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Abstract: This work outlines an approach for localizing anomalies in nuclear reactor cores during
their steady state operation, employing deep, one-dimensional, convolutional neural networks.
Anomalies are characterized by the application of perturbation diagnostic techniques, based on the
analysis of the so-called “neutron-noise” signals: that is, fluctuations of the neutron flux around the
mean value observed in a steady-state power level. The proposed methodology is comprised of three
steps: initially, certain reactor core perturbations scenarios are simulated in software, creating the
respective perturbation datasets, which are specific to a given reactor geometry; then, the said datasets
are used to train deep learning models that learn to identify and locate the given perturbations within
the nuclear reactor core; lastly, the models are tested on actual plant measurements. The overall
methodology is validated on hexagonal, pre-Konvoi, pressurized water, and VVER-1000 type nuclear
reactors. The simulated data are generated by the FEMFFUSION code, which is extended in order to
deal with the hexagonal geometry in the time and frequency domains. The examined perturbations
are absorbers of variable strength, and the trained models are tested on actual plant data acquired
by the in-core detectors of the Temelin VVER-1000 Power Plant in the Czech Republic. The whole
approach is realized in the framework of Euratom’s CORTEX project.

Keywords: neutron noise; neutron diffusion; deep learning; convolutional neural networks;
pressurized water reactor; perturbation localization; VVER-1000; absorber of variable strength;
FEMFFUSION

1. Introduction

Nuclear power plants (NPPs) are equipped with many sensors that provide data for
the assurance of safety and plant operations, capturing the neutron flux within the core.
When the plant is operating under normal conditions, these sensors report steady-state
values. In addition to the static component, small fluctuations of the signal may appear,
due to inherent fluctuations in the process, caused by a multitude of factors (mechanical
vibrations of the fuel assemblies or the core barrel, disturbances in heat transfer fluid
flow rates, temperature or density variations, etc). In this sense, an important parameter
to observe is the so-called “neutron noise”: that is, the fluctuation of the neutron flux
around a mean value, observed in steady-state operating conditions. These fluctuations
are important, as they may convey information related to in/out of the core phenomena
that can occur as a consequence of initiators (such as temperature or density changes,
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displacements of core components, etc.), which, in turn, induce fluctuations in neutron
cross sections.

The aforementioned phenomena can be grouped in different scenarios [1], such as
generic absorbers of variable strength, axially traveling perturbations at the velocity of
the coolant flow (e.g., due to fluctuations of the coolant temperature at the inlet of the
core), fuel assembly vibrations, control rod vibrations, core barrel vibrations and many
others. Those scenarios can be subsequently simulated with computer codes. In this work,
perturbation analysis proceeds in two phases. Initially, every perturbation is propagated in
the frequency domain across the whole reactor core volume; this is known as the forward
problem. Thus, there is a one-to-one relationship between every possible location where a
perturbation is located and the position where the neutron noise is measured. In operating
NPPs, however, the location of the perturbation has to be inferred from measurements
originating from neutron detectors (present at specific locations within and out of the
core); this is the backward problem, for which we have to be able to invert the reactor
transfer function. Since inverting the nuclear transfer function is a non-trivial problem,
we employ machine and deep learning techniques to this end. The intuition behind this
research direction was driven by the authors’ participation in Euratom’s CORTEX project
(core monitoring techniques and experimental validation and demonstration) [2], whose
objective was to assess the feasibility of methods for exploiting neutron noise in nuclear
reactors by employing machine learning models for the inversion of the transfer function
and validating the techniques on simulated datasets.

The rest of this paper is organized as follows. In Section 2, we review related work on
this subject, while in Section 3, we present the plant and the neutron detector measurements.
In Section 4, we give some information about the FEMMFUSION code extensions intro-
duced to take into account the hexagonal geometry and the description of the generated
simulated data. In Section 5, we describe the employed deep learning model that locates
the perturbation sources distributed in the core. In Section 6, we discuss the performance
of the trained model on real plant data, which exhibits promising localization results, when
the perturbation occurs around the frequency value of 10 Hz. Finally, Section 7 concludes
this work, discussing possible extensions in the direction of completing the simulated data
and applying the deep learning model on a larger range of frequencies.

