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Abstract: Network slicing is a promising technology that network operators can deploy the services
by slices with heterogeneous quality of service (QoS) requirements. However, an orchestrator for
network operation with efficient slice resource provisioning algorithms is essential. This work stands
on Internet service provider (ISP) to design an orchestrator analyzing the critical influencing factors,
namely access control, scheduling, and resource migration, to systematically evolve a sustainable
network. The scalability and flexibility of resources are jointly considered. The resource management
problem is formulated as a mixed-integer programming (MIP) problem. A solution approach based
on Lagrangian relaxation (LR) is proposed for the orchestrator to make decisions to satisfy the high
QoS applications. It can investigate the resources required for access control within a cost-efficient
resource pool and consider allocating or migrating resources efficiently in each network slice. For high
system utilization, the proposed mechanisms are modeled in a pay-as-you-go manner. Furthermore,
the experiment results show that the proposed strategies perform the near-optimal system revenue to
meet the QoS requirement by making decisions.

Keywords: sliced 5G core network; orchestrator; access control; resource scheduling; migrations;
lagrangian relaxation

1. Introduction

Network slicing is a novel technology starting from the fifth-generation (5G) mobile
communication networks which has high capacity, high data rate, high energy efficiency,
and low end-to-end (E2E) delay [1]. The system architecture adopts the virtualization
techniques to make the virtualized network functions (VNF) dynamically allocated to
servers in a cloud computing environment [2–6]. Software-defined networking (SDN) is
an enabling technology for the network access management, deployment, configuration,
and control of the data forwarding planes of the underlying resources [7–10]. Each slice
has the logical and independent network corresponding to the quality of service (QoS)
requirements for applications, such as the Internet of Things (IoT) for massive machine-
type communication (mMTC) [11,12], emerging AR/VR media applications, UltraHD,
or 360-degree streaming video for enhanced mobile broadband (eMBB) [6], and industrial
automation, intelligent transportation, or remote diagnosis and surgery for ultra-reliable
low-latency communication (URLLC) [13]. Furthermore, the challenging research problems
are derived and discovered in the following aspects:
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1. A well-designed system architecture for 5G slices that can efficiently handle diversified
services and maximize system resource utilization is required.

2. Network management’s scalability and efficiency should be considered carefully with
the rapid changes of user demands, such as mobility, time-varying conditions, traffic
load distributions, etc. [13].

3. A sophisticated resource orchestrator for network operation should be designed for
the network deployment and management of resources by access control, scheduling,
and migrations for serving multi-variant types of services, achieving application
service differentiation, or maintaining massive connectivities [13,14].

Operators always desire to develop a sustainable network with appropriate network
access management mechanisms [9]. A sophisticated resource orchestrator for resource
allocations is a promising approach that can improve QoS and energy efficiency shown in
Figure 1. For pursuing a positive user experience, many operators also switch their focus
on how to improve the QoS [15]. An orchestrator for network operation implemented by
applying resource scheduling and resource allocation strategies is crucial [6,13,16].

The critical factors of resource management, such as access control, scheduling, and mi-
grations, are analyzed in this paper on flexibility and scalability over cloud computing
in sliced network. However, the network resource allocation based on data traffic and
network performance is deployed by slices with heterogeneous QoS satisfied 5G traffic
management characteristics. The optimal resource allocation algorithms embedded in an
orchestrator are also implemented to optimize resource utilization in the end-to-end slices
as the objective function to maximize the system value [5,17–19].

To address the challenges mentioned above, this study’s purpose and scope are pro-
posed to stand on an ISP to optimize system resource utilization in operational stages.
The system architecture is shown in Figure 1. The orchestrator with a Lagrangian-Relaxation-
based solution approach is a coordinator with network resource operation and scheduling to
deal with resource management problems. It offers reliable QoS to users and provides flexi-
bility and scalability over a cloud-based environment. A centralized computing resource
management model is formulated as a mathematical programming problem to optimize the
total system revenue through access control, weighted task scheduling, server operation,
and resource migration. This work analyzes how the core networks acquire resources to
satisfy various user requirements subject to budget and QoS constraints. The objectives are
to find efficient and effective ways of obtaining the primal feasible solutions to the optimal.
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Figure 1. System architecture for orchestrator in a sliced network.
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Furthermore, the operation is divided into slices with many time slots concerned
in the evaluation period—additionally, the available hosts scheduling with migration to
adjust into active hosts. The operation costs are reflected in the objective function. Based
on enough system capacities, the task processes with the QoS constraints are considered to
satisfy user experience. However, the extra migration effort and active hosts are calculated
as a trade-off problem to migrate resources or shutdown hosts for power saving in limited
resources. Accordingly, the problem formulation is extended from previous work [20].
The objective function includes access control variables for task assignment, host on-
off variables, and migration variables to maximize system revenue with the proposed
scheduling heuristics among allocated time slots. Several constraints are formulated
according to the research problem. The computational experiments and the scenarios are
designed for an orchestrator for network operation to show how the experimental cases
lead to a real-life situation. Then, the proposed heuristics can then iteratively obtain the
primal feasible solutions with LR and dual problems to effectively minimize the solutions’
quality (GAP). The algorithms are embedded and implemented into the orchestrator to
significantly, efficiently, and effectively apply resource scheduling and resource allocation
strategies. This work is to concentrate on the detailed operation for practical evaluation.
The main contributions of this work compared briefly to the previous work [20] include.

The reminder of this paper is organized as follows. The literature review of the exist-
ing ideas and mechanisms for an orchestrator designed in the 5G network is presented in
Section 2 from communication and computation perspectives. In Section 3, the problem
definitions for the resource management are described, and a mathematical programming
model is formulated. Section 4 presents the proposed solution through bin-packing algo-
rithms as initial solutions, Lagrangian Relaxation (LR) methods and optimization-based
heuristics (SP, UP, and OI) developed to determine the primal feasible solutions. Section 5
presents various computational experiments, and the results are correspondingly discussed
and validated to support the proposed mechanisms. Finally, the discussion and conclusions
based on numerical results are drawn for the orchestrator design proposed for network
operation, and the future work is described in Section 6.

2. Related Work
2.1. Communication Perspective

The coordinated allocation of communication resources to improve the QoS is a critical
task [21]. Zhai et al. proposed resource allocation algorithms to manage the utilization
of servers under burst and variant traffic conditions [22]. To improve the resource pool
utilization and spectrum efficiency, Lu et al. proposed a dynamic resource allocation
mechanism based on a Karnaugh map and genetic algorithm [23]. A multi-resource
allocation model based on a semi-Markov decision process (SMDP) was developed by
Liu et al. [21]. The problem was solved by linear programming techniques to attain
resource allocation decisions in cloud computing. In addition, by assuming that all clouds
can provide the same resources and get different rewards, Jin et al. [24] designed an
auction mechanism to allocate resources to match the capacity of users’ demands in a cloud
computing environment appropriately. In this auction model, mobile devices are simulated
to the buyers and cloudlets are simulated to the sellers. The auctioneer is the centralized
control manager. Its responsibility is to drop the transmission costs and latency between
mobile devices and clouds. Table 1 shows the studies on resource allocation in a cloud
computing environment.

