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Abstract: The food industry faces many challenges, including the need to feed a growing population,
food loss and waste, and inefficient production systems. To cope with those challenges, digital
twins that create a digital representation of physical entities by integrating real-time and real-world
data seem to be a promising approach. This paper aims to provide an overview of digital twin
applications in the food industry and analyze their challenges and potentials. Therefore, a literature
review is executed to examine digital twin applications in the food supply chain. The applications
found are classified according to a taxonomy and key elements to implement digital twins are
identified. Further, the challenges and potentials of digital twin applications in the food industry are
discussed. The survey revealed that the application of digital twins mainly targets the production
(agriculture) or the food processing stage. Nearly all applications are used for monitoring and
many for prediction. However, only a small amount focuses on the integration in systems for
autonomous control or providing recommendations to humans. The main challenges of implementing
digital twins are combining multidisciplinary knowledge and providing enough data. Nevertheless,
digital twins provide huge potentials, e.g., in determining food quality, traceability, or designing
personalized foods.

Keywords: digital twins; food industry; food supply chain; cyber–physical systems; sensors; Internet-
of-Things; survey

1. Introduction

With the evolution and digitalization towards Industry 4.0, the concept of creating
digital copies of physical counterparts received entry to the industry [1]. In particular, the
food industry is of special interest because it requires a high efficient use of the available
resources [2]. Over time, food production systems have evolved alongside technological
innovations, allowing for increased production, greater product variety, more resilient
food stocks, and increased international trade. Yet, despite these advances, food systems
around the world continue to face unprecedented challenges. Challenges such as climate
change, pressure to feed a growing global population, and persistent global food waste pose
significant threats to current food systems. In addition, there are growing societal demands
for greater food provenance, traceability, and sustainability within the food system [3].

A key element of Industry 4.0 is the digital twin: a virtual model of a product or process
created with data collected by sensors that enables simulations or real-time analyses of
the status of production [1,4]. The use of digital twins seems beneficial in food processing
for various reasons. The COVID-19 pandemic demonstrated the vulnerability of food
supply resilience [5]. To ensure the supply of foods, production processes must allow
high flexibility and adaptivity [6]. Furthermore, product quality is influenced by different
quality levels of input materials. Especially in the case of seasonal fluctuations impacting
raw material quality, an adjustment of parameters in the production process is essential.
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Introduction processes of new products could be simplified by a digital twin of already
existing products. The digital twin is able to learn the correct process parameters for
production and is used as the knowledge base within a self-adaptive software system [7].
However, a digital twin of food production has additional specific requirements compared
to digital twins of the production of material goods [8]. Due to the variability of raw
materials, these cannot be based only on the processing steps but must also take into
account the chemical, physical, or (micro)biological properties of the food. Further, the
technology can be applied to create a detailed digital model of the supply chain that
integrates real-time and real-world data to respond to unexpected events and uncertainty
within the supply chain.

This work aims to provide an overview of digital twin applications in the food industry
and analyze their challenges and potentials. Therefore, we first present a taxonomy to
differentiate underlying technologies and better understand the intended use of each
digital twin. Second, a survey is executed to examine digital twin applications in the
food supply chain (FSC). We target the FSC as it provides a link between all the key
activities and processes involved in bringing a specific food product to market [9]. To meet
these unprecedented challenges, FSCs and corresponding actors are turning to modern
technology for assistance [10]. We classify the found applications of digital twins according
to our taxonomy. Third, we investigate the key elements to implement digital twins in the
FSC. Fourth, since the concept of digital twins is still young, we discuss the potentials of
applying them in the food sector. Finally, we discuss the challenges of applying digital
twins in the food industry. In summary, this paper contributes to the body of research by
providing the following scopes:

• Classification of digital twins in the food sector.
• Overview of the application of digital twins in the food industry.
• Definition of the key elements for implementing a digital twin.
• Analysis of the potential of digital twins in the food industry.
• Description of challenges of applying digital twins in the food industry.

The remainder of the paper is structured as follows. Next, Section 2 explains several
fundamentals related to the FSC, the digitalization of the food industry, and provides
a definition of digital twins. Then, Section 3 presents the methodological approach for
the literature review. Subsequently, Section 4 evaluates the literature review results and
summarizes the key elements for implementing digital twins. We discuss the potentials and
challenges of digital twins and their implementation in the food supply chain in Section 5.
In Section 6, we discriminate this work against other publications in the field. Finally,
Section 7 concludes this paper with a summary of our results.

2. Background

In the following Section 2.1, we first describe the underlying concept of the FSC,
which we use to differentiate the stages in the food industry and to classify the digital twin
applications in Section 4. Further, the role of digitalization in the food industry as well as
related concepts are described in Section 2.2. Finally, Section 2.3 provides a definition of
digital twins.

2.1. The Food Supply Chain

A supply chain (SC) is a network of actors structured around activities and processes
that aim to satisfy given consumer demand by bringing products or services to market [11].
This network includes feedback and circular economy aspects, e.g., for sustainability
reasons as the recycling of materials [12]. The actors within the SC are linked through
upstream or downstream processes and activities that produce value in the form of finished
products or services [11]. In the same sense, a FSC encompasses all activities involved in
the creation and transformation of raw materials into food products as well as their retail
and consumption [10]. FSCs do differ significantly from other SCs due to the complexity of
producing, transporting, and managing food products [13].
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While it is important to consider not only the primary flow but also the tangential and
secondary flows that are contained within the FSC, as these are opportunities to reduce
food loss and waste through reuse and recycling [12], we focus on a simplified, linear, and
straight forwarded structure of the FSC. This is sufficient for this survey since the focus is
on single activities of the FSC that are present identically in the simplified FSC as well as in
a circular view. Figure 1 provides an overview of the FSC and the main actors, to which
the digital twin applications will be assigned. Commonly, the FSC begins with production,
which is usually an agricultural farm, continues with supply, processing, distribution, and
retail and ends with the consumption.

Worth mentioning is that the stages could be thereby divided into several processing
or transportation sub-entities: For instance, Shoji et al. [14] investigate the cold chain of
fruits and vegetables from a (farm to) packhouse to distribution to the retailer. The authors
divide the transportation steps between the supply from packhouse to distribution center
and from distribution center to the retailer. In our understanding, the packhouse would
be part of the processing stage and both, the transportation and the distribution would be
summarized as distribution.

Production Supply Processing Distribution Retail Consumption

Figure 1. A simplified structure of the food supply chain (based on [10]) including the actors used
to classify the digital twin applications within the scope of this work. The structure does not show
any circular flows or side chains of by-, side-, or co-products, which would result in a value network
rather than a straight-forwarded chain.

It is crucial for SCs to be designed with consideration for uncertainty and risk, as
mitigation measures and solutions must be developed to prevent disruptions to the SC [9].
Those disruptions impact the SC’s regular flow and affect the other actors directly [15]. In
particular, the most frequent FSC disruptions are human error, communication misunder-
standings, organizational process errors, and quality problems with goods received [16].
Consequently, disruptions may result in negative effects to the final product [9] regarding
sustainability, safety, and quality [13].

Additionally, several challenges in the FSC occur during different stages [17]: the
production estimation and optimization in the production stage, including the crop man-
agement and security and the livestock control; the production planning in the processing
stage, regarding the post-harvest loss as well as demand prediction; the distribution, con-
cerning route planning, prediction of SC risks and disruptions, and shelf-life prediction;
and the consumption, representing consumer behavior, their dietary behavior, food loss
and waste, or the prediction of the daily demand.