2. Related Work

Computational intelligence techniques have been broadly used in NPP operation for
many years [3]. For example, artificial neural networks (ANNSs) were tested successfully
in locating a control rod perturbation from in-core self powered neutron detector (SPND)
spectra recorded at Paks-2, a commercial VVER-type pressurized water reactor (PWR) in
Hungary [4,5]. In this case, only three detectors were used to detect seven control rod
locations. Analysis was performed in the frequency domain with only one perturbation
frequency, and a standard three-layered, fully connected feed-forward ANN was used [5]
with six nodes in the input layer (three for the auto-spectra and three for the cross-spectra),
ten nodes in the hidden layer and seven for the output layer.

Nevertheless, simple architectures, such as the one described above, are not adequate
for the more general problem of locating complex perturbations that may cover the whole
reactor core, calling for advanced approaches [6]. In recent years, the development of
massive parallel processing computation systems at reduced cost (e.g., in the from of
graphical or tensor processing units) has permitted the training of much larger ANN archi-
tectures on large volumes of data, leading to the introduction of deep learning approaches
in NPP operation and safety. In this respect and in the framework of the CORTEX project,
a three-dimensional (3D) convolutional neural network (CNN) model in the frequency
domain was adapted to the localization problem [7]. Other works analyzed neutron noise
signals using recurrent neural networks (RNNs) [8] and long short-term memory (LSTM)
units [8,9]. On the other hand, certain time domain analysis approaches firstly compute
the wavelet transformation of the neutron noise signals and construct the respective scale-
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ograms. Then, those scaleograms are treated as images by deep CNN architectures that
perform the perturbation identification and localization tasks [10,11].

All of the aformentioned methodologies were applied to nuclear reactors in Cartesian
geometry for which the transfer function can be calculated by the CORE SIM solver [12,13].
The comparison with real plant data is in progress for some pre-Konvoi nuclear reactors [14].
For the time domain, the simulated perturbation data are generated by the SIMULATE 3K
code (S3K) [15]. However, none of these codes can model the hexagonal reactor geometry
of the VVER-type reactors. Therefore, the FEMFFUSION code is used instead, after being
modified to deal with neutron noise problems in hexagonal geometry, in both the time
and frequency domains. In this study, the simulated perturbation data generated by the
FEMMFUSION code [16] pertain to a scenario involving a distributed variable-strength
neutron absorber over the whole VVER-1000 reactor core. These data are used to train
a machine learning model, then this model is used to try to backtrack the source of the
perturbation in the core. In a second part, we test the model with real plant measurements
from the Temelin NPP in the Czech Republic [17].

3. The VVER-1000 Nuclear Reactor at Temelin

In this section, the general characteristics of VVER-1000 reactor are summarized,
together with the description of neutron flux measurements.

3.1. Reactor Description

The Temelin NPP is located near Temelin in the Czech Republic [17]. Its technological
schema corresponds to a standard Gen III power plant. In the 1990s, alterations to the origi-
nal design were made by the Westinghouse Electric Corporation, in conjunction with the
State Office for Nuclear Safety of the Czech Republic (SUJB) and the International Atomic
Energy Agency (IAEA) in an effort to bring reliability and safety levels into conformance
with Western European standards. The entire primary circuit (the nuclear reactor, four
loops with steam-generators, circulation pumps, etc.) is in a fully pressurized containment
facility, hermetically enclosed in a protection envelope from reinforced concrete. The reactor
core contains 163 fuel assemblies, each with 312 fuel rods and 61 regulating rods. The PWR
is fueled by uranium dioxide (LO,) enriched to an average of 3.5% with the fission isotope
2351 The characteristics of the VVER-1000/320 reactor are presented in Figure 1.

1. Upper block

2. Control rod drive mechanism
LKP-M

3. Neutron measurement channels

4, Guiding tubes block

5. Reaclor vessel

6. Core shroud

7. Fuel assembly

8. Core barrel

Figure 1. General characteristics of the VVER-1000/320 reactor.
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3.2. Measurement Methodology

Neutron noise data are measured and gathered with the mobile, in-house distributed
measuring test system (DMTS), developed by UJV (nuclear power engineering in Czech
Republic), from the standard diagnostic plant reactor vibration monitoring system (RVMS),
together with records of technological data. The RVMS diagnostic sensors of each unit
include 4 accelerometers on the reactor head flange, 12 ionization chambers placed in three
vertical planes and at two horizontal levels, and more than 256 self power neutron detectors
(SPNDs) across the whole core in four axial heights in non-uniform radial spreading.