Related works are linked to some findings addressed in this paper. From the com-
munication perspective, the methods or algorithms of an orchestrator focus on delivering
satisfactory QoS in the communication perspectives. An orchestrator’s system scalability
and flexibility in resource allocation are also addressed. The operation costs are reflected
in the objective function. The task processes with the QoS constraints are considered to
satisfy user experience. The extra migration effort and active hosts are calculated as a
trade-off problem to migrate resources or shutdown hosts for power saving. Accordingly,
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the problem formulation is extended from previous work [20]. The objective function
includes access control variables for task assignment, host on-off variables, and migration
variables to maximize system revenue with the proposed scheduling heuristics among
allocated time slots. Accordingly, the proposed model and constraints address the relevant
issues of scalability and flexibility in resource allocation. The objective is to use the pro-
posed heuristics to maximize the total value of the task to properly schedule or rearrange
resources to fulfill user requirements.

Table 1. Proposed model comparisons with literature.

Access
Control

Resource
Scheduling

Migration
Computing
Perspective

Communication
Perspective

[3,6,8,13,16] X X X X

[4,6,13,16] X X X

[6,8,13,16,19] X X

[11,12,15,21] X X X

[11–14,24] X X X

[9] X X

[20] X X X X

Proposed model X X X X X

2.2. Computational Perspective

Online VM placement algorithms for allocating resources to VMs in a cost-effective manner
were proposed in Reference [25] for increasing revenue. First-fit (FF), first-fit-migration (FFM),
least reliable first (LRF), and decreased density greedy (DDG) algorithms were presented for ex-
amining the packing strategies. The bin-packing problem was proved to be an NP-complete
problem [26]. Those methods can pack most of the tasks to be the performance metrics [25].
In the case of 5G C-RAN, the VM migration between servers is allowed [2–4]. However,
VM scheduling, including migrations, is a crucial method to increase system utilization [27].
VM migration and scheduling overheads should be considered for overall sustainable
network evolution, such as access control, resource allocation, scheduling, and migrations
in a cloud-based environment. The extra migration effort and active hosts are calculated as
a trade-off problem to migrate resources or shutdown hosts for power saving. Accordingly,
the problem formulation is extended from previous work [20]. The unbalanced supply and
demand inspire this study during peak traffic hours. The objective is to select valuable tasks
to achieve maximum revenue subject to task assignment and limited migrations in a limited
resource pool. The problems are well-known classified as bin-packing and 0/1 knapsack
problems. Herein, access control and resource scheduling are jointly considered for net-
work operation. The decisions are designed in three dimensions, tasks, time, and servers.
For example, the task should be assigned or not and to which server at which time slot. In
order to fit the QoS requirements, the orchestrator is embedded with LR-based assignment
and scheduling strategies, such as computing and transmission in variant traffic loads in a
global view adopted by heuristics bin-packing strategies.

2.3. Motivation and Research Scope

The related work summarizes that 5G is expected to deliver high QoS to users for
emerging applications. For pursuing a positive user experience and maximize system
revenue, a set of resource optimization management questions is proposed for the design
of an orchestrator on network operation, and the approach is also examined by considering
various constraints and goals for the improvement of QoS and system revenue in 5G C-RAN
shown in Table 1. The problem is combined with Knapsack problem and bin-packing
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problems, which are NP-complete problem, and it is not easy to solve by standard tools or
methods in polynomial time. To deal with the problem, a Lagrangian-Relaxation-based
solution approach with high efficiency and effectiveness is proposed. Before introducing the
solution approach, a precise mathematical programming model of centralized management
is required relevantly. The formulation should have a well-modeled mathematical structure
and formulate the behaviors from an operator perspective to offer higher QoS for users
in the networks. A sophisticated modeling technique should be applied correctly for
the model. Then, the solving procedures with the Lagrangian-Relaxation-based method
could be applied. Based on the mathematical structure, the primal problem could be
decomposed by relaxing constraints. It benefits the solution approach to obtain primal
feasible solutions reasonably compared with standard or general-purpose methods. Each
sub-problem could be easily solved by algorithms or heuristics in a few steps optimally.
The lower bounds can be determined and rigorously used to evaluate solution quality
(GAP) proposed in this paper. One of the contributions is that applying multipliers’
characteristics in the LR problem presented as significant indices presenting to find the
optimal solution systematically. The performance of the proposed indices with heuristics
(SP, UP, and OI) and classical methods (FF and CP) is evaluated in different cases for
determining operating decisions within some experimental conditions. The proposed
algorithms provide a significant guideline to efficiently and effectively obtain optimal or
near-optimal solutions with the well-defined mathematical programming model.

3. System Model and Mathematical Formulation

Figure 1 illustrates an abstract system model in an optimization-based framework.
The tasks are represented as user computing demands concerning values, amount of
computational resources, processing time, and delay tolerance. The heterogeneous servers
have various levels of limited computational resources. For example, an application
requests diverse computational resources simulated as tasks for transmission and data
processing. The orchestrator has to make acceptance or rejection to the user requirements.
During the time slot after arrival and before departure, the computational resources are all
reserved and allocated to resource pools even with operations in a sliced network, such
as VM migrations or turning on new servers. Furthermore, traffic loads vary over time.
The research problem is how to manage resources of tasks for VM allocations and system
utilizations. The task access control, computing resource allocation, switching servers on
and off, and task migrations are implemented as the objectives of the orchestrator design.

The research problem is formulated as a mathematical programming problem. It
attempts to involve a higher amount of VMs with VNFs emulated as tasks to maximize
system revenue. However, the supplied resources and required demands are not equivalent.
It forces a trade-off while deciding the tasks selected with maximum values and assigned
them to servers with limited capacities through the proposed arrangement algorithms.
For the finite number of tasks and servers, each VM is simulated as a task requested
a CPU processing power and memory space package. Each server has the finite CPU
processing power and memory for packing VMs. Each server incurs a start power cost
when it is switched on. The delay in VM migration between servers is a type of cost.
At least one server must be maintained active to accept VMs during the operating periods.
The system revenue is set as an objective function. Algorithms of the orchestrator are
designed to rely on decision variables, such as access control, resource allocation, server
operation (switching on and switching off), and VM migrations. The access control and
resource allocation decisions are jointly considered in three dimensions including tasks,
time, and servers. The objective function is to maximize the total profits by admitting tasks
subject to the budget of operating servers and migrating VMs in C-RAN. The constraints
are jointly considered with task assignment, server capacity, server switching on or off,
and VM migration. The given parameters and the decision variables used in this work are
listed in Tables 2 and 3, respectively.
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Table 2. Given parameters.

