with the best coefficient of determination. Additionally, this model produced
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the lowest RMSE value of all. In a previous study [27], the 2nd-order model was fitted
using one-way ANOVA. If we take the R2 of the statistical 2nd-order model in the study
referenced previously, the 2nd-order model had a 0.33% higher R2. The 3rd-order model
had a 7.65% lower R2, the 4th-order model had a 0.34% higher R2, the exponential model
had a 0.78% lower R2, the Gaussian model had a 0.33% higher R2 and the sinusoidal model
had a 0.34% higher R2. Thus, taking the 2nd-order model of this paper as a reference, the
3rd-order model had a 0.1% higher RMSE, the 4th-order model had a 0.13% lower RMSE,
the exponential model had a 14.52% higher RMSE, the Gaussian had a 0.01% lower RMSE
and the sinusoidal model had a 0.09% lower RMSE.

Therefore, the 4th-order model had the best score regarding the evaluation criteria,
although it must be considered that the computational time was 200% greater than that of
the 2nd-order model. The 2nd-order model had the least computation time. In this case,
the Gaussian and sinusoidal models can also be selected because they had very similar R2

values and only minor reductions in RMSE, but computation times closer to the low end.
Although the 4th-order and exponential models did not produce MBE of the great

magnitude, those of the other models were very close to zero.
The models had the following average relative errors: 0.038% for the 2nd-order model,

0.065% for the 3rd-order, 0.157% for the 4th-order, 0.911% for the exponential, 0.023% for
the Gaussian and 0.011% the for sinusoidal. The sign for a value of Table 7 means whether
the model overestimated or underestimated the amplitude value.

In general, the models produced average relative errors lower than the reduced second-
order statistical model in the evaluated frequency spectrum, which was 5%.

By varying the rotational frequency, Figure 2, a "beat vibration" effect should be
appreciated, very similar to that shown in [29]. The increases in the amplitude values
of vibration in the second speed may be because this frequency is close to the natural
frequency of the rotor. However, the measurements of the natural frequencies are outside
the scope of this work.

In addition, the models follow a pattern similar to that shown in [30], where the effect
of the spindle speed on the amplitude of vibration is significant in any direction.

Likewise, the regression models are similarly adjusted to the data shown in [31], where
they experimentally analyzed the behavior of cracked rotor in the presence of torsional
vibrations. Subsequently, it was determined that the amplitude of lateral vibration at
the fundamental frequency increases with the rotation speed, regardless of rotor crack
condition (transverse and 45°) or normal condition, with or without torsional excitation.

A methodology to develop an intelligent monitoring system for machining processes
was developed by [18]. As well as in this methodology, metaheuristic algorithms can be
implemented in conjunction with statistical tools such as the Design of Experiments to
improve the modeling of mechanical processes.

The results evidently show that metaheuristic algorithms serve to optimize regression
models satisfactorily. The absence of implementations in mechanical systems over the last
few years may have been due to few comparative and standardized results in the literature,
the fact that they have several parameters that take a long time to determine their values or
that there may be stagnation in local optima [24].

5. Conclusions

In this study, the GWO algorithm was implemented to adjust non-linear regression
models to measurements of the amplitude of vibrations in relation to the rotational fre-
quency in a gas microturbine.

The evaluated models can be used to predict vibrations with a high coefficient of
determination by evaluating a specific factor, not necessarily rotational frequency only,
and considering the appropriate operating parameters. Additionally, the methodology
proposed in this paper can be used to optimize models that were estimated with statistical
tools, such as DOE, to improve the modeling of mechanical processes.

Although the search for the parameters of each mathematical model may take more or
less time, the selection of the boundary parameters for the algorithm remains simple. This
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facilitates its implementation in other models when the measurement of other variables
is considered. Making adjustments to non-linear models considering more experimental
points at higher frequencies is beyond the scope of this work, since it could happen that the
determination of these models is not appropriate if the trends change drastically.

For greater precision and a better fit, a more significant number of measurement points
is required. If it is possible to increase the number of measurements at each point, this
allows greater reliability to each of the models. The data acquisition system is limited;
consequently, the noise inherent to the measurement is one more factor to consider. It is
recommended to improve the hardware’s precision (if possible) to work with less variability
in the measurements.

Future work aims to analyze the models presented in this work to find response
surfaces where the temperature is considered as an additional variable.
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