SPND signals are sequentially measured in groups of 16, controlled by means of
19 configuration sets. RVMS measuring chains contain conditioning with isolation and
buffer amplifiers, high/low-pass 8-pole Butterworth filters with a minimum of 48 dB
per octave roll-off to form anti-aliasing filters in several bandpass ranges. The sampling
frequency is up to 1 kHz with 16/12 bits resolution for noise/DC signals. The diagnostic
data acquired by DMTS are stored with basic fixed frequency ranges per channel (200 Hz
and 300 Hz), with a typical 0.007 Hz lower cut-off frequency, sampled at 1 kHz with 24 bits
resolution at the 5V to 10 V output signal of standard NPP diagnostic measuring chains.

Figure 2 displays the radial and vertical detector positions with marked fal, fa3, fa4,
and fa6 configuration sets and positions in the TVSA-T fuel assembly.
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Figure 2. SPND positions in the core of the VVER-1000/320 reactor with data from the U1C09 cycle.
(a) Radial detector positions with marked fal, fa3, fa4 and fa6 sets. (b) Vertical detector positions in
the TVSA-T fuel assembly.

All neutron noise data are shortened to the uniform length of 720,000 samples in order
to avoid undesirable transients at the start of the plant measurements. Therefore, there
exist uniform 12-min intervals for the processing steps described next. Direct current (DC)
components of all neutron noise data in these sets are removed. All ionization chambers
and SPND data are normalized to the DC part of the respective signal. Figure 3 exhibits the
joint time—frequency spectrograms (JTFSs) of a SPND, selected from the configuration set
fal as a typical view in the frequency-time domain.

Data from the beginning of cycle (BOC) U1C09 were acquired in 19 configuration
sets in October 2010, during physical tests of the neutron instrumentation and under strict
operational conditions [17,18].
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Figure 3. JTFS from the N205 SPND (selected from the fal configuration set) during the U1C09 cycle.

3.3. Detectors Used for Structural Health Monitoring

The plant measurements used in this work were acquired in the framework of the
study of the control rod insertion reliability. In this respect, the strategy of migrating one
assembly in the core through four consecutive fuel cycles (U1C09, U1C10, U1C11 and
U1C12) was followed. At the end of the last cycle, a problem related to incompatible rod
insertion (IRI) occurred. Having gathered all appropriate data, it was made possible to
investigate and to identify this phenomenon through the neutron noise signals acquired
under the same operational conditions in every cycle (i.e., the cycles without trouble) and
the cycle where the problem occurred. In order to follow the migration of an assembly in
the core, only the neutron noise signals acquired on four detectors groups (fal, fa2, fa3 and
fa4), as shown in Figure 2a, were taken into account. For this reason, the deep learning
architecture (Section 5) is trained four times, learning one model for each detector group
(Table 1). Then the idea is to use only the results obtained from one of these groups to
determine the location of the problem in the core. In this regard, only the data acquired at
the beginning of the first cycle (U1C09) are used. The study of the three other cycles is not
relevant in the context of this work and, therefore, the IRI problem is not further discussed
(hoping, nevertheless, that the methodology initiated in this work serves as intuition for
further analyses).
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Table 1. Detector signal groups (letter N designating internal detectors, the first two digits their radial
position and the last digit the axial position).

Group Name Detectors
N221, N223, N225, N227, N241, N243, N245,
fal N247, N271, N273,

N275, N277, N201, N203, N205, N207
N411, N413, N415, N417, N381, N383, N385,
fa3 N387, N471, N473,
N475, N477, N401, N403, N405, N407
N151, N153, N155, N157, N081, N083, N085,
fa4 NO087, N061, N063,
NO065, N067, N111, N113, N115, N117
Nb571, N573, N575, N577, N541, N543, N545,
fa6 Nb547, N511, N513,
Nb515, N517, N561, N563, N565, N567

4. The Simulated Data

Prior to unfolding, the machine learning algorithms need to be fed with training data,
i.e., data where a known perturbation is assumed and the corresponding induced neutron
noise at the location of the detectors is estimated. This section deals with the generation
of these training sets for hexagonal reactors (in a similar manner, data generation for
rectangular geometry reactors is described in [19]). Generation of the training datasets is
performed with the FEMFFUSION code in its frequency domain mode [20].