Notation Description

T A set of time slots, T = {1, 2, . . . , τ, . . . , |T|}

I A set of VMs with VNFs or called tasks, I = {1, 2, . . . , i, . . . , |I|}

S A set of physical servers in C-RAN, S = {1, 2, . . . , s, . . . , |S|}

Π A set of time slots in large time scale, Π = {1, 2, . . . , π, . . . , |Π|}

tτ System time of the time index τ, t|T| = t|Π|

Vi Reward rate of task i, which is a function of CPU or memory requirements,
∀i ∈ I

Ni Penalty of task i if it is rejected when the requirement is not satisfied, ∀i ∈ I

As Setup cost rate of the s-th server, ∀s ∈ S

Es Reopen cost of the s-th server, ∀s ∈ S

Fi Migration cost of task i, ∀i ∈ I

δi The system time that task i is arrived, ∀i ∈ I

γi Processing time required by task i, which means processing time of long-term
statistics (length of time per task), ∀i ∈ I

ε Allowed waiting time for a task when it arrives and is complete

K Total task-blocking rate

Di Total amount of CPU processing speed (GHz) required by task i, ∀i ∈ I

Ps Number of CPU cores installed in server s, ∀s ∈ S

Cs Processing capability (GHz) of each CPU core in server s, ∀s ∈ S

Ri Total amount of RAM required by task i, ∀i ∈ I

Ms RAM capacity of server s, ∀s ∈ S

G The minimum number of servers that is switched on

Table 3. Decision variables.

Notation Description

aτis Binary variable, 1 if task i is assigned to server s in time slot τ and 0 otherwise,
∀τ ∈ T, ∀i ∈ I, ∀s ∈ S

xτs Binary variable, 1 if server s is switched on in time slot τ and 0 otherwise, ∀τ ∈ T,
∀s ∈ S

yτs Binary variable, 1 if server s being powered-on in time slot τ when it was
powered-off in previous time τ − 1 and 0 otherwise, ∀τ ∈ T, ∀s ∈ S

bi Binary variable, 1 if task i is rejected and 0 otherwise, ∀i ∈ I

απis Binary variable, 1 if task i is assigned to server s in time slot π and 0 otherwise,
∀π ∈ Π, ∀i ∈ I, ∀s ∈ S

ηπi Binary variable, 1 if task i is migrated in time slot π and 0 otherwise, ∀π ∈ Π,
∀i ∈ I

The objective function is formulated as an integer programming (IP) problem to
optimize the system revenue of the entire system for network operation. The objective
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function, ZIP, comprises the values corresponding to the maximum tasks assigned to
subtract the setup cost of servers in C-RAN.

The first term of the objective function represents the total values of served tasks in the
system. Vi is the reward rate of task i. A task blocking variable, bi, is set for the task rejection
into the system in the second term of the objective function. The penalty, Ni, is considered
if a task is not admitted to be processed due to the task requests are not entirely served by
task assignments. The penalty values are set to be higher than the values of the reward
rate. There are three types of cost: initial cost rate As, reopening cost Es, and migration
cost Fi. As is the estimated cost per unit time for server s. The total initial cost is estimated
based on the on-going time slots, which is referred to Amazon EC2 operation. Es is charged
for a server to be switched on one at a time after server initialization. The value of Es is
designed to be greater than that of As in the experiments. The migration cost occurs when
a VM process migrates to other servers. It represents a type of overhead of computational
resource disturbances. The difference between time index τ and π is the time scale, and τ
is a superset of π. The approach tries not only to get the maximum values of assigned tasks
efficiently but also to control the servers in a cost-effective way in the network operation
stage. The mathematical programming problem is shown as follows:

ZIP = ∑
τ∈T

∑
i∈I

∑
s∈S

Viaτis − ∑
τ∈T

∑
s∈S

Asxτs

− ∑
τ∈T

∑
s∈S

Esyτs − ∑
π∈Π

∑
i∈I

Fiηπi −∑
i∈I

Nibi
(1)

Objective function:

max ZIP = min−ZIP

subject to:

(C. 1) : ∑
s∈S

aτis ≤ 1, ∀τ ∈ T, ∀i ∈ I,

(C. 2) : ∑
s∈S

∑
τ∈T

aτis ≤ γi, ∀i ∈ I,

(C. 3) : aτis ≤ xτs, ∀τ ∈ T, ∀i ∈ I, ∀s ∈ S,

(C. 4) : δi ≤ ∑
s∈S

aτistτ , ∀τ ∈ T, ∀i ∈ I,

(C. 5) : ∑
s∈S

aτistτ ≤ δi + γi + ε, ∀τ ∈ T, ∀i ∈ I,

(C. 6) :
γi − ∑

τ∈T
∑

s∈S
aτis

γi
≤ bi, ∀i ∈ I,

(C. 7) : bi ≤ γi − ∑
τ∈T

∑
s∈S

aτis, ∀i ∈ I,

(C. 8) :
∑
i∈I

bi

|I| ≤ K,

(C. 9) : ∑
i∈I

aτisDi ≤ xτsPsCs, ∀τ ∈ T, ∀s ∈ S,

(C. 10) : ∑
i∈I

aτisRi ≤ xτs Ms, ∀τ ∈ T, ∀s ∈ S,

(C. 11) : G ≤ ∑
s∈S

xτs, ∀τ ∈ T,

(C. 12) : xτs − x(τ−1)s ≤ yτs, ∀τ ∈ T, ∀s ∈ S,

(C. 13) : 0 ≤ ∑
τ∈T

yτs, ∀s ∈ S,

(C. 14) : ∑
τ∈T

yτs ≤
T
2

, ∀s ∈ S,
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(C. 15) : aτis ≤ απis, fortπ−1 < tτ < tπ , ∀τ ∈ T, ∀i ∈ I, ∀s ∈ S, ∀π ∈ Π,

(C. 16) : ∑
s∈S

απis ≤ 1, ∀π ∈ Π, ∀i ∈ I,

(C. 17) : απis − α(π−1)is ≤ ηπi, ∀π ∈ Π, ∀i ∈ I, ∀s ∈ S.

where (C. 1)–(C. 8) are task assignment constraints, (C. 9)–(C. 10) are capacity constraints,
and (C. 11)–(C. 17) are switching constraints.

For task assignment constraints, the admitted task i should be assigned to one of the
servers. The summation of aτis overall servers should not be greater than one, as shown
in constraint (C. 1). Constraint (C. 2) represents that the processing time slot requested by
task i should be satisfied. The total assignment time slots are equal to the requested time
slot. Constraint (C. 3) implies that only if task i is assigned to server s, server s must be
switched on. Accordingly, both decision variables aτis and xτs are set to one. If task i is not
assigned to any server, aτis is set to zero, and xτs can be a free variable. Constraint (C. 4)
and (C. 5) imply that time is assigned for task i in chronological order. More precisely, task
i should be processed after it arrives and needs to be earlier than its deadline. The deadline
is presented by the delay tolerance, which begins in arrival time. Constraints (C. 6) and
(C. 7) represent the correlation between task required time slot for assignments and the
task blocking decisions. The blocking decision bi is set to one when the requested time
slots of γi of processing are not satisfied. Otherwise, the decision is set to zero. Constraint
(C. 8) presents that the total rate of blocking tasks should not exceed that of the system
requirement. K represents the system requirement of total task-blocking rate, for example,
3%, which implies that fewer than 3% tasks will be blocked.

