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Abstract: In recent years, separating effective target signals from mixed signals has become a hot
and challenging topic in signal research. The SI-BSS (Blind source separation (BSS) based on swarm
intelligence (SI) algorithm) has become an effective method for the linear mixture BSS. However,
the SI-BSS has the problem of incomplete separation, as not all the signal sources can be separated.
An improved algorithm for BSS with SI based on signal cross-correlation (SI-XBSS) is proposed in
this paper. Our method created a candidate separation pool that contains more separated signals
than the traditional SI-BSS does; it identified the final separated signals by the value of the minimum
cross-correlation in the pool. Compared with the traditional SI-BSS, the SI-XBSS was applied in six SI
algorithms (Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential Evolution (DE),
Sine Cosine Algorithm (SCA), Butterfly Optimization Algorithm (BOA), and Crow Search Algorithm
(CSA)). The results showed that the SI-XBSS could effectively achieve a higher separation success
rate, which was over 35% higher than traditional SI-BSS on average. Moreover, SI-SDR increased by
14.72 on average.

Keywords: speech separation; cross-correlation; blind source separation; swarm intelligence
optimization algorithms

1. Introduction

Blind Source Separation (BSS) refers to the process of obtaining source signals from
mixed signals when the theoretical model and source signals cannot be accurately known [1–3].
It is a powerful signal processing method, which has been widely used in sonar and
radar signal processing [4,5], wireless communication [6], geophysical exploration [7,8],
biomedical signal processing [9,10], speech and image processing [11,12], and machine
fault diagnosis [13,14].

In recent years, some achievements have been made in the theoretical BSS research.
BSS algorithms are mainly divided into traditional algorithms and intelligent algorithms.
Independent Component Analysis (ICA) is the traditional method of linear BSS to obtain
the best estimate of the source signals [15]. Since the traditional optimization algorithms
are easily trapped into local optimum and have a slow convergence rate, researchers
have introduced swarm intelligence optimization algorithms to ICA for blind source
separation [3]. Swarm intelligence (SI) algorithm is a new branch of artificial intelligence
with low cost, fast speed, and good robustness [16]. Compared with the traditional ICA
methods, the BSS algorithms with the swarm intelligence optimization algorithm are
characterized by higher accuracy, efficiency, and robustness [17].

The BSS based on the swarm intelligence optimization algorithm (SI-BSS) can effec-
tively solve traditional algorithms’ nonlinear activation function selection, especially in
speech separation [18]. It reduces the number of iterations of the algorithm and has global
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solid optimization ability. The speed of separation and convergence precision were studied
in terms of their feasibility. Zhu-cheng Li et al. proposed a modified glowworm swarm opti-
mization (MGSO) algorithm based on a novel step adjustment rule and then applied MGSO
to BSS [19], which had a faster convergence speed and higher accuracy compared with PSO
and GA. Fang-chen Feng et al. proposed a new optimization framework to improve the
signal inference ratio without reducing the Signal to Distortion Ratio (SDR) [20]. Khalfa
Ali et al. proposed the High Exploration Particle Swarm Optimization (HEPSO) algorithm
for speech blind source separation with better global optimization performance [21]. Jiong
Li et al. formulated a new contrast function by a convex combination of generalized au-
tocorrelations and the statistics of the innovation, which was better than the compared
algorithm in convergence speed and convergence accuracy [22]. Cristina P. Dadula and
Elmer P. Dadios et al. proposed a genetic algorithm for blind source separation based on
independent component analysis (ICA), effectively separating target signals. However,
the experimental results also pointed out that the SI method was ineffective in completely
separating the whole signals in a multi-blind source [23].

Tracing back the causes of incomplete separation, we found that each signal decom-
position is independent, with no information exchange within separated signals, so each
separation result does not discriminate. That is, the current separation result cannot be
verified if the previous separation has separated it. Therefore, we proposed an improved
blind source separation of SI algorithm based on signal cross-correlation to solve the incom-
plete separation. This paper mainly studies the blind source separation of linearly mixed
signals with two source signals. First of all, our method tries to make more sets of separated
signals with the subtraction of separated signals. Then, the cross-correlation values of all
separated signals are calculated. In the end, the final separated signals are identified by the
cross-correlations values, which means that the lower the values of the cross-correlations of
the separated signals are, the more mutual independence they have. In order to verify the
effectiveness of our algorithm, six swarm intelligence algorithms (PSO [3,24], GA [25,26],
DE [27–29], SCA [30–32], BOA [33,34], and CSA [35,36]) are applied. The results of sepa-
ration were compared in terms of separation performance, separation success rate, and
applicability according to the cross-correlation and three kinds of separation evaluation
indexes (scale invariant signal-to-distortion ratio (SI-SDR), perceptual evaluation of speech
quality (PESQ), and short-time objective intelligibility (STOI) [37–40]).