4.1. The FEMFFUSION Diffusion Code

FEMFFUSION is an open source finite element code that solves the neutron diffusion
approximation [16,21]. This code was extended for the CORTEX project to deal with neutron
noise problems in the time domain [22] and in the frequency domain [20], especially for
hexagonal reactors. Due to the quantity of the simulations for this work, the calculations
are performed in the frequency domain. FEMFFUSION permits any kind of structured and
unstructured meshes, as long as they are composed of quadrilaterals (2D) or hexahedrals
(3D). In this way, each hexagon of the hexagonal reactor is discretized into 3 quadrilateral
cells (Figure 4). A simple extrusion of this geometry is performed so as to account for the
height of the reactor.

)

nake_nesh. py

Figure 4. FEMFFUSION code: each hexagon is discretized into 3 quadrilaterals.

4.2. Neutron Noise Diffusion Equation

FEMFFUSION solves the neutron noise diffusion equation in the multi energy group
approximation. The time-dependent neutron diffusion equation can be written as in
Equations (1) and (2) below [23]

1,00 S
VS, LR = (1= B)MP+ ) ApxCy, @
p=1
aC T
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In the two group theory without upscattering, matrices vl L, M, vE £ X and ® are
defined as in Equations (3) and (4)

L 0 _v. Vi
O A e A R
Vo _212 ZaZ
v v v 1
_ f1 £2 _ f1 _ _ |
M [0 0 } vy [vzfj’ X [0} ® Lpz]‘ @

The main unknown of the neutron transport equation is the space- and time-dependent
neutron flux in its usual separation in the fast and thermal energy groups ® = [¢4 (7, t),
¢2(7, t)], and the neutron precursor concentration Cy (7, t) for each neutron precursor

group p. The total delayed neutrons fraction is f = ZPNi 1 Bp- Za1 and Xy are the fast
and thermal absorption cross sections that quantify the probability of a fast or a thermal
neutron to be absorbed by a nucleus per centimeter of neutron travel, respectively. In the
same way, Y. and Xy, are the probabilities of a fission reaction produced by a fast or a
thermal neutron per centimeter of neutron travel. v is the average number of neutrons
released per fission, and X, is the probability of a scattering interaction per centimeter of
fast neutron travel. These cross sections are determined by the materials of the reactor. All
other quantities have their usual meaning in the nuclear engineering area [23]. The first
order neutron noise theory [24] splits all time-dependent terms of Equations (1) and (2),
X(7,t), into their mean (or static) values Xy(7) and their fluctuation around the mean
0X(7,t) (Equation (5))

X(7,t) = Xo(7) +0X (7, 1) 5)

This separation stands for (i) The neutron operators, £ and M; (ii) The materials cross
sections X4, £ ¢, Xqy; (iii) The concentration of delayed neutron precursors; (iv) Cp; (v) The
neutron flux, ®.

Then, the following assumptions are made:

1. Fluctuations are assumed to be small.
[0X(7,t)] < Xo(7), V(7,1t).
2. The transient is assumed to be stationary.
(0X(7,1)) =0, V(7,1).
3. Second-order terms are neglected.
0X(7,t)-6Y(7,t) = 0.