For capacity constraints, constraint (C. 9) and (C. 10) are intuitively obtained by the
total requirements of tasks aggregated in server s. The aggregated traffic should not exceed
the server capacity. To put it another way, if a new amount of traffic load (CPU or memory)
is arriving and is assigned to server s. After that, it should not be greater than either the
remaining CPU or memory capacities of server s [28].

Constraint (C. 11) is associated with a policy of system design about the number of
reserved servers. That is, the number of power-on servers should be at least greater than
the minimum amount, G, for each time slot of τ. Constraint (C. 12) shows that the decision
variable yτs = 1 is determined by xτs − x(τ−1)s, which implies server s is powered on in
the time slot τ.

Figure 2 presents an example in which the green dotted curve is represented as xτs.
The red pulse line, which is represented as yτs, is re-switched on within the time slot
(τ = 66). Constraints (C. 13) and (C. 14) imply that the total number of time slots the server
switches on or off should not exceed the boundary condition during a time slot period.
A faulty server may be caused if the operating time is over the boundary, which is T

2 in an
assumption of the proposed model. Constraint (C. 15) implies that if task i is assigned to
server s in time slot τ, then the parameter απis is set to one. The time index τ is a superset
of π; that is, each time slot π contains one or more time slots τ, if a aτis in this time slot is
set to one, απis is also set to one.

s
x
 s

y


( )Time

Figure 2. Presentation of server switching on or off.

For Constraint (C. 16), each task should be only served in one server in the time slot
π. Constraint (C. 17) implies the decision variable ηπi is determined by απis − α(π−1)is.
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Figure 3 shows an example for calculating η21 for task 1 with two servers, and we can
observe that the η21 is set to one due to the migration occurs.

0 1 2 3 4 5 6 7 8

s = 1

s = 2

τ =

π = 0 1 2

T

α111 = 1

α112 = 0

α211 = 0

α212 = 1

Feasible for ŋ21=1
α112 – α111≦ ŋ21

α212 – α211≦ ŋ21

Figure 3. Presentation for task assignment and migration.

4. Lagrangian Relaxation-Based Solution Procedures

The LR approach is proposed to solve large-scale mathematical programming prob-
lems in the 1970s [29]. This approach has become a procedure for dealing with mathematical
programming problems, such as integer or nonlinear programming problems, in many
practical situations.

At the beginning, the idea is to relax complicated constraints into the primal problem
and extend feasible solution regions to simplify the primal problem. The primal problem is
transformed into an LR problem which is associated with Lagrangian multipliers [20]. Then,
the LR problem can be divided into several independent sub-problems using decomposition
methods associated with their decision variables and constraints. By applying the LR
method and the subgradient method to solve the problems, some heuristics are designed
rigorously to solve each sub-problem optimally. We can determine theoretical lower
bounds from the primal feasible solutions and find helpful hints for obtaining the primal
feasible solutions.

Suppose that the set of suboptimal solutions is satisfied using the original constraints.
In that case, the solutions are known as primal feasible solutions. A near-optimal primal
feasible solution has to be found to solve the primal problem. Thus, the objective values of
the primal problem are iteratively updated after sequentially feasible verifications.

The procedure of the LR approach is presented and marked in six steps in Figure 4. If a
minimization problem is considered, the solution of the LR approach is the lower bounds.
The lower bounds are iteratively improved by adjusting the multipliers set between the
LR problem and the dual problem. If there is a feasible solution for the primal problem,
then the solution is marked. The gap between the lower bounds and the feasible solutions
is calculated for the entire process. The calculations are iteratively repeated until the
termination conditions are satisfied. The subgradient optimization method is used for
adjusting the multipliers in each iteration to accelerate the convergence of the minimization
gap [30].

4.1. Procedures of Step 1: Relaxation

Based on the standard form of an optimization problem proposed in Reference [30],
the objective function, ZIP, is reformulated as a minimization problem to take from max to
min and multiply with a negative sign. The constraints, (C. 3), (C. 6), (C. 7), (C. 9), (C. 10),
(C. 12), (C. 14), (C. 15), and (C. 17), have decision variables on both sides of the inequality.
They are selected to be relaxed and multiplied by non-negative Lagrangian multipliers.
They are added to the objective functions for step 1 in Figure 4, as shown in Equation (2),
and denoted as ZLR.
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Figure 4. LR-based solution procedures.

ZLR =− ∑
τ∈T

∑
i∈I

∑
s∈S

Viaτis + ∑
i∈I

Nibi

+ ∑
τ∈T

∑
s∈S

Asxτs + ∑
τ∈T

∑
s∈S

Esyτs

+ ∑
π∈Π

∑
i∈I

Fiηπi

+ ∑
τ∈T

∑
i∈I

∑
s∈S

µ1
τis(aτis − xτs)

+ ∑
τ∈T

∑
s∈S

µ2
τs(∑

i∈I
aτisDi − xτsPsCs)

+ ∑
τ∈T

∑
s∈S

µ3
τs(∑

i∈I
aτisRi − xτs Ms)

+ ∑
τ∈T

∑
s∈S

µ4
τs(xτs − x(τ−1)s − yτs)

+ ∑
i∈I

µ5
i (

γi − ∑
τ∈T

∑
s∈S

aτis

γi
− bi)

+ ∑
i∈I

µ6
i (bi − γi + ∑

τ∈T
∑
s∈S

aτis)

+ ∑
τ∈T

∑
π∈Π

∑
i∈I

∑
s∈S

µ7
τπis(aτis − απis)

+ ∑
π∈Π

∑
i∈I

∑
s∈S

µ8
πis[(απis − α(π−1)is)− ηπi]

+ ∑
s∈S

µ9
s ( ∑

τ∈T
yτs −

T
2
).

(2)

Afterwards, the optimization problem can be reformulated as

Objective function:
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min ZLR

subject to: (C. 1), (C. 2), (C. 4), (C. 5), (C. 8), (C. 11), (C. 13), (C. 16),

where aτis = 0 or 1, xτs = 0 or 1, yτs = 0 or 1, bi = 0 or 1, απis = 0 or 1, and ηπi = 0 or 1.
A fewer number of remaining constraints are separated and solved in the sub-problems

related to the decision variables, accordingly. By considering a subset of decision variables
one at a time, six independent sub-problems are decomposed using the LR problem for
Step 2 in Figure 4. The objective function and the remaining constraints are not transformed
into a complex problem. The optimal solutions can be determined one by one with Step 3
in Figure 4, parallelly.