2.2. Industry 4.0 and Related Concepts

“Industry 4.0” is associated with the fourth industrial revolution. It combines technolo-
gies such as cyber–physical systems (CPSs), Internet of Things (IoT), and cloud computing.
While the term Industry 4.0 is primarily used in Europe, the similar concept “Industrial
Internet of Things” (IIoT) mainly used in the US describes advances in big data, cloud
computing, and networking of machinery and systems in the industrial sector [18]. Based
on CPSs and IoT, in Industry 4.0 manufacturing processes including logistics (i.e., SC
management), services, and maintenance are efficiently synchronized [19]. Hence, Industry
4.0 does not focus on a single process or technology but integrates all processes resulting in
a highly flexible and integrated optimized manufacturing process. The complete implemen-
tation of Industry 4.0 or IIoT would result in the smart factory: an integrated production
process that is entirely self-organizing by the connected machines and intelligent software
without any human interaction [20].
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Further, modern FSCs make increasingly use of integrated information and commu-
nication technology (ICT) systems to assist with mitigating against uncertainty and risk,
process optimization, and numerous other applications [11]. In addition, ICT systems are
of particular interest for traceability and decision-making functions within the FSC [21].
Traceability is important to identify quality and safety concerns and to provide the food
provenance to the consumer and authorities [13]. As described by Zhong et al. [9], trace-
ability systems in FSCs vary greatly depending on region, government regulations, and
digitalization of the FSC. ICT systems as digital twins are able to assist with decision-
making, collaboration, scheduling and planning, logistics management, and warehouse
management within the FSC [22].

2.3. A Definition of Digital Twins

The concept of digital twins first came up during NASA’s Apollo 13 mission in 1970
as the ground team used simulators to provide solutions to the spacecraft crew for landing
them safely [23]. The term “digital twin” was first used and defined in 2003 [24]. This
concept contains a physical object, a virtual object, and connects data and information
from both. NASA formalized the description of digital twins in 2012 and forecasted its
potential in the aerospace sector [25]. Here, the digital twin is defined as a multiphysics
and multiscale simulation of a vehicle or system, which uses the best physical models,
sensor data, and history, resulting in a mirror of the physical counterpart. The discovery
that digital twins might be used in a variety of industries other than aerospace accelerated
its development [26]; especially, it is an important concept for Industry 4.0 and IIoT.

In this paper, we follow the definition of a digital twin provided by the CIRP Encyclo-
pedia of Production Engineering [27]:

A digital twin is a digital representation of an active unique product (real device, ob-
ject, machine, service, or intangible asset) or unique product-service system (a system
consisting of a product and a related service) that comprises its selected characteristics,
properties, conditions, and behaviors by means of models, information, and data within a
single or even across multiple life cycle phases.

Therefore, a digital twin virtually represents its real-world counterpart, containing all
its essential properties [8]. It is based on real-world comprehensive data measurements,
which form the digital profile of the physical object or process. Consequently, a digital
twin is connected to the real-world object through a continuously updated data flow [28].
Further, the digital twin is able to simulate the relevant processes and kinetics accurately [8].
In this sense, a digital twin may be seen as an ever-evolving digital profile of the past,
current, and even future behavior of a process or a physical object and allow to predict
uncertainty in the process steps [28].

Defraeye et al. [8] define three common principles to digital twins: Firstly, it must
contain all the necessary components and material properties of what it is representing.
Secondly, it can reliably and accurately simulate all relevant processes through the product
life cycle. Finally, the digital twin should be connected with its real-world counterpart, as
this differs a digital twin from simpler models. Communication is preferred to be realized
in real-time, but the data could also flow offline.

This is in accordance with Jones et al. [29], who define twinning as the synchronization
of the states of the physical and virtual entities. Additionally, the virtual model consists of
high fidelity. Bottani et al. [30] expand this, explaining that a digital twin is more than the
representation of the physical counterpart since the goal of a digital twin is to replicate all
behaviors and relationships of a system and its environment.

Further, five technological components enable digital twins [28]: sensors, integration
capabilities, real-world aggregated data, analytical techniques, and actuators. Those tech-
nologies are required to aggregate the different available data sources (mainly related to
the product and the process) into one comprehensible model of the digital twin as well as
support the prediction or analysis with a digital twin. Figure 2 presents the diversity of
potential data resources for a digital (food) twin.
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A concept closely related to digital twins are CPSs [31,32]. While a digital twin is a
digital copy of a product or physical system with the intention of performing real-time
optimization, a CPS merges computational and physical processes to seamlessly support
humans with intelligence when using machines [33]. CPSs often include digital twins as a
base for their decision-making processes [34–36].

Machine DataProcess Data Product/Retail
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Figure 2. Digital (food) twin basic framework within the context of dairy processing.

3. Methodology

The methodology for the survey integrates methods from the guidelines of Webster
and Watson [37] for a structured literature review and Petersen et al. [38] for systematic
mapping studies. The research is based on the steps shown in Figure 3. In the beginning,
we framed our aim in the form of research questions. We defined exclusion and inclusion
criteria and performed keyword-based searches for filtering the articles based on their
titles and abstracts. The search method was adapted from [37] to cover a wide range of
publications with regards to regions, fields, and publishers. After identifying the set of
possible relevant publications, a relevance analysis based on a full paper screening was
performed. Subsequently, descriptions and properties of the digital twin applications as
well as bibliography data have been extracted and classified as proposed in [38]. In the
following, we describe these steps in detail.

Definition of RQs
• RQ1 – How can digital twins be classified?
• RQ2 – In which areas of the food industry are digital twins applied?
• RQ3 – Which types of digital twins are applied in the food industry?
• RQ4 – What are the key elements in implementing a digital twin?
• RQ5 – What is the potential of digital twins in the food industry?
• RQ6 – What are the challenges in applying digital twins in the food industry?

Definition of keywords
Group 1

• digital twin
• digital twin application
• cyber-physical systems

Group 2
• food
• food supply chain
• food production
• food industry
• food sector

Digital twins, Food*…

Keyword-based search

Relevance Check 

TITLE
Abstract._______
______________

______________
______________
____________ …

Attribute Extraction
and Categorization

X X X X

X X X X

X X X X

Evaluation

84 publications

38 publications 51 applications

Adding References

Second Review

Figure 3. Overview of the methodology for the classification in this survey. Publications found through
a keyword-based search were first selected based on the title and abstract. Afterward, the publications
were analyzed and relevant publications were categorized in a previously defined taxonomy.
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3.1. Definition of Research Questions

The primary aim of this work is (i) to provide an overview of digital twins applied
in the food sector regarding their intended use and (ii) to identify future research areas.
According to this goal, we derived the research questions. First, we searched for taxonomies
(RQ1) that enable classifying the digital twin concepts that we found according to their
application purpose. As we are primarily interested in which area of the food industry (i.e.,
stages of the FSC) digital twins are applied, we decided to assign the applications found to
the stages of the FSC as presented in Figure 1 (RQ2). To better understand the application’s
reason for use, we classified the applications found according to our taxonomy (see RQ1) to
answer the research question of how digital twin can support the activities in the FSC (RQ3).
Further, we analyzed the different types of digital twins that we identified for providing
an overview of the different key elements of a digital twin in the FSC (RQ4). Aiming to
show the applicability and the benefits of implementing digital twins in different stages
of the FSC, we conducted the last research questions. At first, we discuss the potential
of digital twins to improve the food industry (RQ5). Then, we discuss the challenges of
implementing digital twins in the food sector (RQ6). These considerations lead to the
following research questions:

• RQ1—How can digital twins be classified?
• RQ2—In which areas of the food industry are digital twins applied?
• RQ3—Which types of digital twins are applied in the food industry?
• RQ4—What are the key elements in implementing a digital twin?
• RQ5—What is the potential of digital twins in the food industry?
• RQ6—What are the challenges in applying digital twins in the food industry?

3.2. Selection Method

To find digital twin applications in the FSC (answering RQ2 and RQ3), we conducted a
literature review and included publications available between May and the end of Septem-
ber 2021. Therefore, we searched the databases Google Scholar, Scopus, ScienceDirect,
and Academic Search Complete by EBSCO Publishing. We created two groups of key-
words: The first group concerned digital twins, including the keywords “digital twin”,
“digital twin application”, and “cyber–physical systems”, while the second groups
provides the relation to the food sector, i.e., consisted of the keywords “food”, “food
supply chain”, “food production”, “food industry”, and “food sector”. The search
was performed by combining each of the keywords of both groups.