Applying the neutron noise separation from Equation (5) into Equations (1) and (2),
removing the second-order terms and performing a Fourier transformation, the frequency-
domain neutron noise equation becomes (Equation (6))

ASD = BD,,. (6)

In the usual two group approximation,

A= Satsn ~ WEA —Ep o B= [—52a1 — X+ 70 +70%p ,
—Xp s %12 —0Zp
where

Np )\ﬁ
— _ PP
T=0-P Ly
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It can be seen that the neutron noise Equation (6) is an inhomogeneous equation
with complex-value quantities. The application of the continuous Galerkin finite element
discretization [25] leads to an algebraic system of equations with complex values and the
block structure of Equation (7) below

(411 1‘}12) (54:51> _ (?11 ?12) <4:>0,1> @)
Axt Ap )\ Bo1 By ) \¢o2)’

where ¢ and ¢, are the algebraic vectors of weights associated with the fast and thermal
neutron noise in the frequency domain. This complex value system has to be solved after
the steady-state problem that calculates the algebraic vectors of weights, associated with the
fast and thermal static neutron flux, ¢o1 and ¢y », respectively. The related static eigenvalue
problem must be solved with the same spatial discretization as the frequency domain
neutron noise to obtain coherent results. This system is transformed into an equivalent
system of equations with real values, and the sparse system of Equation (7) is solved using
a biconjugate gradient stabilized method [26], with an incomplete LU decomposition [27]
employed as preconditioner.

Each simulation calculates the thermal relative neutron noise d¢» / ¢ 2 at each detector
position. The VVER-1000 reactor is modeled using 221 vertical assemblies discretized in
50 planes, summing to a total of 10,550 hexagonal cells. The hexagons are sorted using a left
to right and up to down numbering (Figure 5). Successive planes use a correlative numbering.

Figure 5. Numbering of hexagonal cells in the VVER-1000 reactor.
4.3. Generic Absorber of Variable Strength

The scenario being considered is a Dirac-like perturbation at the hexagonal cell, directly
expressed as a perturbation of the macroscopic absorption cross-sections. This scenario is
particularly important since it can be used to localize a generic type of perturbation that
does not fit any special category. The perturbation inserted at each simulation is set to
0Zg1(c,w) = 0.1 and 6Z;5(c, w) = 0.1, where c is the hexagonal cell and w is the angular
frequency of the perturbation. Three perturbation frequencies are considered: (i) 0.1 Hz;
(if) 1 Hz; (iii) 10 Hz.

In this way, 31,650 simulations for the VVER-1000 reactor are performed. Due to the
volume of the simulations, all calculations are made with linear finite elements, where each
simulation takes approximately 30 s, using one processor.
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5. The Machine Learning Model

Based on the available data (simulated and real), the objective of the machine learning
model is to perform an identification task: that is, to identify if any perturbations occur with
respect to each fuel assembly. For this purpose, the chosen model is firstly trained on all
of the available simulated data, where it is known in advance at which fuel assembly the
perturbation occurs, thereby forming a supervised classification problem. Once the training
phase completes, model performance is validated on plant measurements in an effort to
identify possible perturbation locations.

5.1. Model Architecture

Figure 6 outlines the optimal model architecture. It is a deep convolutional neural
network, whose input is comprised of 16 in-core signals. More precisely and in order to
align the simulated data with the plant measurements, four groups of 16 signals are created,
as illustrated on Table 1 below, thereby training four distinct models.

Each detector signal has a length of 200 timesteps. The simulated data files contain the
result of the calculated complex value, which gives the characteristics of the vibration arriv-
ing on the detector for each radial and axial location. The transformation from frequency to
the time domain is realized according to Equation (8) below

Sp(x,t) _ [0¢(x, wp)|
¢$o(x) ¢o(x)

where w), is the angular frequency of the perturbation and thus the dominant frequency of
the neutron noise flux.

Additionally, the simulated data are normalized (divided by the global standard
deviation). Concerning the plant measurements, they are already on the time domain.
The size of the signals are decimated by a factor of 10, in order to speed up calculations
for model training, while at the same time retaining the necessary frequency content for
the physical analysis. Then, different sample sizes of 200 timesteps are chosen during
training. Finally, two approaches are followed prior to providing the plant measurements
to the machine learning model. The first is to provide the raw signal (after detrending
and normalization), while the second is to perform an additional preprocessing step: the
application of a band-pass filter on specific frequencies, only those that were simulated and
used for model training.