4.2. Procedures of Steps 2 and 3: Decomposition and Solving Sub-Problems
4.2.1. Sub-Problem 1 (Related to aτis)

By considering the variables related to aτis, the optimization problem is shown as

Objective function :

min ∑
τ∈T

∑
i∈I

∑
s∈S

(−Vi + µ1
τis + µ2

τsDi + µ3
τsRi

−
µ5

i
γi

+ µ6
i + ( ∑

π∈Π
µ7

τπis)

)
aτis

Subject to : (C. 1), (C. 2), (C. 4), (C. 5), andaτis = 0 or 1.

(3)

Equation (3) is a cost minimization problem. The first observation is that the coef-
ficients of (3) can be divided into |T||I||S| sub-problems. If the coefficient of each sub-
problem is negative, then the decision variable aτis is set to one at index time τ, task i,
and server s. Note that any value for aτis is all feasible for constraints (C. 1), (C. 2), (C. 4),
and (C. 5).The result is that the minimum objective value is determined. The summation of
all the objective values of |T||I||S| sub-problems with the assigned parameter aτis is set to
one, and the optimal solution is determined. The running time is O(|T||I||S| log |T||I||S|),
and the pseudo-code is illustrated as shown in Algorithm 1.

4.2.2. Sub-Problem 2 (Related to xτs)

By considering the variables related to xτs, the optimization problem is shown as

Objective function :

min ∑
τ∈T

∑
s∈S

[As −∑
i∈I

µ1
τis − µ2

τsPsCs

− µ3
τs Ms + µ4

τs − µ4
(τ+1)s

]
xτs ∀τ < |T|

min ∑
τ∈T

∑
s∈S

[As −∑
i∈I

µ1
τis − µ2

τsPsCs

− µ3
τs Ms + µ4

τs

]
xτs ∀τ = |T|

subject to : (C. 11) and xτs = 0 or 1.

(4)

Equation (4) can be divided into |T||S| sub-problems, as well. If the coefficient corre-
sponding to the sub-problem is negative, the decision variable xτs is set to one. For the
feasible region (C. 11) of (4), G is denoted by at least G servers should be switched on at
every time τ, which is a policy of the system design. If no coefficient of (4) is less than
zero, the minimal objective value of (4) is determined by setting G numbers of xτs equal to
one. On the contrary, the numbers are set to zero. The running time is O(|T||S|), and the
pseudo-code is demonstrated as shown in Algorithm 2.
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Algorithm 1 Sub-problem 1
Input : Given parameters V, D, R, γ and Lagrangian multipliers

µ1, µ2, µ3, µ5, µ6, µ7.
Output : Decision variable a.

1 Initialize : aτis ← 0, ∀τ ∈ T, i ∈ I, s ∈ S
2 for i = 0 to (|I| − 1) do
3 n← 0
4 for τ = δi to (δi + γi + ε) do
5 for s = to (|S| − 1) do

6 cs ← −Vi + µ1
τ,i,s + µ2

τ,sDi + µ3
τ,sRi −

µ5
i

γi
+ µ6

i
7 for π = 0 to |Π| do
8 cs ← cs + µ7

τπis
9 end

10 end
11 Find p that cp has minimal value
12 Wn,0 ← cp
13 Wn,1 ← τ
14 Wn,2 ← p
15 n← n + 1
16 end
17 Sort W via W:,0
18 c← 0
19 for n = 0 to (γi − 1) do
20 c← c + Wn,0
21 end
22 if c ≤ 0 then
23 for n = 0 to (γi − 1) do
24 aWn,1,i,Wn,2 ← 1
25 end
26 end
27 end

4.2.3. Sub-Problem 3 (Related to yτs)

By considering the variables related to yτs, the optimization problem is shown as

Objective function :

min ∑
τ∈T

∑
s∈S

(Es − µ4
τs + µ9

s )yτs

subject to : (C. 13) and yτs = 0 or 1.

(5)

Equation (5) can also be divided into |T||S| sub-problems. When the corresponding
coefficient is less than zero, the decision variable yτs is set to one. Note that any value for
yτs is all feasible for constraints (C. 13). The running time is O(|T||S|), and the pseudo-code
is illustrated as shown in Algorithm 3.
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Algorithm 2 Sub-problem 2

Input : Given parameters A and Lagrangian multipliers µ1, µ2, µ3, µ4.
Output : Decision variable x.

1 Initialize : xτs ← 0, ∀τ ∈ T, s ∈ S
2 for τ = 0 to (|T| − 1) do
3 n← 0
4 g← 0
5 for s = 0 to (|S| − 1) do
6 c← As − µ2

τ,sPsCs − µ3
τ,s Ms + µ4

τ,s
7 if τ < (|T| − 1) then
8 c← c− µ4

τ+1,s
9 end

10 for i = 0 to (|I| − 1) do
11 c← c− µ1

τ,i,s
12 end
13 if c < 0 then
14 xτ,s ← 1
15 g← g + 1
16 else
17 rn,0 ← c
18 rn,1 ← s
19 n← n + 1
20 end
21 end
22 Sort r via r:,0
23 n← 0
24 while g < G do
25 xτ,rn,1 ← 1
26 n← n + 1
27 g← g + 1
28 end
29 end

Algorithm 3 Sub-problem 3

Input : Given parameters E and Lagrangian multipliers µ4, µ9.
Output : Decision variable y.

1 Initialize : yτs ← 0, ∀τ ∈ T, s ∈ S
2 for τ = 0 to (|T| − 1) do
3 n← 0
4 for s = 0 to (|S| − 1) do
5 c← Es − µ4

τ,s + µ9
s

6 if c < 0 then
7 yτ,s ← 1
8 end
9 end

10 end
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4.2.4. Sub-Problem 4 (Related to bi)

By considering the variables related to bi, the optimization problem is shown as

Objective function :

min ∑
i∈I

(Ni − µ5
i + µ6

i )bi

subject to : (C. 8) and bi = 0 or 1.

(6)

Equation (6) can be divided into |I| sub-problems. In each sub-problem, the decision
variable bi is set to one, whereas the coefficient is less than zero. Subject to constraint (C. 8),
the maximum amount of bi set to one should not be greater than K|I|. The pseudo-code is
demonstrated as shown in Algorithm 4 with the running time O(|I| log |I|).

Algorithm 4 Sub-problem 4

Input : Given parameters N, K and Lagrangian multipliers µ5, µ6.
Output : Decision variable b.