While we see agricultural plants or farms as part of the FSC (production stage), we
did not search directly for “digital twin” AND (“agriculture” OR “agrifood”) since
our main focus is on the food quality related to the food processing. Therefore, the food
processing and the transportation stages (supply and distribution), as well as the retail,
are from special interest rather than the primary food production since the food quality
parameters are ultimately adjusted during the processing. After the processing stage, all
actions, e.g., cooling, serve to maintain and guarantee the food quality until consumption.
Still, we did not discard works related to the agriculture sector when found with our set
of keywords.

Additionally, we added publications to our list, which we did not find directly were
referred by other publications and possibly relevant for this research (backward search). In
the literature search process, we also identified reviews, e.g., [29,39–41]. However, as we
wanted to avoid the misinterpretation or incorrect reproduction of information, we rather
included the original publications or sources of such reviews. Additionally, this ensures
that we do not include different points of view for the same application.

Furthermore, we performed a free web search with Google and DuckDuckGo to
find examples for digital twins related to the FSC applied in the industry. While this
search provided many results, we only included a few of them [42–47] as the found
information was often not precise enough to analyze in detail required for a classification
with our taxonomy.
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3.3. Analysis Method

The authors selected the publications based on the title and abstract. Additionally, the
entire paper was searched to overcome the disadvantages of a keyword-based search. Each
publication was reviewed and applications found were classified according to the taxonomy
by one of the authors by screening the complete paper. Afterward, each publication, as
well as the classification, was reviewed by another of the authors. If an application was
classified differently, a third author also reviewed the classification, and the classification
was discussed by all authors.

The focus of this work is on digital twin applications related to foods, food products,
and their quality. Therefore, the publications needed to contain a specified description of a
digital twin application and terms related to “food” (see Section 3.2). Further, we included
publications with regards to food products or their quality, meaning we included digital
twins of field monitoring applications, animal monitoring applications, and processing
machines as well, which we found through the search. We investigated applications that
were already realized and implemented as well as concepts for digital twins if the provided
description was sufficient enough for the analysis.

A few publications found were located in the periphery of foods, food products, and
their quality. For instance, Linz et al. [48] and Tsolakis et al. [49] describe digital twin
applications of agricultural machines and robots, whereas the digital twins are used for
route planning. Furthermore, Jo et al. [50,51] propose a digital twin for a pigsty to control
the energy demand while adjusting the ventilation and temperature. Other publications
provided too little information about the digital twin, although they were strongly related
to our research, e.g., [31,52]. Since we were not able to classify them, we did not include
those in our evaluation.

For some works, we found subsequent publications extending the originally pre-
sented digital twin. We added such follow-up publications as dedicated digital twin
applications as they develop within the projects or the available information concern-
ing the applications differed in the papers. Further, the originally published digital
twin might be sufficient for some applications. In particular, those publications were
from Skobelev et al. [36,53,54] concerning (wheat) plants; from Defraeye et al. [8,55],
Shoji et al. [14], and Tagliavini et al. [56] regarding fruits; and from Bottani et al. [30]
and Vignali and Bottani [57] relating to a pasteurizer.

3.4. Selected Studies

In total, we studied 84 publications, from which we included 38 publications after
the application of the inclusion and exclusion criteria. The publication range spanned
works from 2007 to 2022. Worth mentioning is that the publication from Shoji et al. [14]
is assigned to 2022 since this is an online first available publication. Figure 4 reveals
that the number of publications increased during the last years. In 2019, we observed
a peak with 24 publications (12 included). In the years 2020 and 2021, the number of
publications is slightly decreasing, counting 22 (9 included) and 13 publications (8 included),
respectively. A reason for this decrease could be the COVID-19 pandemic and the inclusion
of publications available until the end of September 2021.

From the selected publications, the major proportion was originally published at
conferences and journals, 47.4% and 34.2%, respectively (see Figure 5). Further, we included
non peer-reviewed publications (18.4%) from press releases (2 publications), books, white
papers, websites, reports, and project announcements (all one publication each). The
inclusion of non-scientific publication types is appropriate for several reasons: Digital
twins are still a rather young research topic, particularly in the food sector. In addition,
the research is highly driven by the industry since the implementation of digital twins
is strongly practice-oriented. However, non-scientific publications often do not provide
sufficient details for a classification; hence, this number of included works is limited.
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Figure 5. Share of the publication type of 38 included publications.

4. Results

This section answers the research questions on how to classify digital twins (RQ1),
in which areas of the food industry digital twins can be found (RQ2), what types of
digital twins are applied (RQ3), and which key elements are required to implement digital
twins (RQ4). First, we examined different classification schemes and derived the best
fitting taxonomy for our research by combining different existing classification schemes
(Section 4.1). Second, we analyze in which activities of the FSC digital twins are applied
(Section 4.2). In Section 4.3, we investigate which types of digital twins are applied in the
FSC based on our results of RQ1. The classification of all applications included in this
section can be found in the Appendix A (see Table A1). Finally, Section 4.4 summarizes the
key elements for the implementation of digital twins.

4.1. Classification of Digital Twins

Since digital twins have no unique and standardized taxonomy, this section provides
an overview of different classification approaches and classifies their relevance for our
work. This answers the first research question:

RQ1—How can digital twins be classified?

The classification approaches differ in the authors’ focus on digital twins. The authors
of [58] differentiate the terms digital model, digital shadow, and digital twin based on the
data flow between the physical and digital object. A digital model is defined by a manual
data flow between both objects, where the data flows automatically from the physical to
the digital object and manually from the digital to the physical object in a digital shadow.
The data flow in a digital twin is automated between both objects, which may serve as the
controller of the physical object.
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In [59], digital twins are classified depending on the application level. The so-called
unit-level describes the lowest layer and contains single units of the processing procedure,
e.g., equipment or a machine. The system-level consists of several unit-level digital twins
and can be understood as a production unit (e.g., a production line), while the System-of-
System-level is the highest layer and able to capture complex systems (e.g., the shop-floor
management system).

The authors of [39] differ between service categories, meaning the use case of a digital
twin. These categories are real-time monitoring, energy consumption analysis, system
failure analysis and prediction, optimization/update, behavior analysis/user operation
guide, technology integration, and virtual maintenance. They further distinguish the
technology readiness level (TRL) between the levels concept, prototype, and deployed.
Jones et al. [29] classify digital twins according the product’s life-cycle phases imagination,
definition, realization, support/usage, and retirement/disposal.

However, we use a combination of the following two schemes as taxonomy since
we are interested in the techniques behind the digital twins and the intended use of the
digital twins. According to [8], a digital twin can be statistical, data-driven (intelligent),
or physics-based (mechanistic). The first type is based on statistics, where an analytical
model is solved with an ordinary differential equation or a simpler analytical equation.
The intelligent digital twin is a data-driven model that relies on artificial intelligence (AI)
techniques, e.g., machine learning (ML), for model development, calibration, verification,
and validation. Mechanistic digital twins are based on physics. Hence, they are also
called physics-based digital twins. These models concern all relevant physical, biochemical,
microbiological, and physiological processes using multiphysics modeling and simulation.
Several authors [4,60] mention that only a mechanistic digital twin is able to mimic the
behavior of the real-world counterpart realistically and comprehensively. Therefore, a
mechanistic digital twin is preferable for predictions. Worth mentioning is that intelligent
digital twins also consider statistical methods. Further, the model parameters used in
mechanistic digital twins can be quantified, verified, and validated with statistical and
ML methods.

In [8], the authors presented the types in a triangular structure containing the types
statistical, intelligent, and mechanistic twins as corners. Therefore, the type of a digital
twin could be assigned to corners as well as edges or in between. However, we decided to
classify the digital twin applications according to their prevailing type, i.e., there are not
any mixed types.

The second classification scheme is similar to [29] since it represents the product’s
life-cycle phases. Following the approach by Verdouw et al. [61], digital twins can be used
to characterize and simulate the states and behavior of their real-life twins, which do not
exist at a specific point in time. Further, digital twins may be used to monitor the current
state of items, prescribe desired states, forecast future states, and automatically react to
conditions of their real-world counterparts and, therefore, control systems without human
interaction. Finally, digital twins are also able to outlast real-world objects, and they can be
used to recollect their historical conditions. Worth to mention is that these categories can
coexist within the same digital twin application. Table 1 provides a detailed description of
the different categories, we used to classify the digital twin applications within the context
of this work.