As pictured in Figure 6, the input signals undergo a number of consecutive feature
extraction steps that are comprised of one-dimensional convolutions, followed by normal-
ization layers [28] that normalize the input to the next layer by computing its mean and
variance. Then, every two convolutions, the signal is averaged by an one-dimensional aver-
age pooling layer. The first two convolutions involve 128 feature maps that are produced
by kernels of size 3 x 3, followed by two convolutions of 256 feature maps of equal sized
kernels and then of two final convolutions of 512 feature maps. Then, the output of the
final feature extraction step is flattened (green rectangle) and provided to the fully con-
nected component at the end of the architecture (three yellow rectangles) that performs the
localization task. This component consists of three dense layers, with the first two having
1000 neurons each, while the last one has 211, corresponding to each fuel assembly within
the core. The overall architecture is trained on the labeled simulated data, using the Adam
optimization technique [29] for 200 epochs for the four different groups discussed above.

According to the available simulated data, it would be possible to locate every pertur-
bation at 211 x 50 locations because for each radial position, 50 axial levels in the core are
calculated. However, this would produce a 10,550 output vector (one-hot encoded for every
axial and radial combination). At this point of our research, we are primarily interested in
identifying the perturbations at the fuel assembly level (Figure 5); therefore, the machine
learning model returns the radial position at each given frequency, regardless of the axial

sin(wpt + arg (6 (x, wp))), (8)
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position where the perturbation actually occurs. This observation is necessary in order to
understand the results obtained by the machine learning models in Section 6.2.

Input 1
200x16 Conv 1D

512 (3x3)

Conv 1D
128 (3x3)
(Tt
512 (3x3
Conv 1D
128 (3x3)

Conv 1D
512 (3x3)

Conv 1D
256 (3x3)

Conv 1D
256 (3x3)

=

Figure 6. The machine learning model.

6. Results and Discussion

Currently, the simulated data are created for three frequencies and only for the irradi-
ation conditions related to the first cycle U1C09 (Sections 3.2 and 4.3). Validation scores
regarding the capability of the trained models to localize the anomalies are being reported
and subsequently the models are being tested on actual plant measurements. In the dis-
cussion section (Section 6.2), it is demonstrated that the proposed methodology exhibits
better results at 10 Hz, while performance at the very low frequencies (0.1 Hz and 1 Hz) is
not as optimal.

6.1. Results
6.1.1. The Efficiency of the Trained Models

Table 2 summarizes the training accuracy of the four different models trained on the
respective detector subsets of Table 1 (Section 5) on the simulated data. The achieved
performance means that the machine learning models are capable of identifying the fuel
assembly where the perturbation occurs more than 9 in 10 times.

Table 2. Training accuracy on the different detector signal groups.

Group Name fal fa3 fa4 fa6
Accuracy 93.25% 93.95% 93.74% 93.26%

6.1.2. Prediction on the Plant Measurements

Every trained model in the simulated data is validated on plant measurements from
the Temelin reactor, at 0.1 Hz, 1 Hz and 10 Hz, for a limited number of detectors. Initially,
the models are tested on raw measurements (that is, without filtering). Then, a band-pass
filter is applied around each simulated frequency used during model training. Figures 7-9
outline system performance on the actual plant measurements, thanks to a visual represen-
tation, which gives an assessment of the localization probabilities for the perturbation.
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Figure 7. Prediction on plant measurements when no filter is applied (sampling rate 100 Hz). (a) fal.

(b) fa3. (c) fa4. (d) fa6.

6.2. Discussion
6.2.1. The Other Available Measurements in the Core

As indicated in Section 3.3, data acquired at the beginning of the cycle U1C09 are used,
while the focus is around only three frequencies for which simulated data are available
(Section 4.3). In order to be able to reason on the results shown in Figures 7-10, the presence
or absence of the perturbation at the predicted frequency and location needs to be veri-
fied. This is achieved by examining the available measurements acquired by the neutron
detectors in the core and, more specifically, for the closest assembly to the radial location
predicted by the models. Afterwards, the spectrum analysis of the signals acquired by the
detectors on all the axial locations for this given radial location will provide an indication
of validating the prediction; it needs to be verified whether a peak effectively exists at the
perturbation frequency used by the model to realize the prediction on all axial locations.
Regarding the first cycle (U1C09), the available radial locations are displayed in Figure 11.
Additionally, for every model, the signals acquired on the detectors not considered by the
models may be used, e.g., if the performance of the a1 model is evaluated, then the detector
signals of groups fa3, fa4 and fa6 may be employed.
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Figure 8. Prediction on plant measurements for filtered bandwidth [0;1.1] Hz and sampling rate of
100Hz (Section 6.2.2). (a) fal. (b) fa3. (c) fa4. (d) faé6.
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Figure 9. Prediction on plant measurements for filtered bandwidth [0;2] Hz and sampling rate of
100 Hz. (a) fal. (b) fa3. (c) fa4. (d) fa6.
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Figure 10. Prediction on plant measurements for filtered bandwidth [9;11] Hz and sampling rate of

100Hz. (a) fal. (b) fa3. (c) fa4. (d) fa6.

