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Abstract: To avoid serious diabetic complications, people with type 1 diabetes must keep their blood
glucose levels (BGLs) as close to normal as possible. Insulin dosages and carbohydrate consumption
are important considerations in managing BGLs. Since the 1960s, models have been developed to
forecast blood glucose levels based on the history of BGLs, insulin dosages, carbohydrate intake, and
other physiological and lifestyle factors. Such predictions can be used to alert people of impending
unsafe BGLs or to control insulin flow in an artificial pancreas. In past work, we have introduced
an LSTM-based approach to blood glucose level prediction aimed at “what-if” scenarios, in which
people could enter foods they might eat or insulin amounts they might take and then see the effect on
future BGLs. In this work, we invert the “what-if” scenario and introduce a similar architecture based
on chaining two LSTMs that can be trained to make either insulin or carbohydrate recommendations
aimed at reaching a desired BG level in the future. Leveraging a recent state-of-the-art model for
time series forecasting, we then derive a novel architecture for the same recommendation task,
in which the two LSTM chain is used as a repeating block inside a deep residual architecture.
Experimental evaluations using real patient data from the OhioT1DM dataset show that the new
integrated architecture compares favorably with the previous LSTM-based approach, substantially
outperforming the baselines. The promising results suggest that this novel approach could potentially
be of practical use to people with type 1 diabetes for self-management of BGLs.

Keywords: diabetes management; deep learning; artificial intelligence

1. Introduction and Motivation

Diabetes self-management is a time-consuming, yet critical, task for people with type
1 diabetes. To avoid serious diabetic complications, these individuals must continually
manage their blood glucose levels (BGLs), keeping them as close to normal as possible. They
must avoid both low BGLs, or hypoglycemia, and high BGLs, or hyperglycemia, for their
physical safety and well-being. Diabetes self-management entails carefully monitoring
BGLs throughout the day, by testing blood obtained from finger sticks and/or using a
continuous glucose monitoring (CGM) system. It also entails making numerous daily
decisions about the timing and dosage of insulin and the timing, ingredients, and quantity
of food consumed.

Current diabetes self-management may be characterized as reactive, rather than
proactive. When BGLs are too high, individuals may take insulin to lower them, and when
BGLs are too low, they may eat a snack or take glucose tablets to raise them. The ability
to accurately predict BGLs could enable people with type 1 diabetes to take preemptive
actions before experiencing the negative effects of hypoglycemia or hyperglycemia. There
have been efforts to model BGLs for the purpose of determining insulin dosages dating
back to the 1960s [1]. There has been much recent work in BGL prediction for the purpose
of providing support for diabetes self-management, including our own [2,3]. Accounts
of some of the most recent BGL prediction efforts can be found in the proceedings of
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two international BGL prediction challenges [4,5]. It should be noted that even with the
benefit of accurate BGL predictions, individuals still need to determine how much to eat,
how much insulin to take, and what other actions they can take to prevent hypoglycemia
or hyperglycemia.

This research aims to essentially reverse the BGL prediction problem, instead predict-
ing the amount of carbohydrate (carbs) an individual should consume or the amount of
insulin they should take to reach a BGL target. Previously, we presented a new LSTM-based
neural architecture trained to answer what-if questions, such as “What will my BGL be in
60 min if I have a meal containing 50 carbs in 10 min?” [6]. In subsequent work [7], we
showed that, using the BGL target as a feature and carbs or insulin as the label, a similar
LSTM-based architecture could be trained to predict how much carbohydrate to eat or how
much insulin to take during the prediction window to achieve that BGL target. Preliminary
results were reported in [7] only for the task of carbohydrate recommendation, where the
aim was to achieve a desired target BGL 30 or 60 min into the future. The timing of the
meal was variable within the prediction window and was used as one of the inputs to the
model. In this paper, we update the task definition to make it more applicable to the type
of situations that are frequently encountered in the self-management of type 1 diabetes.
As such, the timing of the bolus or meal is now fixed at 10 min into the future, based on
the assumption that patients are most interested in using the system right before making a
meal or bolus decision. To achieve the desired BGL, the user can specify any time horizon
between 30 and 90 min, giving them more flexibility in terms of how fast they want their
BGL to change. Furthermore, we improve the LSTM-based architecture from [7] and use
it as a repeating residual block in a deep residual forecasting network derived from the
BGL prediction architecture recently proposed by Rubin-Falcone et al. [8]. The neural
architecture from [8] is in turn a modified version of the N-BEATS architecture [9] that was
shown to obtain state-of-the-art results on a wide array of time series forecasting problems.
Overall, the new recommendation approach using the integrated deep network is generic
in the sense that it can be trained to make recommendations about any variable that can
impact BGLs, in particular, carbohydrates and insulin. Carbohydrate recommendations are
potentially useful when someone wants to prevent hypoglycemia well in advance or when
someone wants to achieve a higher target BGL before physical exercise that is expected to
lower it. Bolus recommendations are useful prior to meals and for lowering BGLs when
individuals experience hyperglycemia.