It is notable that the definition of a digital model [58] corresponds to the defini-
tion of an imaginary digital twin [61]. Additionally, the categories by [39,61] are sim-
ilar, but since Pylianidis et al. [39] focus more technical approaches, the approach by
Verdouw et al. [61] is used in this work.
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Table 1. Digital twin taxonomy (based on [8,61]).

Type Description

Statistical Solving a simple analytical equation or an ordinary differential equation (ODE) for calculations with the
generated data.

[8]Intelligent Use of AI techniques, e.g., ML, for model development, calibration, verification, and validation.

Mechanistic Performance of multiphysics modeling and simulation to capture the relevant physical, biochemical, micro-
biological, and physiological processes.

Imaginary Simulates objects that do not physically exist in the real-world at the given time.

[61]

Monitoring Monitors the current state and behavior of a real-life, physically existing counterpart.
Predictive Projects future states and behavior of a physical object based on real-time data.

Prescriptive Are able to intelligently recommend corrective and preventive actions while using the results of monitoring
and predictions.

Autonomous Control autonomously the behavior of the real-world counterparts without human intervention.
Recollection Maintains the complete history of physical objects, which no longer exist in real-life.

4.2. Applications of Digital Twins in the Food Supply Chain

In Section 3.4, we observed that the number of publications increased in recent years.
Accordingly, the number of digital twin applications increases as well. This section answers the
second research question regarding the stage in the FSC where the digital twins are applied:

RQ2—In which areas of the food industry are digital twins applied?

Figure 6 provides an overview of the absolute frequency of applications per stage
in the FSC. The major proportion of digital twin applications could be found in the
production stage, often referred to as agricultural applications (54.90%). Many appli-
cations focus on the growth of plants [36,42,53,54,61–64] or monitoring the condition of
animals [23,61,64–66]. Further, entire production systems as greenhouses or fields are
twinned [34,43,44,61,62,67–71]. Several applications could be described as supportive, e.g.,
to monitor and control pests [35,65].
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Figure 6. Results of the literature review–Absolute frequency of digital twin applications assigned to
stages in the food supply chain. As there are applications [47,56] assigned to several stages, the total
number of counts is 53 although 51 applications were found in 38 publications.

The second most frequently assigned stage is the processing stage (31.37%). In this
stage, the digital twins mainly concern processing machines, as pasteurizer [30,57] or
packaging machines [45,72], or entire processing systems [6,45,73–76]. A few use cases
focus on the optimal product composition or quality [45,46,77].

Applications during transportation, in particular, the stages supply and distribu-
tion (7.84% and 5.88%, respectively), determine the quality of fruits and vegetables with
a focus on measuring the temperature [8,14,47,55,56,78]. Only one application could be
assigned to the retail stage (1.96%), where it is used to determine the quality of fruits and
vegetables as well as the remaining shelf-life [47]. Furthermore, one application is assigned
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to the consumption stage (1.96%). This application aims to twin a consumer to design
food products, which are personalized to adapt foods in case of genetic disorders, such as
diabetes mellitus [79].

It should be noted that two applications were assigned to multiple stages: While the
digital twin of a mango fruit to determine the quality during transportation was assigned
to supply and distribution stages [56], the digital twin concept for the determination of the
quality of fruits and vegetables was assigned to the distribution and retail stages [47].

4.3. Types and Categories of Digital Twins in the Food Supply Chain

In addition to the stages in the FSC, where a digital twin is applied, the applications’
intentions of use are of special interest. In Section 4.1, we specified a taxonomy regarding
both the digital twin techniques and the intended use. It is necessary to note that in the case
of the taxonomy regarding the intended use, the applications could be classified into several
categories. Regarding the digital twin technique, applications could only be assigned to
one type. In contrast to the previous Section 4.2, applications were not counted twice if
they were assigned to multiple stages of the FSC. Hence, this section answers the third
research question:

RQ3—Which types of digital twins are applied in the food industry?

Figure 7 shows the classification of the digital twin applications regarding their dif-
ferent types. Most of the digital twin applications are classified as intelligent or data-
driven (39.22%). These applications are used for monitoring and controlling plant growth
environments, in particular greenhouses or fields [34,42,68,71]; the twinning of plants
during growing itself [35,65]; the detection of pests and actions to tackle them [65]; the
monitoring of animals [23]; or the determination of shocks and the adaptation of process
parameters during potato harvesting [61,78,80]. In addition, applications concern the mon-
itoring of cattle with regards to their health, dairy productivity, or growth (weight gain
for meat production) [61,65,66] and the control of food processing parameters [75]. The
applications use clustering methods to determine the states and conditions of animals and
plants and to classify pests, and further ML techniques to improve the system continuously.
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Intelligent
Mechanistic
None
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Figure 7. Results of the literature review–Share and absolute frequency of digital twin types found in
38 publications.

Almost the same proportion of applications are used for simulation, based on mecha-
nistic or physics-based models (31.37%). Many use cases regard either the plant and animal
growth in the production stage [36,53,61,62,64,69] or the monitoring of food processing,
e.g., a pasteurizer, an ice cream machine, pudding production, malting, or the packaging
design concerning special product properties [30,45,57,73,74,76]. More digital twins focus
on fruit and vegetable quality during supply by measuring the surface temperature and
calculating the pulp temperature based on that [14,56]. All the applications mentioned in
this category could be described well with known models.

Further, some applications are based on statistics (13.73%). In this category, many
use cases focus on the control of food processing [6,45,46,72]. Other applications regard
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the design and personalization of food [77,79], or the twinning of a wheat plant [54]. All
digital twins are based on statistical methods using means and standard deviations for
conclusions and predictions.

It should be noted that there are some applications (15.69% in total), which are not
classified to any type [45,65,67] or the classification was not possible due to a lack of
information [43–45].

Figure 8 shows the categorization results of the digital twin applications with regards
to their intended use. We observed that nearly all applications (94.12%) are used for
monitoring their real-life counterparts. Only three use cases have not been classified in
this category; those target applications for the design of new food products and food
packaging [45] and the weight gain of cattle for the meat and livestock value chain [66]. We
conclude that this observation makes sense since monitoring the physical objects is often
the base for further predictions or decision-making. However, only 32 applications (62.75%)
are working with real-time data.
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Figure 8. Results of the literature review—Absolute frequency of digital twin categories found in
38 publications. It should be noted that the total number of counts is not equal to the number of
applications since they are not restricted to one category.

Additionally, many applications are used for predictions (72.55%). Use cases, which are
not predicting, are mainly used for real-time monitoring and decision-making. These cases
concern the detection of pests, the control of plant growth environments based on current
growing conditions, e.g., the temperature or humidity [34,44,63,67,68], the monitoring of
animals [23,65], the control of food processing [74], and the design of products [45].

The predictions could be used to suggest corrective or preventive actions (39.22%).
Since most of the applications found are assigned to the production stage, many prescriptive
digital twin applications belong to applications only able to assist in agricultural plants
to enhance the quality during growth and harvest processes [42,43,61,62,64,69,70,78,80].
Another prescriptive digital twin is applied in a pudding production system to assist in
production planning [73]. Further use cases only recommend actions rather than fully
automatizing the system [75]. Examples are the personalized design of foods regarding
genetically caused diseases [79] or the design of food packaging [45].

A minor amount of digital twins (15.96%) are integrated into systems working au-
tonomously. The applications automatically control greenhouses by adjusting parameters
like temperature or light [34,42,44] or processing plants by controlling, among others, the
workflow or specified processing parameters as temperature [45,75].