Figure 11. Available measurements for the U1C09 cycle, used to verify the machine learning perfor-
mance.

6.2.2. Some Considerations on the Frequency Resolution

It is known that the signal length limits the frequency resolution which can be ex-
pressed as Af = %, where Fs is the sampling frequency and # the size of the signal. Plant
measurements are acquired for a duration of 12 min, with a sampling frequency of 1kHz
(Section 3.2). Therefore, the frequency resolution is expected to be equal to 14 x 10~* Hz.
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In practice, the detector signals are decimated by a factor of ten in order to speed up the
calculation time, resulting in 72,000 samples per signal for model training. This choice
is feasible since the range of frequencies of interest for neutron noise analysis does not
exceed 50Hz. In an effort to further reduce training time, only 200 samples from each
signal are actually considered (Section 5.1). This proves to be a good tradeoff, but in this
case, the frequency resolution is limited to 0.5 Hz, excluding perturbations around 0.1 Hz.
For the 1 Hz and 10 Hz cases, 200 points are sufficient to describe 2 and 20 periods of the
sinusoid, respectively, which is good for the latter frequency and acceptable for the former.

6.2.3. Spectra Observation of the Other Available Measurements to Validate the Prediction

Prior to machine learning model training, a band-pass filter is applied to the simulated
data around every frequency with a tolerance of 1 Hz (Section 6.2.2). Signal stationarity
is also important, as the initial signals are reduced to 200 samples. This choice is verified
for 10 Hz, as it can be seen in the example of Figure 3 for the N205 detector. Figures 12-17
displays the spectra calculated on the signal evolution of the available detectors not used
in model training.

SPND Detectors N311-N313-N315-N317

40 50
I I

spnd-N315 Spnd-N317

PSD (V3/Hz)

spnd-N311 spnd—N313

T t T T T T
0 10 20 30 40 50
Frequency (Hz)

Figure 12. Power spectral density measured at radial location N31 (for all axial positions).
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In Figure 12, the radial position of detector N31 is marked, as the frequency value
of 10Hz is always present in the spectrum along all axial positions (N311, N313, N315,
N317). Additionally, 1 Hz is highlighted around every frequency of the band-pass filters in
order to determine its presence or absence. Radial position N31 is also close to a predicted
perturbation location by the machine learning model (Figure 10). Therefore, it could be
said that the performance of machine learning models is satisfactory for the 10 Hz case.

For the radial position N62, a frequency value of 10 Hz is observed at the first axial
position (N621, Figure 10), but not for the others. That is also the case for the radial locations
N44, N52 and N53 (cf. Figures 14-16). For the other shapes, there is no ambiguity, for
instance with the radial locations N55 (cf. Figure 17, bottom right side of the core) where
there is absolutely no peak around 10 Hz or the radial location N16 (cf. Figure 13, upper
right side) where the peaks around 10 Hz are very weak at two axial levels. The same kind of
observation is also valid for the groups of detector signals not used during model training.

SPND Detectors N161-N163-N165-N167

40 50
L L

spnd-N165 | "~ Spnd-N167

spnd—-N161 spnd—-N163

PSD (V2/Hz)

T t T T T T
o 10 20 30 40 50
Frequency (Hz)

Figure 13. Power spectral density measured at radial location N16 (for all axial positions).
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SPND Detectors N441-N443-N445-N447
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spnd-N445 Spnd-N447
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T t T T T T
0 10 20 30 40 50

Frequency (Hz)

Figure 14. Power spectral density measured at radial location N44 (for all axial positions).
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SPND Detectors N521-N523-N525-N527
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Figure 15. Power spectral density measured at radial location N52 (for all axial positions).
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SPND Detectors N531-N533-N535-N537

40 50
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T
0 10 20 30 40 50
Frequency (Hz)

Figure 16. Power spectral density measured at radial location N53 (for all axial positions).
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SPND Detectors N551-N553-N555-N557
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spnd-N555 | "~ Spnd-NB57
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spnd—-N551 spnd—-N553

T t T T T T
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Figure 17. Power spectral density measured at radial location N55 (for all axial positions).