2. Related Work
2.1. Blind Source Separation

The widely used BSS modeling is shown in Figure 1.
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Figure 1. BSS modeling flow chart.

In the blind source separation, the mixed-signal X(t) waveform and the source sig-
nal’s independence are used to make the separated signal Y(t) as close to the source signal
as possible. The source signal is expressed as S(t) = {s1(t), s2(t), s3(t), . . . , sn(t)}T .
The mixed signal is X(t) = {x1(t), x2(t), x3(t), . . . , xn(t)}T . The separated signal is
Y(t) = {y1(t), y2(t), y2(t), . . . . . . , yn(t)}

T . The mathematical model of blind source sepa-
ration [1–3,5,16,17,19–21,23,41–46] is a linear mixture model, as shown in Equation (1):

X(t) = A× S(t), (1)

where A is the linear mixing matrix of n× n, and n represents the number of source signals.
According to the de-correlation and non-Gaussian criteria, the separation matrix W is
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solved, and then the separated signal is extracted from the X(t), which can be expressed as
Equation (2):

Y(t) = W × X(t), (2)

where W is the separation matrix of n× n.

2.2. Swarm Intelligent Blind Source Separation Algorithm

The basic idea of BSS is to separate the source signals from the mixed signals by esti-
mating the separation matrix W. SI-BSS uses a SI algorithm to find the optimal separation
matrix Wbest, as shown in Figure 2.
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The steps of blind source separation based on swarm intelligence algorithm are de-
scribed as Algorithm 1.

Algorithm 1: SI-BSS (Blind Source Separation Based on Swarm Intelligence Algorithm)

Input: X(t)

1. Centralize and whitening X(t)
2. Initialize the parameters of swarm intelligence algorithm.
3. Randomly generate the initial n× n separation matrix W.
4. Apply the SI algorithm to get Wbest according to the fitness function
5. Obtain the separated signals Y(t), Y(t) = WbestX(t)

Output: Wbest, Y(t)

In order to analyze the performance and separation effect of the algorithm, simulation
experiments are generally adopted. Therefore, we randomly generated the mixing matrix
of n× n and mixed it with the source signals S(t) to obtain the mixed signals X(t).

Whitening: To achieve the decorrelation of mixed signals and get the unit variance,
whitening is used for mixed signals X(t) as in Equation (3):

X̃(t) = ED−
1
2 ETX(t), (3)

where E represents the eigenvector of E
{

XXT}, and D denotes the eigenvalues of E
{

XXT}.
The aim of the whitening process is the orthogonal mixing matrix. The orthogonal mixing
matrix halves the number of estimated parameters, so it only has n(n− 1)/2 free parame-
ters. By data whitening, the algorithm’s computational complexity is reduced, which leads
to a high probability of achieving a successful signal recovery.

2.3. The Fitness Function of SI-XBSS

According to the Mean Value Theorem, the negentropy of separated signals is defined
to construct the fitness function of the SI algorithm. As the negentropy is maximum,
the non-Gaussian property between separated signals is also the strongest. Therefore,
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negentropy can be used to measure the coherence of separated signals [14]. The following
formula can approximately describe multivariable negentropy.

Ji(yi)
1

12
k2

3(yi) +
1

48
k2

4(yi) +
7

48
k4

3(yi)−
1
8

k2
3(yi)k4(yi), (4)

where k3(yi) is the third-order cumulant of the signal, k4(yi) is the fourth-order cumulant
of the signal. When the probability distribution of the signal is symmetric, k3 = 0, the
above equation can be simplified to Equation (5).