The rest of the paper is organized as follows: Section 2 presents related work in
blood glucose level prediction and automated bolus calculators, and positions our work in
relation to recent developments in these areas. Three major recommendation scenarios are
introduced in Section 3, followed in Section 4 by a description of a set of baseline models
and neural architectures that are designed to make recommendations in each of these
scenarios. Section 5 introduces the OhioT1DM dataset and explains how recommendation
examples were derived from it. The experimental methodology and results are presented
in Sections 6 and 7, respectively. The paper concludes in Section 8 with a summary of our
contributions and ideas for future work.

2. Related Work

Bolus calculators, which recommend insulin dosages using standard formulas, have
been in use since 2003 [10]. They typically base their recommendations on carbohydrate
intake, carbohydrate-to-insulin ratio, insulin on board, and target BGL. As described
in Walsh et al. [11], current bolus calculators are error prone, but they have room for
potential improvement. One such improvement mentioned was the use of the massive
amount of clinical data that is collected from these bolus advisor systems. AI techniques
have been used to take advantage of this data to create more intelligent and personalized
insulin recommendation systems. Pesl et al. [12] describe a bolus advisor system based
on case-based reasoning that personalizes an individual’s bolus calculations. The system
gathers simple information, such as the range of recent blood glucose levels and the time
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of day, and compares the current situation to situations from the past to find similar cases.
The system then uses the bolus recommendation from a similar previous case and adapts
it to the current scenario. The work by Tyler et al. [13] shows a K-nearest-neighbors-
based system that provides weekly recommendations to improve the effectiveness of an
individual’s multiple daily injection therapy. With the amount of clinical data collected
from CGM systems and wearable sensors, deep learning is a natural fit for insulin advisor
systems. The work in Mougiakakou and Nikita [14] represents an early attempt at creating
insulin recommendations by using neural networks. Cappon et al. [15] observe that the
standard formula approach to bolus calculation ignores potentially important preprandial
conditions, such as the glucose rate of change. To address this, they propose a simple
feed-forward neural network that uses CGM data and other easily accessible factors to
personalize the bolus calculation. They demonstrate a small, but statistically significant,
improvement in the blood glucose risk index, using simulated data for experimental
evaluation. Sun et al. [16] also use simulated data to train a basal-bolus advisor using
reinforcement learning. Their system aims to provide personalized suggestions to people
with type 1 diabetes taking multiple daily injections of insulin. Zhu et al. [17] also
use simulated type 1 diabetes data for their deep reinforcement learning approach to
personalizing bolus calculations. They use the UVA/Padova type 1 diabetes simulator [18]
to train models to learn how to reduce or amplify the bolus dose recommended by a bolus
calculator to provide more personalized recommendations.

In contrast with previous work that used a type 1 diabetes simulator [15–17], the sys-
tems described in this paper are trained and evaluated on data acquired from people
with type 1 diabetes, derived from the OhioT1DM dataset [19] as explained in Section 5.
The case-based reasoning system introduced by Pesl et al. [12] also makes use of real
patient data; however, their system does not learn directly from this data. Instead, it
learns from clinical experts’ advice, requiring also that the system be tweaked on a reg-
ular basis. Elsewhere [6], we have shown that patterns that are learned from simulated
data do not always transfer to real data, and vice-versa. By training and evaluating on
real data, the results reported in this paper are expected to be more representative of the
actual performance of the recommendation system if it were to be deployed in practice.
Most of the related work on bolus recommendations presented above use global means
of evaluating system performance, such as the percentage of time BGLs are in a target
range [16,17], or the blood glucose risk index [15]. In contrast, our approaches are evalu-
ated retrospectively on how close their recommendations are to the actual carbohydrate
content or bolus dosages that led to a particular target BGL. As such, the trained models
can be used to make recommendations to achieve a specific BGL. The neural architectures
that we propose in this paper are also general in the sense that they can be used to make
recommendations for any type of discrete intervention that may impact BGLs. Although,
in this paper, they are evaluated on bolus, carbs, and bolus given carbs recommendations,
we also see them as applicable for recommending other relevant variables, such as exercise.