Some digital twins found were used for forecasting and simulating objects that were
presently non-existent (23.53%). This category includes applications for the design of food
products and raw materials [53,77] as well as food packaging and production plants [45,67];
applications to predict shelf-life and the food quality [47,56,66]; and applications to con-
trol the process flow [6,72,74,75]. The application of imaginary digital twins enables the
avoidance of expensive mistakes [75] and detailed planning [67].
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Recollective digital twins, that maintain the complete history of physical objects (even if
those do not longer exist), can be found in all stages of the FSC (31.37%). Some applications use
the stored information for learning and improving the system [34,53,54,61–63,68,78,80]. Other
applications were implemented to better document the processes and quality parameters of
the physical objects [6,30,47,57,74,76,79]. It should be noted that due to a lack of information,
many applications could not be classified in this category [23,42–46,56,65–67,69–71,73,75].

4.4. Key Elements for Digital Twin Implementation

In the previous sections, we describe our observations that the implementation of
digital twins varies in the different stages of the FSC as well as the intention of use within
a specified stage. The major proportion of digital twins are applied in the (primary)
production and the processing stage. Especially in the distribution, retail, and consumption
stages only a few applications have been found. In addition, different types of digital
twins have been found. To investigate how to improve the food quality in the FSC using
digital twins, necessary components to apply digital twins need to be identified. Hence,
this section answers the following research question:

RQ4—What are the key elements in implementing a digital twin?

First of all, there must be a motivation to implement a digital twin. Some digital
twins are motivated by production and market reasons, e.g., to cope with a higher demand
for more flexibility in the production to adapt to new market demands, such as clients
requesting more products that meet unique nutritional standards and packaging sizes [6].
Moreover, the constant increase in business competition challenges companies to look
beyond cost reductions and improve quality and productivity [81]. In particular, food
processing industries are battling with low-profit margins while being challenged to reduce
time-to-market and develop new, flexible processes for a wide range of goods [6]. Another
motivation arises out of the demand for more transparency to stakeholders, trust, and
ownership of the processes [4]. Finally, some drivers are employee-related, such as offering
training based on virtual reality applications that benefit from the data of the models in
digital twins [81] and improving employee safety by detecting potential workplace hazards
with digital twins [30,81].

Second, the underlying technical infrastructure must be able to support a digital
twin [82]. The definition of such a digital model is only possible if a sufficient amount
of data is available. Even taking into consideration that a digital twin is able to generate
some data of the physical entities (products and processes) through ML, AI, or simulation,
still the collection of data from the process through sensors is a critical requirement. An-
other requirement is related to the communication infrastructure: If real-time analysis is
demanded, the infrastructure must support fast exchange of data [23]. Real-time analysis
requires a sufficient processing capacity; hence, if real-time analysis is targeted in a project
with digital twins, this processing capacity must be available [4]. Thus, a detailed analysis
of the available data sources, communication infrastructure, and processing capacity when
starting the implementation of a digital twin is required to determine how a digital twin
can be enabled.

Third, a digital twin for food production has additional specific requirements com-
pared to digital twins of the production of material goods. Due to the variability of raw
materials, these cannot be based only on the processing steps, but must also take into
account the chemical, physical or (micro)biological properties of the food [8]. Consequently,
either (i) sensors must be available to capture those changes or (ii) simulations based on
scientific models of food aging must support information about those intermediate state
of the food. Accordingly, the typical, retrospective analysis of machine and process data
must be combined with short-term (detection of potential problems), and medium-term
data analysis approaches (simulation of product changes) to improve decision making
in the food production and tracking of the current state of production at any time with
digital twins.



Sensors 2022, 22, 115 14 of 27

Every digital twin implementation starts with a process design in which all processes
and interaction points are mapped that a digital twin will be modeling [28]. Improvements
with regard to cost, time, or asset efficiency are augmented in this design process.

However, up to now, there is no consensus regarding a generic method in the realiza-
tion of digital twins that can describe its implementation and the data acquisition from the
physical to the virtual object [26]. Therefore, the authors of [83] proposed a digital twin
model based on five dimensions (see Figure 9):

• Physical entity: The physical world is the basis. The physical entity can be a device
or product, a system, a process, or even an organization [84]. It carries out actions
following physical regulations and deals with environmental uncertainty.

• Virtual entity: The digital model is generated to replicate the physical geometries,
properties, behaviors, and rules of the physical entity. Therefore, multiple models can
be considered [85].

• Service platform: Decision-support analyses support the monitoring and optimiza-
tion of the physical entity with simulations, verification, diagnosis, and prognosis
as well as prognostic [81,84]. Further, the virtual entity must be served with data,
knowledge, and algorithms, and the platform itself needs to be served, e.g., with
customized software development and model building.

• Data model: The data is stored in the data model [81]. Since the digital twin considers
multi-temporal scale, multi-dimension, multi-source, and heterogeneous data [84],
the data model includes and merges data from the physical entity, the virtual entity,
services, and knowledge [85].

• Information connections: All dimensions need to be connected to ensure communica-
tion and update the information immediately [81]. This enables advanced simulation,
operation, and analysis [84].
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Figure 9. The five-dimensional digital twin concept (adapted from [85]): Digital twins consist of a
physical as well as a virtual entity, which are supported by several services. Data are fused and stored
centralized. These four dimensions must be connected with each other, creating the fifth dimension.

Barni et al. [86] describe four best practices for the implementation of a digital twin:
First, the entire product value chain should be included to ensure data exchange and
consistency. Second, the virtual models should be kept dynamic through the development
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of well-documented methods for model generation and modification. Third, it should be
ensured that data from several sources are included to measure the different variables and
all essential properties of the physical product and the system (process, actuators, inputs,
outputs, and environment) [4]. The exact combination of relevant data is often unknown a
priori when the first model is developed; accordingly, the design of the digital twin must
offer modularity and scalability [86]. Fourth, long access life cycles should be ensured in
order to address a long-term convergence within the physical and the virtual world. The
approach by [73] reinforces this through a knowledge acquiring digital twin.

Thus, the accessibility and continuous flow of near real-time data are important [23].
The data generation can be achieved with sensors [8] and the use of IIoT technology [87]. In
addition, data processing and data evaluation or interpretation are of high relevance [23],
leading to the requirement of sufficient computational performance to handle big data
volumes [4]. Therefore, data transfer technologies are required to provide high-speed data
gathering from huge amounts of remotely sensor data and transfer it in real-time within a
network, e.g., Bluetooth, LoRaWAN or 5G [8].

The core of a digital twin is based on modeling [87]. Therefore, physics modeling
(geometrical, mechanical, material, hydrodynamic, and discrete event models), semantic
modeling (ML models, deep learning, data mining expert system, and ontology modeling),
and model integration (flexible modeling, standard interface, black-box, gray-box, and
multiphysics modeling) are used. ML techniques or AI support data analysis and data
fusion enabling efficient processing and interpretation of a large amount of data [81,88];
further, those techniques can continuously improve the performance of the system [23].
A key element is a human-machine interface, where users can easily interact with and
understand the digital twin’s information [23]. This is particularly important if the digital
twin recommends corrective and preventive actions.

In conclusion, the implementation of digital twins requires multidisciplinary knowl-
edge [31], especially from food science. For instance, this includes microbiological, physical,
chemical, and engineering disciplines as well as knowledge for efficient process manage-
ment. Further, ICT is required. Commonly, ICT today is used in the FSC to connect the
different stakeholders in the different stages through data exchange. In the future, the sup-
port of automated data collection with IoT technology and efficient data analysis, mainly
using ML, will have increased importance.

5. Discussion

The survey results revealed large differences in the use of digital twins depending on
the stages of the FSC: The major proportion of digital twins are applied in production and
processing. Further, nearly all applications are used for monitoring, and many applications
predict future states of their physical objects. However, only a few digital twins recommend
actions or control systems fully autonomously, i.e., refer to prescriptive or autonomous
digital twins, respectively. In addition, key elements to implement digital twins were
investigated. To better understand the reasons, we primarily discuss the potentials of
digital twins in the food industry (Section 5.1). Subsequently, this section discusses the
challenges in implementing digital twins (Section 5.2). Section 5.3 closes this discussion
with threats to validity.