For the 1 Hz case, interpretation is not so obvious since the shape of the spectra in
the vicinity of 1 Hz are all identical and the machine learning models predict only one
location on the left. At 2 Hz, the noise rapidly increases due to a so-called + noise, which is
characteristic of neutron noise measurements in power reactors because of the population
of the delayed neutrons emitted after nuclear fission by the fission products. The shape
of the power spectral density at low frequencies is the same for all detectors, except for
N317, where there is a peak near 1 Hz, which can explain the prediction of the model in
the vicinity of the N31 detector radial location (Figure 9). However, previously, for the
same kind of observation with the peak at 10 Hz in the spectrum of the N621 detector,
the machine learning models did not exhibit the same classification results. This behavior
needs to be further studied but it could be attributed to the fact that the frequency of 1 Hz
is not very well represented by only 200 points over time (only two periods of the sinusoid,
as discussed in Section 6.2.2).

Finally, when no filter is applied to the simulated data (Figure 7), predictions are
coherent in the sense that they are similar to predictions obtained in the case of the band-
pass filter around the frequency value of 10 Hz. The reliability of the obtained results for
the three band-pass filters is summarized on Table 3.
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Table 3. Reliability of the obtained results for the three band-pass filters.

Model Characteristic 0.1 Hz 1Hz 10 Hz
Prediction accuracy of . .
the radial location low medium high
Spectral resolution not well described partially described well described

7. Conclusions

In this work, machine learning models were employed in order to identify and localize
perturbations in plant measurements originating from the Temelin VVER-1000 NPP in
the Czech Republic. The FEMFFUSION code allowed the generation of simulated data
in hexagonal geometry, associated with a Dirac-type perturbation in the core. A one-
dimensional deep neural network was trained on these data in order to predict the radial
position of the perturbations. It was demonstrated that is possible to reach some reliable
conclusions on the radial localization, when the perturbation is around 10 Hz. Because of
certain performance considerations during machine learning training, the frequency resolu-
tion of the spectral analysis had to be limited, which resulted in non-optimal performance
for the 0.1 Hz and 1 Hz frequency values.

This study can be extended in a number of ways. Firstly, new simulated data can
be generated for frequencies greater than 5Hz, that is to say, over the very low noise
frequencies in 1. Then, machine learning models will be trained for every group of
detectors, for the irradiation conditions specific to every fuel cycle until the incompatible
rod insertion (IRI) phenomenon. If the said phenomenon can be related to a frequency in
this frequency range, it will be possible to propose an online methodology that detects the
radial location of its occurrence.

Additionally, the part of the spectrum at very low frequencies (less than 2 Hz) needs
to be better analyzed. This may be achieved by increasing the sample size considered for
model training (currently at 200 samples). This would result in an increase of the frequency
resolution and as a consequence, it would improve the spectrum description at very low
frequencies. Finally, a possible extension of this work is to consider the axial location of the
occurring perturbations, apart from the radial one.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN  Artificial Neural Network
APSD  Auto-Power Spectral Density
BOC Beginning of Cycle

CNN Convolutional Neural Network
CPSD  Cross-Power Spectral Density

DC Direct Current component

DMTS Distributed Measuring Test System
FA Fuel Assembly

IAEA  International Atomic Energy Agency
IRI Incompatible Rod Insertion

JTES Joint Time-Frequency Spectrogram

LSTM  Long Short-Term Memory unit

ML Machine Learning

NPP Nuclear Power Plant

PWR Pressurized Water Reactor

RNN Recurrent Neural Network

RVMS  Reactor Vibration Monitoring System

SPND  Self Power Neutron Detector

SUJB State Office for Nuclear Safety (Czech Republic)

ujv Nuclear power engineering in Czech Republic (UJV Rez)
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