1 Initialize : bi ← 0, ∀i ∈ I
2 n← 0
3 for i = 0 to (|I| − 1) do
4 Ci,0 ← Ni − µ5

i + µ6
i

5 Ci,1 ← i
6 end
7 Sort C via C:,0
8 for i = 0 to (|I| − 1) do
9 if (Ci,0 < 0) and (n ≤ K|I|) then

10 bi ← 1
11 n← n + 1
12 end
13 end

4.2.5. Sub-Problem 5 (Related to απis)

By considering the variables related to απis, the optimization problem is shown as

Objective function :

min ∑
π∈Π

∑
i∈I

∑
s∈S

(− ∑
τ∈T

µ7
τπis + µ8

πis − µ8
(π+1)is)απis, ∀π < |Π|

min ∑
π∈Π

∑
i∈I

∑
s∈S

(− ∑
τ∈T

µ7
τπis + µ8

πis)απis, ∀π = |Π|

subject to : (C. 16) and απis = 0 or 1.

(7)

The solution process of (7) is similar to that of (4). (7) is divided into |Π||I||S| sub-
problems. The decision variable απis is set to one if the coefficients corresponding to index
migration time π, task i, and server s of the sub-problem are negative. The difference
between (4) and (7) is the feasible region, constraint (C. 16); that is, απis is set to one
at the server s which has negative coefficients for specific index migration time π and
task i. The running time is O(|Π||I||S|), and the pseudo-code is illustrated as shown in
Algorithm 5.



Sensors 2022, 22, 100 15 of 25

Algorithm 5 Sub-problem 5

Input : Lagrangian multipliers µ7, µ8.
Output : Decision variable α.

1 Initialize : απis ← 0, ∀π ∈ Π, i ∈ I, s ∈ S
2 for i = 0 to (|I| − 1) do
3 n← 0
4 for π = 0 to (|Π| − 1) do
5 cs ← 0
6 for s = 0 to (|S| − 1) do
7 for τ = 0 to (|T| − 1) do
8 cs ← cs − µ7

τ,π,i,s
9 end

10 cs ← cs + µ8
π,i,s

11 if π < (|Π| − 1) then
12 cs ← cs − µ8

(π+1),i,s
13 end
14 end
15 Find p that cp has minimal value
16 Wn,0 ← cp
17 Wn,1 ← π
18 Wn,2 ← p
19 n← n + 1
20 end
21 Sort W via W:,0
22 for n = 0 to (|Π| − 1) do
23 if Wn,0 < 0 then
24 αWn,1,i,Wn,2 ← 1
25 end
26 end
27 end

4.2.6. Sub-Problem 6 (Related to ηπi)

By considering the variables related to ηπi, the optimization problem is shown as

Objective function :

min ∑
π∈Π

∑
i∈I

(Fi −∑
s∈S

µ8
πis)ηπi

subject to : ηπi = 0 or 1.

(8)

The objective function of (8) is also a cost minimization problem that can be divided
into |Π||I| sub-problems. If the coefficient of each sub-problem is negative, then the
decision variable ηπi is set to one at index migration interval π and task i. The minimum
objective value is determined by the summation of all the objective values of |Π||I| sub-
problems with the assigned parameter ηπi set to one. The running time is O(|Π||I|), and the
pseudo-code is illustrated as shown in Algorithm 6.
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Algorithm 6 Sub-problem 6

Input : Given parameters F and Lagrangian multipliers µ8.
Output : Decision variable η.

1 Initialize : ηπi ← 0, ∀π ∈ Π, i ∈ I
2 for π = 0 to (|Π| − 1) do
3 for i = 0 to (|I| − 1) do
4 c← Fi
5 for s = 0 to (|S| − 1) do
6 c← c− µ8

π,i,s
7 end
8 if c < 0 then
9 ηπ,i ← 1

10 end
11 end
12 end

4.3. Procedure of Step 4 and 5: Dual Problem and the Subgradient Method

Based on the weak Lagrangian duality theorem [29], the multiples are all non-negative
values; that is, µ1

τis, µ2
τs, µ3

τs, µ4
τs, µ5

i , µ6
i , µ7

τπis, µ8
πis, µ9

i ≥ 0, ∀τ ∈ T, ∀π ∈ Π, ∀i ∈ I, and
∀s ∈ S. The objective value of the LR problem, ZLR, is the lower bound of the primal
problem, ZIP. Construct the following dual problem ZD based on the LR problem to
calculate the tightest boundary of steps 4 and 5 in Figure 5, where the dual problem (9) is
shown as [31]

Objective function :

max ZD

subject to : µ1, µ2, µ3, µ4, µ5, µ6, µ7, µ8, µ9 ≥ 0.

(9)
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Figure 5. Obtaining primal feasible solutions and the lower bound (LB) [20].

There are several methods to solve the dual problem (9). The most popular one of
them is the subgradient method proposed in Reference [28,29]. First, define the multiplier
vector of k-th iteration, πk = (µ1,k, µ2,k, µ3,k, µ4,k, µ5,k, µ6,k, µ7,k, µ8,k, µ9,k), and let it to be
iteratively updated by πk+1 = πk + tk sk, where k is the number of iterations. The vector sk
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is the subgradient of ZD of the k-th iteration which represents the directions to the optimal

solutions. The step size tk is determined by tk = λ
(Z∗IP−ZD(π

k))

||sk ||2 , where Z∗IP is an objective
value of the primal problem, and λ is a constant, 0 ≤ λ ≤ 2. The optimal solutions of the
LR and dual problems for each iteration are determined by solving the sub-problems and
iteratively updating the multipliers by using the subgradient method, respectively.

4.4. Procedure of Step 6: Obtaining the Primal Feasible Solutions

The LR and Subgradient methods determine the theoretical bounds and provide
some hints toward the primal feasible solutions. Based on the sensitivity properties in
Reference [32], the Lagrangian multipliers are represented by weights, which are also
known as the cost per unit constraint violation for the objective value improvement rate.
In observing the primal feasible region of the primal problem, the solutions must satisfy
all the constraints. A set of primal feasible solutions to ZIP is a subset of the solutions to
ZD. For Step 6 in Figure 4, the following four model selections based on the properties of
Lagrangian multipliers are proposed for obtaining primal feasible solutions, parallelly.

4.4.1. Urgent and Penalty (UP) Involved

Task assignment and scheduling are considered in combination in the first step for
obtaining primal feasible solutions. A heuristic is proposed to determine the order of tasks
sorted by the level of significance. An index in Equation (10), urgent and penalty (UP), is
created by analyzing the coefficients of SUB4 with the penalty value. A brief analysis of the
coefficient of SUB4 implies the significance of tasks. However, the multipliers, µ5

i and µ6
i ,

are represented as the requested processing time’s satisfaction variables and assigned time
slot. Ni is the penalty of a task that occurs if the requested processing time is not satisfied.
The orchestrator is allowed to determine the crucial decisions of rejection and each task’s
assigned processing time.

According to constraints (C. 6) and (C. 7), the decision variable bi is set to zero if the
processing time required by task i is satisfied. Otherwise, it is set to one if the requirement
is not fulfilled. Thus, combine corresponding multipliers µ5

i and µ6
i with the penalty of

rejection Ni as an index of processing priority.