5.1. Potentials of Digital Twins in the Food Industry

As shown in the previous sections, we identified in our literature review several
potential ways to optimize the FSC with digital twins. This resulted in the following
research question:

RQ5—What is the potential of digital twins in the food industry?

In general, digital twins enable data accessibility and advanced analytics in real-time
to assist in more informed, efficient, and faster decision-making [89]. Sensor data are fed
into a digital twin that runs food process models (i) for providing relevant product process
information and operation outputs in real-time for process control, troubleshooting, and
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supply chain management, as well as (ii) to optimize processes for uniformity, performance,
and sustainability or to develop new designs [4,90]. Furthermore, this results in better risk
assessment and mitigation strategies based on what-if analyses and simulations [89].

Improved Use of Sensor Data: Current approaches in Industry 4.0 focus on the in-
telligent collection of data with IoT technology and its analysis with ML algorithms [91].
This includes a variety of data sources, including raw material data, machine data, or
customer data. Digital twins enable deeper insights due to the use of multi-sensor net-
works (sensor fusion), where different sensors measure several parameters from different
locations [52,60]. As stated before, sensors are required to provide data (environmental,
process, machine, etc.) for the digital twins (see Section 4.4). With the development of
smart sensors, monitoring the states during processes gets easier and faster [4]. Further,
sensors become cheaper, need less power, and transfer the data wireless, which enables
their use in more applications, even in mobile settings.

Combination with Intelligent Packaging: Intelligent packaging can directly share the
quality and current condition of a food product on the packaging during the distribution,
retail, and consumption stages [92]. Intelligent packaging consists of intelligent materials or
objects, which are defined by their behavior of monitoring “the condition of packaged food
or the environment surrounding the food” [93]. Therefore, sensors are integrated into the
packaging [92] to monitor, e.g., the temperature, the pH value, the humidity, the pressure
on the food, or vibrations during transportation [94]. Further, gas sensors can measure
the concentration of carbon dioxide (CO2) or hydrosulfuric acid (H2S) to allow concluding
the current condition of the food [92]. An example of how to produce near zero-cost gas
sensors is given by Barandun et al. [95]. Biosensors are able to detect pathogens or toxins
in bacteria-contaminated foods [96].

Combination with AI and ML: Likewise, integrating nuclear magnetic resonance
(NMR) and other spectroscopy methods as well as imaging techniques [4] in conjunction
with AI and especially ML enables machine or computer vision. Such algorithms can
analyze the food and are able to determine its composition, condition, and quality issues
as spoilage, contaminants, or defects [97,98]. Furthermore, by placing virtual sensors on
the digital twin model, sensor data from locations that would usually not be accessible
to sensors can be generated [8]. Virtual sensor data are software-based outputs of fused
data from physical sensors [99]. The application of physical sensors is limited by noise,
interference, or unfeasibility due to spatial conditions [99] or locations difficult to access [8].
Virtual sensors provide data measurements of parameters or locations, which are physically
not measurable [99]. This application enables the detailed prediction of food losses and the
remaining shelf-life of the food products [60].

Optimizing Production Planning: Further, production planning can be optimized
with ML in this context [100]. The industry demands the possibility to adapt to current
market demands as unique nutritional standards and packaging sizes and, therefore,
require a higher production flexibility [6]. This means not only being able to produce
a wide range of products also counting with the capacity to reschedule the production
dynamically [81]. The analysis and prediction of SC disruptions can be used to assist
this [5,101], although the mentioned references focus on more economic aspects of these
disruptions. Proactive adaptation improves system performance as it forecasts adaptation
concerns (e.g., through identification of patterns in historical data) and reacts either by
preparing an adaptation or adapting [102]. Autonomous systems can respond to changes in
the state during ongoing operation, while digital twins can integrate a variety of data like
environment data, operational data, and process data [26,103]. This also includes supplying
different stakeholders in the FSC with actionable real-time data, such as the remaining
shelf-life for each shipment (based on the product’s physical, biochemical, microbiological,
or physiological states), on which logistics decisions and marketing strategies can be
adjusted [8,89].

Support for Predictive Maintenance: Another use case is predictive maintenance of
machines [104]. Digital twins are able to show the evolution of the process in each element
of a production or processing machine without the need to halt the process or open the



Sensors 2022, 22, 115 17 of 27

system to examine its state physically [30]. Faults in the system can be spotted significantly
earlier thanks to intelligent data analysis [89], leading to more efficient approaches for
predictive maintenance, which is made before faults or failures occur [105]. This can be
considered in production planning and decrease down-times. Further, virtual reality and
augmented reality can be based on digital twins and support training and maintenance or
repair of machines [90,106].

Support for Product Development: Digital twins are also useful during product and
process design, where actual monitored sensor data allow to check for conformance of
the product specifications with the design intent and customer requirements [8,107,108].
Additionally, tests on prototypes can be replaced by simulations on the digital twin, which
results in a reduction of costs, time, and resources [77,105,109]. Regarding the complete
product life cycle, digital twins also respect the disposal of the packaging and food remains
and, therefore, consider sustainability aspects [105]. Aiming to achieve a sustainable FSC,
digital twins can optimize the environmental impact as a consequence of the growth of
production systems [110].

Improving Collaboration: Digital twins facilitate the collaboration of cross-functional
teams [89]. They can be used to clarify specifications with suppliers and optimize designs.
If the company develops a new digital twin with every product, each model will comprise
data on the precise components and materials used in the product, configuration options
specified by end consumers, as well as process conditions experienced during produc-
tion [111]. Moreover, digital twins are able to assist in terms of personalized nutrition
by adjusting product recipes in response to changes in consumer preferences; designing
products with a specific chemical composition, nutritional value, and functional orientation;
and developing functional, specialized products tailored to the needs of small groups of
people that will assist in lowering the risks of disease in those who already have it, as well
as satisfy the demands of those who want to tailor their diet to their specific needs [77,79].

Enhance Food Safety: Furthermore, digital twins can enhance food safety by improv-
ing product traceability [112] through the possibility to identify problems in real-time and
to record this by storing shipment condition data [8]. Worth mentioning is the approach
by Botta et al. [112], combining a blockchain-based verifier with the digital twin application
to validate and secure the data. Another framework combining the blockchain technology
with digital twins is proposed in [113]. The aim of this framework is the secured data shar-
ing and exchange during collaboration of several digital twins, e.g., in logistics tasks and
risk prediction. Further, digital twins could assist regulatory organizations with providing
useful data to avoid delays in import and export or companies during the application of the
Hazard Analysis and Critical Control Points (HACCP) concept to suggest control points
and remedial actions [8].

5.2. Challenges in Implementing Digital Twins in the Food Industry

The implementation of a digital twin consists mainly of the following key elements:
a real-life object or process, which should be twinned; a virtual model of the real-life
counterpart, including all its essential properties; and a linkage between both [8,30,85].
Further, technical components are required to sense the physical entity and adjust the
virtual entity accordingly or to store and process data. The extent of applications differs
in the stages of the FSC, although digital twins provide potentials in the food industry
as discussed in the previous Section 5.1. Hence, this section addresses the following
research question:

RQ6—What are the challenges in applying digital twins in the food industry?

One of the major challenges of implementing digital twins is the lack of a general
method, which describes how to gather the information from the physical to the virtual
object [4,26,90]. Koulouris et al. [6] state that the specific characteristics of the food sector
and high-value product industries, such as specialized equipment, component complexity,
and high-quality standards, are responsible for the delay in the adoption of process simu-
lation for design and modeling. Thus, the individual projects for implementing a digital
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twin lead to higher investment costs due to the diversity of approaches and, therefore,
are particularly challenging in smaller companies and poorer countries [4,26,114]. In the
following, we describe further, specific challenges.

Complexity of Food: The complexity and variability of raw materials and their prop-
erties used to create food products, and the limited shelf-life not only of food raw materials
but also the products made of it are limiting the application [4,6]. Further, plants, processes,
and knowledge are continuously changing environments, forcing the related digital twins
to improve permanently [73]. Moreover, the lack of “multi-spatial/time scale models” from
the current modeling technologies limits the representation of behaviors, features, and
rules at the diverse levels and granularities of the spatial scale and the characterization of
the dynamic process of physical entities from different time scales [84].