Ji(yi)
1

48
k2

4(yi). (5)

The kurtosis of the signal is defined as shown in Equation (6).

k4(yi) =
E
(
y4

i
)

E(y2
i )

2 − 3. (6)

3. Proposed Method
3.1. The Analysis of the Incomplete Separation

When SI algorithms were used to find the optimal Wbest to obtain the separated signals
Y(t), the separation may be incomplete. To search for the reason, this paper visualized the
fitness values of the two source signals, as shown in Figure 3, and the separated signals are
described in Equation (7).[

y1(t)
y2(t)

]
= Y(t) = WX(t) =

[
w1 w2
w3 w4

][
x1(t)
x2(t)

]
, (7)

where w1–w4 was in [−1,1].
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Figure 3. The optimum fitness range of y1(t) and y2(t). The red dots represent the best fitness
values at w position, which was searched by the swarm intelligence algorithms. When [w1, w2]
is [0.93, −0.13] searched by SI, y1(t) can reach the fitness of 0.17; When [w3, w4] is [1, −0.06] searched
by SI, y2(t) can reached the fitness of 0.18.

In Figure 3, it is obvious that y1(t) and y2(t) have the similar fitness map, which is
consistent with the principle that the separation of signal sources is independent. That
means both y1(t) and y2(t) have the ability to find two signal sources. Although the fitness
values of the two separated signals both reached a better area at certain position W searched
by the SI algorithm, the two separated signals came from the same signal source.
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The independent searching for the separation matrix W led to obtain the same signal
source, especially when the fitness of one source is obviously higher than that of the other.
Therefore, we first attempted to use the symmetric matrix to enhance the association be-
tween signals in the separation process to obtain different separated signals. The separation
effect was improved slightly, as shown in Figure 4. Although symmetric W can reach the
second separated signal source’s optimization at the constrain of w1 and w2 for the first
separated signal source, the fitness map showed that the second source had significantly
lower fitness, which caused the poor separation effect. This may be the defect of the fitness
function itself. Therefore, enhancing the difference of the separated signals could be a way
to solve the incomplete separation problem.
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3.2. Cross-Correlation

Cross-correlation was introduced into our method. In signal processing, cross-correlation
is a measure of similarity of two signals as a function of the displacement of one relative to
the other [41,42].

For discrete real signal f and g, the cross-correlation is defined as:

ˆR f g(m) = ∑N
t=0 f [t]g[t + m],

N = length( f [t]) + length(g[t])− 1.
(8)

The higher value of the cross-correlation of two signals represents that the more similar
they are, the more dependent they are. On the contrary, the lower their cross-correlation
value is, the more different and independent they are.

3.3. SI-XBSS Algorithm

The SI-XBSS algorithm shown in Algorithm 2 and Figure 5 mainly focuses on linearly
mixing two sources of blind source separation based on the traditional SI-BSS. The SI-
XBSS proposed a candidate separation pool and selected the best separated signals in
the pool by cross-correlation. The candidate separation pool Ypool(t) is composed of{

YW(t), YMinus(t), YexMinus(t)
}T . YW(t) is obtained from the Wbest; YMinus(t) is computed

by X(t)-YW(t). Due to the cocktail party effect, it is very difficult to determine the sequence
of the source of the separated signals. So, we exchanged the sequence of YW(t) and
subtracted YW(t) from X(t) to get YexMinus(t). In the end, the cross-correlation values of all
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candidate-separated signals are calculated. The final separated signals are identified by the
value of the minimum cross-correlation in the pool.

Algorithm 2: SI-XBSS (Swarm Intelligent Blind Source Separation based on Cross-Correlation)

Input: X(t)

1. Centralize and whitening X(t)
2. Initialize the parameters of swarm intelligence algorithm.
3. Randomly generate the initial 2× 2 separation matrix W. According to the fitness function,

find separation matrix Wbest by SI algorithms.
4. Obtain mixed signals YW(t) YW(t) =

{
yw

1 (t), yw
2 (t)

}T
= WbestX(t)

5. Obtain mixed signals YMinus(t) YMinus(t) =
[

x1(t)
x2(t)

]
−
[

yw
1 (t)

yw
2 (t)

]
=

[
yMinus

1 (t)
yMinus

2 (t)

]
6. Obtain mixed signals YexMinus(t) YexMinus(t) =

[
x1(t)
x2(t)

]
−
[

yw
2 (t)

yw
1 (t)

]
=

[
yexMinus

1 (t)
yexMinus

2 (t)