UPi = Ni − µ5
i + µ6

i ∀i ∈ I. (10)

4.4.2. Optimization-Based Significance Index (OI)

Based on the previous index, the significance index (OI) is also derived from the
two multipliers µ5

i and µ6
i , as shown in (11). The stages for considering µ5

i and µ6
i can be

observed in constraints (C. 6) and (C. 7). These two constraints are satisfied under the
conditions in which a task requests appropriate assignments. The decision variables bi
in constraints (C. 6) and (C. 7) are both set to zero, which indicates that all the requested
processing time slots are assigned. For each iteration, the absolute value of the subtraction
of µ5

i and µ6
i is used to evaluate the task significance of assignments properly.

OIi = |µ6
i − µ5

i | ∀i ∈ I. (11)

4.4.3. Cost Performance (CP)

This heuristic approach is proposed to establish the concept of the cost performance
(CP) ratio of the tasks. The CP ratio is defined as the ratio of the task values per requested
demand, as shown in (12). This heuristic concept is derived from identifying the tasks with
the maximum CP value that contributes to the most objective values. The CP values are
used to determine the tasks that have to be performed or dropped. The tasks with higher
CP values than those with lower CP values are selected to contribute to the objective values.
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The tasks that reflect the high CP values in objective functions are accurately identified in
the method.

CPi =
Vi

DiRi
∀i ∈ I. (12)

4.4.4. Shortest-Path-Based Significance Index (SP)

We can find three independent dimension problems with time slot τ, task i, and server
s from the observation of objective function in the primal problem. The aggregation of
the assigned tasks does not exceed the capacity of the servers. Furthermore, a tree data
structure can be represented as a set of linked nodes for task i in which the root is the
starting time of the task assignment. The branches are the assigned servers after a global
analysis of the objective function. The destination is the deadline related to the servers.
Suppose there is any path available from the root to the destination. In that case, the task
assignment series can be determined, as shown in Figure 6.

Task

Path 1 Path 2 Path 3

Figure 6. Tree structure of the SP.

The Border Gateway Multicast Protocol (BGMP) and a scalable multicast routing
protocol use heuristics to select the global root of the delivery tree [33]. We develop source-
specific shortest-path distribution branches to supplant the shared tree. The arc weights
are the coefficients of SUB1. The arc weights of migration are also considered. Moreover,
the problem is transformed into a path length-restricted shortest path problem. We identify
the paths with weights from the task arrival to departure. Furthermore, the shortest path
problem can be effectively solved using the Bellman-Ford algorithm [34]. Link constraints
with server CPU and memory capacities are the restrictions set on using links to form a
routing tree [34]. The path constraints are the restrictions to initialize the time slot and
select the branches related to the servers switched on or off. The detailed flowchart is
shown in Figure 7, where the decision variables are fine-tuned to feasible from the dual
problem to the SP model.

SP (start)
Turn on all servers 

for all time slots

Find the shortest 

path according to 

multiplier weight

Does any server 

not serve tasks

Turn off the servers

Find the shortest 

path according to 

multiplier weight

No

Obtain decision 

variables

Convergence

No

SP (end)

Yes

Yes

Figure 7. Flowchart of the SP.
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5. Computational Experiments and Numerical Results
5.1. Methodology and Experimental Environments

Some experiment scenarios are designed for an orchestrator for network operation to
evaluate the performance based on communication and computational perspectives. We
then explain how the experimental cases lead to a real-life situation and discuss how the
results changed due to various using cases. The experimental environment is initialized for
resource access control, scheduling, and migration models embedded into an orchestrator in
C-RAN. The algorithms are constructed and implemented to analyze the heuristics’ quality
for conducting performance evaluations in several simulation cases. Our experiments are
developed in C++ and implemented in a personal computer with a quad-core processor,
8 GB RAM, and Ubuntu operating system version 14.04. The experimental parameters
are listed in Table 4. The given amount of task traffic loads and arrival time slots are
randomly generated and fixed for each evaluation case. The solution to the dual problem
is denoted as ZD. The ZD values are the lower bounds of the primal solutions. The dual
solutions are not feasible for the primal problem because some constraints are relaxed.
Therefore, the primal objective value is not always lower than the ZD value, referred to
as the lower bound. However, a primary research goal is to obtain a feasible solution.
For example, Figure 5 presents an experimental case. The green curve represents the
process of obtaining the primal feasible solutions iteratively. The objective is to identify the
minimum value of the primal problem (min PFS). Then, the values of ZD are determined
using the subgradient method to iteratively obtain the tightest LB (max ZD), represented
by the purple line. The first step is to identify the initial solutions determined by the
FF algorithm [35]. The second step is to determine the primal feasible solutions of the
proposed strategies by UP, OI, CP, and SP. The performance metric, the gap, is used to
evaluate the solution quality which is defined as gap = |PFS−ZD |

|ZD |
× 100%, where PFS is the

primal feasible solution of proposed strategy.
Subsequently, several scenarios are designed for performance evaluation based on

different communication and computational perspectives. The experimental results are
used to analyze the objective values that influence decisions in strategies.

Table 4. Parameters for computational experiments.

Given Parameter Value

Number of time slots (|T|) 100

Number of tasks (|I|) 400

Number of servers (|S|) 4

Processing capability (PsCs) (GHz) (1 + s/8)× 250, for s = 0, 1, 2, 3

RAM capacity (Ms) (GBytes) (1 + s/8)× 250, for s = 0, 1, 2, 3

Setup cost rate (As) (PsCs + Ms)× 0.2

Reopen cost (Es) As × 1.5

Migration cost (Fi) 100

Reward rate (Vi) Vi ∼ U(1, 100)

CPU processing capability (Di) (GHz) Di ∼ U(1, 50)

Total required RAM (Ri) (GBytes) Ri ∼ U(1, 50)

The system time that the task i is arrived (δi) (sec.) δi ∼ U(1, |T| − 1)

Allowed waiting time (ε) (sec.) 10
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5.2. Numerical Results
5.2.1. Uniform Traffic Load

The experiment is designed to consider task arrivals with a uniform distribution,
which is interpreted as normal traffic for daily cases in a regular manner, as shown in
Table 4. First, this case examines the objective values trend with the number of tasks as the
control variable. Figure 8 displays the result; the objective value increases along with the
number of tasks. Compared with the curves of FF, SP, OI, and UP to demonstrate how high
the performance than of the proposed FF algorithm when the number of tasks is higher
than 700. The reason is that the dropping penalty is considered due to the number of tasks
that is beyond the system capacity.
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Figure 8. Objective value versus different number of tasks in uniform traffic load.

Method CP exhibits the worst performance. The decreasing trends in this method are
lower than those mentioned above or the FF method for tasks. In brief, better resource
allocation and scheduling strategies are jointly considered for determining the level of
task significance through a near-optimization-based solution with SP, OI, and UP for
maximizing objective values. The SP is the mostly near-optimal strategy with the highest
number of feasible solutions, and the minimum solution gap (3.74% ∼ 12.19%).