Absence of Physicochemical Models: The absence of good physicochemical data is
another major impediment to the use of modeling and simulation tools [6]. For instance,
food processing faces a wide range of foods with complex properties, hard to calculate or
even to predict, such as molecular weight, pH, or water activity, and not so well under-
stood thermodynamics. Furthermore, the kinetics of biological and chemical processes
need to be understood and made calculable as physics-based models [4]. This effect is
intensified by production mixes, technology variability, and the unpredictability of the
physical solution [86], resulting in complex integration of different modeling methods [4].
However, process models can already be incorporated to estimate the energy and material
requirements and expected process yield during the food processing [6].

Complexity: Depending on the complex integration of different methods in the digital
twin application, the maturity of prescriptive analytic techniques might become a risk due
to unreliability, thus a barrier to implementing a digital twin [81]. Further, the complexity
of the digital transformation in the FSC requires step-by-step implementation, which takes
several years until a productive state is achieved. Here, on the one hand, data security
and validation need to be considered [31]. On the other hand, realizing autonomous
systems need to pay attention to legislation, in particular hygienic requirements as well as
traceability of the system’s decision.

Missing Technological Infrastructure: Another challenge is that only by advancing
sensor, communication, and data processing technologies, real-time interaction between
actual and virtual twins can be achieved [86]. The systems themselves have to enable the
implementation of digital twins, i.e., their properties must be known or observable, as
well as they have to provide high-quality data [82]. In particular, production and process-
ing machines need to be upgradeable, which may lead to higher investment costs [115].
Further, there are studies on remotely food monitoring during distribution, retail, and con-
sumption [116,117]. However, technologies such as radio-frequency identification (RFID)
or near-field communication (NFC), which would support the collection and transfer of
data [97,98,117,118] are not widely applied for this purpose yet [119].

Missing Organizational Readiness: Further, there might be obstacles with regard to
the culture in the food industry. Firstly, the human acceptance of novel and advanced
technologies challenges the application of digital twins [109], especially as the competencies
of the employees in ICT might be heterogeneous. For example, the survey “Nutrition 4.0-
Status Quo, Opportunities, and Challenges” by Germany’s digital association Bitkom and
the Federation of German Food and Drink Industries (BVE) showed that 88% of the more
than 300 surveyed companies in the food industry consider a lack of ICT competencies
of their employees as a critical issue [120]. Secondly, the food production and process-
ing industry is partially highly automated; however, in general, the industry is rather
conservative with introducing new technology that automatically controls processes [31].
Lastly, the risk of lower attention to the real-world system and the dependency on the
recommendations by digital twins need to be considered [52]. This might be a reason for
the small amount of prescriptive and autonomous digital twins.

Missing Knowledge of Employees: The required expertise of knowledge becomes a
real challenge for project teams [114]. In order to address the requirements resulting from
the key elements, multidisciplinary knowledge is required [84]. This includes expert, plant,
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machine, and product knowledge [31]. Additionally, the ICT infrastructure, as well as their
establishing and organization, play important roles [31,81].

Distribution of the FSC: The size of the system, which should be twinned, is further
a challenge [81]. Since FSCs are often distributed across several entities, numerous legal
regulations must be considered [31]. Furthermore, the entire environment must be taken
into account with respect to the complete implementation of all required connections
within the digital twin. These connections (including explicit and invisible ones), internal
logic interactions, and external relationships given in the physical world are difficult to be
reproduced virtually [84]. Thus, the implementation and improvement of a digital twin is a
long process to achieve high effectiveness of the digital twin. However, because the intricacy
of the interactions and processes makes it difficult to capture various characteristics of
real-world supply chains, their models created are often simplified [121].

5.3. Threats to Validity

We used a well-structured approach for the literature review to provide a structured
analysis. Each identified paper was read and classified by at least two authors of this work;
unclear classifications were discussed by all authors. This significantly helps to reduce
human bias in the process. However, some threats to validity still exist, which we discuss
in the following.

The choice of keywords might be restricted. While this survey revealed many use
cases in the production stage, often referred to as agriculture or agricultural application,
we did not explicitly search with keywords concerning digital twins in agriculture. This
may lead to a lower outcome of search results and the missing of relevant publications and
applications. However, it is common practice to narrow the scope for being able to handle
a topic’s complexity, and we clearly describe the used keywords in Section 3.2.

In addition, we used “cyber–physical systems” as a keyword since those systems often
integrate digital twins. This search revealed publications, which have not explicitly men-
tioned the term “digital twins”. As the term itself is still relatively young, some publications
might have been describing digital twins in a CPS without using the term. Moreover, it
was not always possible to differentiate between simpler digital models/representations
and digital twins. As a result, relevant applications may not have been taken into account.

Further, the free web search using a search engine (rather than a scientific database)
provided many results, including scientific publications, press releases, offered product
ranges, project announcements, explanation videos, and more. Despite the great efforts we
have made for this survey, we were not able to analyze all search results in detail and to the
fullest extent. Therefore, some applications may have been omitted. However, our analysis
also showed that non-scientific publications from industry often missed the required depth
of detail to analyze and classify those publications thoroughly; hence, we assume that the
additional contribution would be limited.

Each publication was initially analyzed by one of the authors of this work. We followed
a well-defined approach. Still, as humans are involved, the presence of subjective bias
cannot be entirely excluded. To limit this risk, we double-checked each analysis by at least
a second reviewer for each paper. In case of deviations, we discussed those publications
with all authors.

In particular, some applications were not possible to classify clearly to the stages of
the FSC, defined in Section 2.1. This is caused by different definitions of the FSC and FSC
structure or by the unspecified description of the referred stages in other publications.
Others might argue that our FSC structure is not appropriate or not flexible enough for this
classification, e.g., in the case of fresh fruit SCs. However, this paper aims to provide an
overview of digital twin applications in the FSC. Therefore, a clear structure of the FSC is
required, and the structure in this paper merged the most frequently used stages.
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6. Related Work

This work investigates the use of digital twins in the food industry, represented by the
FSC, and studies the challenges and potentials of digital twins in the FSC. In this section,
we provide an overview of related publications from the area of digital twins.

While the concept of digital twins and their technical capabilities are still in their
infancy, literature reviews on digital twins exist. However, some reviews are not focused on
foods, the food industry, or at least parts of the FSC but were taken into account in this work.
Jones et al. [29] characterized digital twins in general by determining the key terminology
of digital twins. Therefore, they examined intentions of use and applied technologies.
Finally, the authors identified research gaps to apply digital twins, concluding a review
limited to more unified domains would be better. Concerning digital twins in SCs and
logistics, Abideen et al. [122] conducted a literature research on ML integrating digital
twins. The authors further propose a framework for this. However, their focus is on digital
twins used to improve logistics not considering the food sector at all or the food’s quality
in detail. The work of Klerkx et al. [109] investigated digitalization in agriculture from a
social-science perspective. In that sense, they review several related technologies, e.g., IoT,
blockchain, and digital twins, among others, with regards to social aspects as the farmer’s
identity and skills; ethics with regards to power supply and consumption and data privacy;
and economics.

Other works focus on a specific stage of SCs. Pylianidis et al. [39] surveyed the
implementation of digital twin use cases in agriculture in particular and over all disciplines
in general. Similar to our work, they classified the applications with regards to the discipline
and the service category, according to the stage of the FSC and the digital twin type,
respectively. They further considered the TRL, i.e., differentiate concepts, prototypes, and
deployed digital twins. Additionally, Verdouw et al. [61] provided a scheme, which is
used in our work. However, they focused only on agricultural applications as animal
monitoring and crop management, which we included as well. Kritzinger et al. [58]
differentiated the integration level concerning the data flow between the physical and
virtual entity and concluded that the terms digital model, digital shadow, and digital twin
are used interchangeably. The authors further regarded the type according to the TRL. They
revealed that digital twins in manufacturing are most often present, but the work did not
focus on food processing.