]
7. Obtain the candidate separation pool Ypool(t)

Ypool(t) =
{

ypool
1 (t), ypool

2 (t), ypool
3 (t), ypool

4 (t), ypool
5 (t), ypool

6 (t)
}T

=
{

YW(t), YMinus(t), YexMinus(t)
}T

=
{

yW
1 (t), yW

2 (t), yMinus
1 (t), yMinus

2 (t), yexMinus
1 (t), yexMinus

2 (t)
}T

8. Calculate Xcorr (ypool
i (t), ypool

j (t)) i, j ∈ [1, λ], i 6= j, λ = total number o f Ypool(t)

9. Y(t) = min (Xcorr (ypool
i (t), ypool

j (t)))

Output: Wbest, Y(t)
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In the SI-XBSS algorithm, we mainly studied mixed signals of two source signals.
Therefore, the mixed signals were obtained in the simulation experiment by mixing two
known source signals with a randomly generated 2 × 2 mixture matrix.
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3.4. Success Rate of Separation

In order to evaluate the effectiveness of the separated signals and compare the separa-
tion performance of the SI-XBSS, the success rate of separation was defined as shown in
Equation (9).

SuccessRateg = Mean

(
G

∑
g=1

∑R
r=1 Numberr

roundg

)
, (9)

where G is the number of total mixed signals, and R is the total executed round for each
mixed signal. Numberr is the round of complete separations at each mixed signal. roundg

is a total round of the gth group. SuccessRateg is the rate of complete separation at each
mixed signal.

4. Experiments
4.1. Data and Platforms

The simulation experiments were designed by MATLAB 2019B. The experimental data
(Supplementary Materials) are 50 speech segments of females, and 50 speech segments of
males, both in the MOCHA-TIMIT corpus database. Each segment of signal lasted 1 s with
16 kHz as the sampling frequency.

4.2. Experimental Setup

Two segments generated a test group of mixture signals, where one group was female
and the other group was male, which were linearly mixed with random A matrix. The
experiment set 50 mixed test groups. Our IS-XBSS was applied in six kinds of swarm
intelligent algorithms (PSO, GA, DE, SCA, BOA, and CSA) and compared with IS-BSS in
these six algorithms. The separation quality was evaluated with SI-SDR, STOI, and PESQ.

The parameters of six swarm intelligent algorithms were set as NP = 200,
iteration = 50. Each group of mixed signal is executed for 50 runs in each algorithm.
The test mixture signal groups were 50.

4.3. Results

The following four parts presented the results: (1) overall effect of separation,
(2) results of complete separation, (3) results of incomplete separation, and (4) results
of non-separation.

4.3.1. Overall Separation Performance

The overall results are shown in Table 1 and Figure 6. A total of 31 groups of mixed
signals can be completely separated by the SI-XBSS, including 14 groups from the incom-
plete and 10 groups from the non-separation by SI-BSS. The incomplete separation groups
were decreased from 20 groups by SI-BSS to 17 groups by our SI-XBSS. In addition, the non-
separation groups decreased significantly from 23 groups by SI-BSS to 2 groups by SI-XBSS.
The results presented that our SI-XBSS significantly increased the groups of successful
separation, effectively reduced the number of non-separated groups, and significantly
improved the separation performance.

The success rate of separation, defined as Equation (9), of the SI-XBSS with six opti-
mization algorithms, is shown in Figure 7. The separation success rate of SI-XBSS exceeded
35% of that of SI-BSS, among which the PSO-XBSS improved 43.32%, which was the most
significant improvement.

The mean evaluation values of the six SI-BSS and the six SI-XBSS algorithms are shown
in Table 2. Compared with SI-BSS, SI-XBSS increased by 13.83 to 17.83 for SI-SDR, 0.17 to
0.19 for STOI, and 0.01 to 0.03 for PESQ. The results show that the proposed method has
significantly improved the evaluation values of the three evaluation indexes.

The separated waves of signals are shown in Figure 8. Obviously, the traditional
PSO-BSS only separated one of the two mixed signals in Figure 8c, while our PSO-XBSS
separated two signals in Figure 8d.
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Table 1. Separation results of 50 groups mixed signals. (CS is complete separation. IS is incomplete
separation. NS is non-separation. In column Complete Separation, the “14→IS” represents that
14 groups were completely separated by SI-XBSS, which were incompletely separated by SI-BSS.).