5.2.2. Bursty Traffic Load

A burst pattern in which a substantial number of tasks arrived in a short period is
emulated. This scenario examines how the burst task arrivals influence the objective values.
The results are shown in Figure 9, revealing that the difference between the strategies is
considerable. SP, OI, and UP perform better than FF because they have a sufficient buffer
time to reassign tasks or conduct migrations to maximize the values of tasks selected to
serve within a limited server capacity. FF performs worse than other methods because it
has no mechanism to switch servers off and no buffer time to reassign tasks. The results
obtained by observing Figure 9 reveal that CP exhibits the lowest performance. In this case,
the tasks are not assigned to appropriate servers. It causes a higher number of blocked
tasks and correspondingly generates penalties that reduce the total revenue and lower the
objective value. SP provides the most optimal solutions compared with other strategies.
The gap is 0% for 100 to 500 tasks, thus indicating that optimal solutions are determined.
In other cases, the values of the gap are 3.33% to 12.19%.
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Figure 9. Objective value versus different number of tasks in bursty traffic load.

5.2.3. Evaluation of Allowed Waiting (Buffer) Time

The allowed waiting time for each task is referred to as delay tolerance. The delay
tolerance length is related to the type of applications requested by tasks, such as web
browsing, file transfer, or video streaming. The correlation between the delay and objective
value is considered in this case. In general, the short tolerance delay for a task implies less
flexibility for task assignment and scheduling. It results in a higher blocking probability
than in the case with a longer tolerance delay. However, the results obtained by analyzing
in Figure 10 reveal that different waiting times and bursty traffic loads are designed
in combination with tolerance length. SP, OI, and UP exhibit increasing trends in the
saturation region in the allowed buffer time from 20 to 80.
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Figure 10. Objective value versus different allowed waiting time.
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The reasons for the increasing trend are: (i) The tasks are assigned to servers at a
long time slot; (ii) the burst traffics arrive after a long buffer waiting time for aggregation
within the long time available for task migration. The longer the waiting time, the higher
is the revenue incurred. The delay tolerance creates long time-space by manipulating
or scheduling tasks. In summary, an operator should set an appropriate QoS metric for
SLA embedded into an orchestrator to recommend user applications with the maximum
acceptable delay tolerance.

5.2.4. Evaluation of Server Cost Rate

This experiment evaluates the effect of the increasing server cost rate. Various servers
with different levels of capacities are deployed in a data center. It is impossible to replace
all the servers when the data center upgrades [19]. Different levels of servers have diverse
costs and capacities. Maintaining all the servers homogeneously in a data center all the
time is difficult. The results of a cluster trace published by Google indicate that the servers
are heterogeneous [36].

Based on the situation, the servers with various capacities and costs were emulated.
The base server generates a growing cost rate with the minimum capacity and correspond-
ing cost. For example, the value of 1.2 implies that the cost and capacity are 1.2 times higher
than the base server. The diversities of levels for servers are emulated in the experimental
environments. They are lowest levels cost rate of servers 0.1 up to the highest levels cost
rate of servers 1.3.

The curves in Figure 11 exhibit trends similar to those of the previous cases’ task
penalty section. Increasing the cost rate causes a decrease in the objective value. However,
the cost and objective values are not represented linearly in the regular descending order in
the SP, OI, UP, and CP strategies.

The results are that changing the cost rates in different servers provides alternative
decisions to switch on the cost-efficient servers. For high server cost rates, the curves of SP,
OI, UP, and CP are moderate compared with that of FF. Concerning active servers in the
serving status, the SP, OI, UP, and CP strategies have cost-effectiveness and achieve higher
objective values than FF. The results also reveal that SP is the best strategy with the highest
feasible solutions and the minimum solution gap for most server cost configurations.
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5.3. Time Complexity Analysis

The time complexities of the methods, such as UP, OI, CP, and SP, are analyzed for
comparison to the initial method, FF. The corresponding data is followed. The time com-
plexity of the proposed LR-based solutions (UP, OI, CP, and SP) is O(N|T||I||S|log|T||I||S|).
The Lagrange dual solution is determined by Sub-problems (3)–(8). The time complexity
is the worst of sub-problems, which is O(|T||I||S|log|T||I||S|) of SUB1 in parallel process-
ing by divide-and-conquer algorithms. Each sub-problem required O(|T||I||S|log|T||I||S|)
time minimum coefficient among servers. The Lagrange dual solutions could be obtained af-
ter a maximum number of iterations N, and the time complexity is O(N|T||I||S|log|T||I||S|).
The convergence is achieved in a small number of iterations (about 600) shown in Figure 5.
However, the time complexity of the Brute force is O(2|T|

3|I|3|S|3|Π|) with the total combi-
nation of decision variables. The complexity of FF is O(|T||I||Π||S|) with the sequential
screening method. Furthermore, the proposed algorithms (UP, OI, CP, and SP) can be set
as the output results at any complete iteration. Thus, the time can be controlled in practice.

6. Conclusions

In this paper, the research scope is proposed for an Internet service provider to optimize
system resource utilization for network operation. The proposed system architecture with
a resource orchestrator is a shared and connected resource processing VM pool inspired
by a cloud computing environment. The orchestrator is a coordinator through access
control to make resource scheduling and migration decisions in network operational stages.
A mathematical model is formulated to solve network operational problems with elastic
access control, scheduling, and migration mechanisms. The motivation and objective are
extended from the previous work [20] dealing with a network operation problem, not only
from a resource planning perspective. The operation is divided into slices with many time
slots in the evaluation period—additionally, the available hosts scheduling with migration
to adjust into active hosts or servers. The operation costs are reflected in the objective
function. In this situation, the extra migration time is calculated as a trade-off problem to
migrate or not. The objective function includes assigned host on-off and migration costs
with the proposed scheduling heuristic among allocated time slots. Designing management
strategies is created by satisfying users’ QoS and increasing resource pool utilization. Some
cases emulated as realistic environment datasets, such as uniform or bursty traffic loads, in
the experiments. It is designed for performance evaluation of an orchestrator for network
operation based on different communication and computational perspectives. Accordingly,
the realistic dataset may be helpful in fine-tuning to analyze values in the system operation
stages or specific cases. The proposed heuristics can then iteratively obtain the primal
feasible solutions to minimize the solutions’ quality effectively. The performance of the
proposed heuristics (SP, UP, and OI) is compared with the baseline, classical methods (FF
and CP). Regarding our numerical results, the SP method outperforms the other methods
in increasing uniform/bursty traffic load, decreasing allowed waiting time, and rising cost
rate. It can achieve near-optimal system revenue by obtaining decisions in sliced networks.
The composition of decisions with task access control, resource allocation, scheduling,
and migrations are significant in efficiently and effectively network operation.
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