A more all-encompassing view on the agri-food SC is presented in the work of
Tebaldi et al. [40], including the SC stages supply, processing, and distribution (according
to our taxonomy in Section 2.1). For the sake of completeness, we included the applications
mentioned there in our work. Further, the works of Ivanov et al. [101] and Burgos and
Ivanov [5] took entire SCs into account concerning the analysis of disruption risks. There-
fore, ref. [101] proposed a digital twin framework to analyze risks, to predict resilience,
and to optimize the SC in order to avoid critical disruptions. The impact of the COVID-19
pandemic on FSCs is analyzed using a digital twin in [5].

However, to the best of the authors’ knowledge, there is no publication that discusses
and reviews the application of digital twins in the whole FSC. Further, the derived research
challenges to improve the integration of digital twins into the FSC, which acts as a kind of
research agenda for the community, are unique in literature.

7. Conclusions

This work investigated the challenges and potentials of applying digital twins in
the food industry. Therefore, we conducted a literature review concerning 51 digital twin
applications and assigned them to previously defined stages of the FSC. The survey revealed
that the major proportion of use cases is implemented in the production, often referred to
as agriculture, and processing stages (28 and 16 applications, respectively). In addition,
only a few use cases are deployed in the supply, processing, retail, and consumption stage
(9 applications in total).
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Classification: Further, we classified the applications regarding their underlying model
and the intention of use. Most of the digital twins are based on intelligent or mechanistic
models (20 and 16 applications, respectively). A minor amount uses statistical models (7 ap-
plications). Nearly all of the examined digital twins are used for monitoring the physical
counterpart (48 applications). Additionally, 37 applications calculate predictions. However,
only a minor amount of digital twins recommend actions or assist in autonomous system
control (20 and 8 applications, respectively). Few applications are referred to imaginary
digital twins (12 applications). A few more use cases maintain the history (16 applications),
but uncertainty due to a lack of information must be considered in this category.

Identified challenges: The main challenges of integrating digital twins within FSCs
stem from the difficulty of collecting high-quality physiochemical data and integrating
digital twins into existing supply chain structures [6]. High-quality physicochemical data
is required for the use of digital twin modeling and simulation tools. However, it is chal-
lenging to collect and process this type of data due to food processes having inadequately
described properties and difficult to calculate or predict variables, among other factors.
Effective data models that can accommodate this variability are required; however, there
are currently no commercially data models available that can integrate different modelling
methods on different scales [86]. Further, the lack of multidisciplinary knowledge is chal-
lenging the application [31]. In order to tackle this, new research perspectives, such as Food
Informatics [123], need to be deployed.

Identified future work: In order to assist data accessibility, novel and cheaper sensors
are developed, enabling them to be integrated into the food packaging [92]. In conjunction
with other related technologies as blockchain, this provides more possibilities to monitor
the food’s condition during the later stages [124]. This leads to a transformation of the FSC
with digital twins that potentially offer greater transparency, improved traceability, reduced
disruption risk, and optimized processing. In addition, digital twins allow to sense and
monitor parameters and states at difficult-to-access or even inaccessible locations, e.g., pulp
or machines, by providing the ability to place virtual sensors. Finally, through the creation
of digital human clones, food production can become more individual and personalized
with regards to human health [77,79].
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Appendix A

The survey in this work was based on a systematic mapping. Therefore, applications
were classified according to the taxonomy proposed in Section 4.1. Table A1 provides a
complete overview of the applications found in the literature and included in this work. Few
publications contained several applications. Therefore the use cases can be distinguished
through this table. Further, it reveals the FSC stage, the applications were assigned to, and
how we classified the applications in detail.
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Table A1. Overview of the applications found in the literature and included into this work and
their classification according to the taxonomy in Section 4.1. Please note: ‘X’ marks true, ‘n.a.’
that the information was not available. Further, the following abbreviations are used in the table
header: Ref.–Reference; rt–real-time; stat–statistical; int–intelligent; mec–mechanistic; ima–imaginary;
mon–monitoring; pred–predictive; pres–prescriptive; auto–autonomous; and rec–recollective.

Ref. Application Stage rt stat int mec ima mon pred pres auto rec

[6] Beer brewery Processing X X X X X X
[8] Mango (fruit) Supply X X X

[14] Fruits and vegetables Distribution X X X
[23] 1 Animal monitoring Production X X X n.a. n.a. n.a. n.a.
[30] Beverage pasteurizer Processing X X X X X
[34] Greenhouse Production X X X X X X
[36] Wheat plant Production X X X X
[42] Greenhouse Production X X X X X X n.a.
[43] Greenhouse Production n.a. n.a. n.a. n.a. X X X n.a.
[44] Greenhouse Production X n.a. n.a. n.a. X X n.a.
[45] AMWAY (Product design) Processing X X X n.a.
[45] KRONES (packaging design) Processing X X X X
[45] Beverage plant (filling) Processing X X X X X n.a.
[45] Cheesery plant Processing X n.a. n.a. n.a. X n.a. n.a. X n.a.
[46] Processing plan (chocolate bars) Processing X X X X n.a.
[47] Fruits and vegetables Distribution/Retail X X X X X
[53] Plant Production X X X X X X
[54] Wheat plant Production X X X X
[55] Mango (fruit) Supply X X X
[56] Mango (fruit) Supply/Distribution X X X X n.a.
[57] Tube pasteurizer Processing X X X X X

[61] 2 Potato (vegetable) Production X X X X X
[61] 3 Animal monitoring (cow) Production X X X
[61] 4 Greenhouse Production X X X X X
[61] 5 Organic vegetable farming (grow and harvest lettuce) Production X X X X X X
[61] 6 Animal monitoring (pig) Production X X X
[62] Hydroponic farm Production X X X X X X
[63] Potato plant Production X X X X X
[64] Aquaponic system Production X X X X X

[65] 7 Dairy Monitor (cow) Production X X X X n.a.
[65] 8 Open PD (plant desease detection) Production X n.a.
[65] 9 INSYLO (silo’s stock monitoring) Production X X n.a.
[65] OliFLY (pest traps for olive fly) Production X X X n.a.

[65] 10 BeeZon (apiary monitoring) Production X X n.a.
[66] Animal monitoring (cow) Production X X X n.a.
[67] Vertical Farm Production X X n.a.
[68] Crop management (irrigation system) Production X X X X X
[69] Aquaponic system Production X X X X X n.a.
[70] Orchard production system Production X X X X X n.a.
[71] Crop management Production X X X X n.a.
[72] Processing plant (water filling) Processing X X X X
[73] Processing plant (pudding) Processing X X X X X n.a.
[74] Malthouse Processing X X X X X
[75] Processing plant (Ketchup) Processing X X X X X n.a.
[75] Processing plant (milk powder production) Processing n.a. X n.a. X X n.a. n.a. n.a.
[75] Processing plant (cheese) Processing X X X X X X n.a.
[76] Ice cream machine Processing X X X X
[77] Meat product Processing X X X X
[78] Potato (vegetable) Supply X X X X X X
[79] Consumer Consumption X n.a. X X X X
[80] Potato (vegetable) Production X X X X X X

1 https://www.cainthus.com/ accessed on 23 December 2021; 2 https://www.iof2020.eu/use-case-catalogue/
arable/within-field-management-zoning accessed on 23 December 2021; 3 https://www.iof2020.eu/use-case-
catalogue/dairy/happy-cow accessed on 23 December 2021; 4 https://www.iof2020.eu/use-case-catalogue/
vegetables/chain-integrated-greenhouse-production accessed on 23 December 2021; 5 https://www.iof2020.
eu/use-case-catalogue/vegetables/added-value-weeding-data accessed on 23 December 2021; 6 https://www.
iof2020.eu/use-case-catalogue/meat/pig-farm-management accessed on 23 December 2021; 7 https://www.
connecterra.io/ accessed on 23 December 2021; 8 http://www.openpd.eu/ accessed on 23 December 2021;
9 https://www.insylo.com/ accessed on 23 December 2021; 10 https://www.beezon.gr/el/ accessed on 23
December 2021.
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