Algorithm Name Complete Separation Incomplete Separation Non-Separation

PSO-BSS 7 20 23
GA-BSS 7 20 23
DE-BSS 7 20 23

SCA-BSS 7 20 23
BOA-BSS 7 20 23
CSA-BSS 7 20 23

PSO-XBSS 31 (7→CS,14→IS, 10→NS) 17 (6→IS, 11→NS) 2 (2→NS)
GA-XBSS 31 (7→CS,14→IS, 10→NS) 17 (6→IS, 11→NS) 2 (2→NS)
DE-XBSS 31 (7→CS,14→IS, 10→NS) 17 (6→IS, 11→NS) 2 (2→NS)

SCA-XBSS 31 (7→CS,14→IS, 10→NS) 17 (6→IS, 11→NS) 2 (2→NS)
BOA-XBSS 31 (7→CS,14→IS, 10→NS) 17 (6→IS, 11→NS) 2 (2→NS)
CSA-XBSS 31 (7→CS,14→IS, 10→NS) 17 (6→IS, 11→NS) 2 (2→NS)
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The mean values of cross-correlations of the source signals and the separated signals
by SI-BSS and SI-XBSS are shown in Figure 9. The results showed that the source signals
had the lowest cross correlation value—less than 20; the value by SI-XBSS was very close
to that of the source signals with a range from 55.20 to 58.70; and the separated signals by
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the SI-BSS was from 180.98 to 182.00, which was more than four times of that of the source
signals. It could be inferred that the smaller the cross-correlation value between signals was,
the lower the similarity of the signals was. For the separated signals, the cross-correlation
value can reflect the difference of separated signals, which means the lower the value of
cross-correlation was, the better the separation performance was.

Table 2. The mean evaluation values of SI-SDR, PESQ, and STOI.

Algorithm Name SI-SDR PESQ STOI

PSO-BSS 6.41 1.18 0.75
GA-BSS 6.05 1.18 0.74
DE-BSS 6.00 1.19 0.74

SCA-BSS 6.17 1.19 0.74
BOA-BSS 6.02 1.19 0.74
CSA-BSS 5.99 1.19 0.74

PSO-XBSS 23.80 1.20 0.94
GA-XBSS 19.89 1.20 0.90
DE-XBSS 20.25 1.20 0.91

SCA-XBSS 20.42 1.20 0.91
BOA-XBSS 20.47 1.20 0.91
CSA-XBSS 20.15 1.21 0.91

Figure 8. The time domain diagrams of source signals, mixed signals, and separated signals of
PSO-BSS and PSO-XBSS. (s1 represents the first source signal, and s2 represents the other source
signal. x1 represents the first mixed signal, and x2 represents the other mixed signal.).
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Table 3. Comparison of the evaluation mean values of SI-SDR, PESQ, and STOI. (y1 represents the
first separated signal, y2 represents the other separated signal).

Algorithm
Name

SI-SDR PESQ STOI

y1 y2 y1 y2 y1 y2

PSO-BSS 37.30 −32.38 1.24 1.18 0.99 0.29
GA-BSS 46.49 −34.39 1.26 1.14 1.00 0.23
DE-BSS 45.19 −34.40 1.26 1.14 1.00 0.23

SCA-BSS 45.19 −34.40 1.26 1.14 1.00 0.23
BOA-BSS 45.18 −34.40 1.26 1.14 1.00 0.23
CSA-BSS 45.19 −34.40 1.26 1.14 1.00 0.23

PSO-XBSS 36.98 17.94 1.24 1.10 0.99 0.97
GA-XBSS 21.72 25.47 1.10 1.35 0.96 0.99
DE-XBSS 45.19 17.4 1.26 1.10 1.00 0.96

SCA-XBSS 45.19 17.40 1.26 1.10 1.00 0.96
BOA-XBSS 45.19 17.40 1.26 1.10 1.00 0.96
CSA-XBSS 45.19 17.40 1.26 1.10 1.00 0.96

4.3.2. The Results of Complete Separation

The stability of the complete separated signals by SI-XBSS and SI-BSS is shown in
Figure 11. A total of 31 groups in 50 groups achieved complete separation with our method.
In 50 rounds of separation, from the 1st to the 24th group, the complete separation rounds
of the SI-BSS of PSO, GA, DE, SCA, BOA, and CSA were all 0. However, the complete
separation rounds of the SI-XBSS of PSO, GA, DE, SCA, BOA, and CSA ranged from 15 to
50 rounds. From the 25th to the 31st group, all improved algorithms achieved complete
separation in all 50 rounds. The results showed that our algorithm significantly increased
the rounds of complete separation.
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The mean cross-correlation values of separated signals of PSO-BSS, BOA-BSS, PSO-
XBSS, and BOA-XBSS from the 1st to the 31st group are shown in Figure 12. The results
showed that the cross-correlation values of the PSO-XBSS and BOA-XBSS were lower than
those of PSO and BOA from 1st to the 31st group and were closer to that of the source
signals. The results of other SI-BSS and SI-XBSS (GA, DE, SCA, and CSA) were consistent
with BOA. We found that when the value of cross-correlation of the separated signals was
close to that of the source signals, it had a high probability of being completely separated.
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4.3.3. The Result of Incomplete Separation

Table 4 showed the improvement of the mean value of SI-SDR for y1 and y2 of the
incomplete 17 groups. The SI-SDR value of y1 was increased in groups 2, 3, 5, 6, 8, 9, and 10.
For y2, the SI-SDR value was increased in groups 1, 4, 7, and 11–17 and decreased slightly
in group 10. The results showed that the SI-XBSS improved the evaluation value of SI-SDR
to enhance the quality of the separated signal in the incomplete separation.

Table 4. Improvement details of mean value of SI-SDR of y1 and y2 in groups 1 to 17.

y1 y2

X No PSO-
XBSS

GA-
XBSS

DE-
XBSS

SCA-
XBSS

BOA-
XBSS

CSA-
XBSS

PSO-
XBSS

GA-
XBSS

DE-
XBSS

SCA-
XBSS

BOA-
XBSS

CSA-
XBSS

1 0.01 0.01 0.00 0.00 0.00 0.00 77.64 46.10 40.35 46.09 37.48 40.35
2 53.65 37.41 37.40 37.40 28.38 39.21 0.00 0.02 0.00 0.00 0.00 0.00
3 42.09 20.63 21.31 26.86 23.39 29.63 0.02 0.00 0.00 0.00 0.00 0.00
4 0.06 −0.02 0.00 0.00 0.00 0.00 45.56 28.10 30.79 37.35 37.72 37.35
5 40.83 45.74 45.81 45.81 45.80 45.81 1.36 −0.19 0.00 0.00 0.00 0.00
6 36.91 41.37 41.33 41.33 41.33 41.33 1.41 0.00 0.00 0.00 0.00 0.00
7 6.37 0.00 0.00 0.00 0.00 0.00 29.51 35.40 35.38 35.38 35.37 35.38
8 44.93 5.68 14.21 9.10 12.51 12.51 0.00 0.02 0.00 0.00 0.00 0.00
9 29.24 20.90 22.64 21.94 21.24 23.33 −0.01 −0.06 0.00 0.00 0.00 0.00

10 5.09 3.71 4.13 3.44 3.44 3.44 −2.14 −1.23 −1.89 −1.56 −1.56 −1.56
11 4.87 −0.01 0.00 0.00 0.00 6.21 40.45 42.56 42.57 42.57 42.57 40.85
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Table 4. Cont.

y1 y2

X No PSO-
XBSS

GA-
XBSS

DE-
XBSS

SCA-
XBSS

BOA-
XBSS

CSA-
XBSS

PSO-
XBSS

GA-
XBSS

DE-
XBSS

SCA-
XBSS

BOA-
XBSS

CSA-
XBSS

12 0.00 0.01 0.00 0.00 0.00 0.00 41.50 24.42 22.86 29.08 24.42 33.74
13 0.02 0.03 0.00 0.00 0.00 0.00 39.25 30.72 32.96 29.24 31.84 31.84
14 0.00 0.01 0.00 0.00 0.00 0.00 40.68 16.20 23.99 17.32 19.54 17.32
15 2.32 0.00 0.00 0.00 0.00 0.00 35.85 36.42 36.42 36.42 36.42 36.42
16 0.00 0.00 0.00 0.00 0.00 0.00 27.11 17.24 18.33 18.70 18.33 17.97
17 0.01 0.01 0.00 0.00 0.00 0.00 28.90 16.81 10.77 10.77 16.14 10.77

The data in bold are the improved SI-SDR values of separated signals obtained by SI-XBSS.

4.3.4. Unseparated Results

Two groups in the 50 mixed groups were not yet separated by our method; their SI-BSS
are shown in Table 5. The results showed that although the two groups were not separated
successfully, the separation performance was still significantly improved from −13.3 to
10.1 for y1 in one mix-group and from −2.6 to 6 around for y2 in another mix-group.

Table 5. The estimated value of SI-SDR of the two groups.

SI-BSS SI-XBSS
X No S-Xcorr Algorithm Y-Xcorr SI-SDRy1 SI-SDRy2 Y-Xcorr SI-SDRy1 SI-SDRy2

1 28

PSO 180.3 −13.3 13.9 104.6 10.1 13.9
GA 165 −13.8 14.3 117.6 10.1 14.3
DE 165 −13.8 14.3 118 10.1 14.3

SCA 165 −13.8 14.3 118 10.1 14.3
BOA 165 −13.8 14.3 118 10.1 14.3
CSA 165 −13.8 14.3 118 10.1 14.3

2 42

PSO 478 2.8 −2.6 176.9 2.9 7.2
GA 478 2.8 −2.6 198.9 2.9 5.9
DE 478 2.8 −2.6 199.9 2.9 5.9

SCA 478 2.8 −2.6 199 2.9 5.9
BOA 478 2.8 −2.6 203 2.9 5.6
CSA 478 2.8 −2.6 195 2.9 6.1

The data in bold represent improvements using the SI-XBSS algorithm.

5. Discussion

According to the results of previous studies [1,3,23,45–56], the quality of speech blind
source separation could be improved by swarm intelligence algorithms, but it is rare to
find a study about multi-groups with random linear mixed signals. In their studies, the
quality, convergence speed, and convergence accuracy of BSS were significantly improved
by enhancing the swarm intelligence optimization algorithm. However, their methods
only analyzed the effectiveness and separability of one or five mixed signals groups with
their algorithms. In order to explore the separation effectiveness of multi- groups of mixed
signals based on SI, our paper implements six intelligent optimization algorithms (PSO, GA,
DE, SCA, BOA, and CSA) and carries out a large number of experiments on speech blind
source separation. We found that incomplete separation often occurs in SI-BSS through
the comprehensive analysis of experimental results. In order to solve this problem, the
signal cross-correlation was introduced to our study to form SI-XBSS. Experimental results
showed that the SI-XBSS has higher effectiveness of speech blind source separation in a
large number of mixed signals than SI-BSS has.

SI-XBSS has three advantages from the above results: first, it has effectively improved
the separation success rate compared with the SI-BSS algorithm. Second, the proposed
algorithm can still improve the performance and quality of separated signals when they
cannot be separated entirely. Third, it has strong stability and applicability. We applied
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six kinds of SI (PSO, GA, DE, SCA, BOA, and CSA) for speech blind source separation
in 50 test mixed signals with 50 runs for each SI. It showed that the success rates were
improved above 35% on average, and SI-SDR increased by 14.72 with the SI-XBSS.

Although SI-XBSS has three advantages, it can still improve the separation success
rate and performance. The SI-XBSS has not fully solved the problem of the incomplete
separation, as we still can find some incomplete separated signals. Furthermore, although
the SI-XBSS is mainly aimed at linear mixed double-source speech blind source separation,
its improvement effect is relatively significant, and it also provides a direction for the
subsequent improvement of multi-source speech blind source separation. We also tried to
add cross-correlation into the fitness function to improve the fitness function. However,
the experimental results are consistent with those of the SI-XBSS, but it took more time
to calculate and SI-XBSS did. In order to obtain a better separation performance and
higher success rate, our future work will improve the fitness function combined with
cross-correlation.

6. Conclusions

In this paper, we proposed a blind source separation of the swarm intelligence opti-
mization algorithm based on the cross-correlation of separated signals (SI-XBSS) to solve
the incomplete separation. A large number of mixed signals were executed by SI-XBSS.
Experimental results showed that the SI-XBSS could effectively improve the success rate of
the separation and increase the SI-SDR, PESQ, and STOI at a different level. Furthermore,
it has strong stability and applicability in different SI.
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