3. Three Recommendation Scenarios

The system relies on the following input data: (1) BGLs, measured at 5-minute intervals
through a CGM system; (2) discrete deliveries of insulin (boluses) and continuous infusions
of insulin (basal rates), recorded by an insulin pump; and (3) mealtimes and carbohydrate
estimates, self-reported by subjects. Given the available data up to and including the
present (time t), the system aims to estimate how much a person should eat or bolus 10 min
from now (time t + 10) such that their blood glucose will reach a target level τ minutes
after that action (time t + 10 + τ). A system that computes these estimates could then be
used in the following three recommendation scenarios:

1. Carbohydrate Recommendations Estimate the amount of carbohydrate Ct+10 to have
in a meal to achieve a target BG value Gt+10+τ .

2. Bolus Recommendations: Estimate the amount of insulin Bt+10 to deliver with a bolus
to achieve a target BG value Gt+10+τ .
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3. Bolus Recommendations given Carbohydrates: Expecting that a meal with Ct+20
grams of carbohydrate will be consumed 20 min from now, estimate the amount of
insulin Bt+10 to deliver with a bolus 10 min before the meal to achieve a target BG
value Gt+10+τ . We used the 10-minute interval based on the recommendation given
by the physician to the subjects, which was to bolus 10 min before the meal.

These recommendation scenarios were designed to align with decision-making situa-
tions commonly encountered by people with type 1 diabetes. In particular, the correspond-
ing recommendation systems would help an individual to estimate how much to eat or
bolus for the purpose of raising or lowering their BGL (scenarios 1 and 2), as well as how
much to bolus for a planned meal (scenario 3).

In the following Section 4, we describe several baseline models and neural architec-
tures, all implementing the three types of recommendations. The neural architectures
use Long Short-Term Memory (LSTM) networks either in a standalone prediction model
(Section 4.1) or integrated as basic repeating blocks in a deep residual network (Section 4.2).
The models are trained on examples extracted from the OhioT1DM dataset [19], as ex-
plained in Section 5. Ideally, to match the intended use of these recommendations in
practice, training examples should not have any extra meals or boluses in the prediction
window [t, t + 10 + τ]. Following the terminology from [6], we call these examples inertial.
However, to benefit from a larger number of training examples, we also train and evaluate
models on a more general class of unrestricted examples, in which other bolus or meal
events can appear in the prediction window. Correspondingly, experimental results for
inertial vs. unrestricted examples are presented in Section 7.

4. Baseline Models and Neural Architectures

Given training data containing time series of blood glucose levels, meals with their
carbohydrate intake, and boluses with their corresponding insulin dosages, we define the
following two baselines:

1. Global average
For the carbohydrate recommendation scenario, the average number µ of carbs over
all the meals in the subject’s training data are computed and used as the estimate
for all future predictions for that subject, irrespective of the context of the example.
Analogously, for the bolus and bolus given carbs recommendation scenarios, µ is the
average amount of insulin dosage over all boluses in the subject’s training data. This
is a fairly simple baseline, as it predicts the same average value for every test example
for a particular subject.

2. ToD average: In this Time-of-Day (ToD)-dependent baseline, an average number of
carbs or an average amount of bolus insulin is computed for each of the following
five time windows during a day:

• 12 am–6 am: µ1 = early breakfast/late snacks.
• 6 am–10 am: µ2 = breakfast.
• 10 am–2 pm: µ3 = lunch.
• 2 pm–6 pm: µ4 = dinner.
• 6 pm–12 am: µ5 = late dinner/post-dinner snacks.

For each ToD interval, the corresponding average is computed over all the meal
events or boluses appearing during that interval in the subject’s training data. At test
time, we determine the ToD interval overlapping t + 10 and output the associated
ToD average.

Although the ToD average baseline may perform well for subjects who have regular
eating patterns, e.g., eating the same number of carbs for breakfast at the same time each
morning, the baseline is expected to do poorly for subjects whose eating schedules and
carbohydrate amounts are more variable.
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4.1. LSTM Models for Carbohydrate and Insulin Recommendation

The history of previous BGL values, insulin (boluses and basal rates), and meals can
significantly alter the impact that a meal or bolus will have on future BG levels. Since this
information is ignored by the two baselines, their performance is likely to be suboptimal.
To use all relevant time series data, we propose the LSTM-based architectures shown
in Figure 1 for carbohydrate recommendation and Figure 2 for bolus recommendation.
The first Long Short-Term Memory (LSTM) network [20], LSTM1, is unrolled over the
previous 6 h of data, up to and including the present time t. At every 5-min time step,
the LSTM1 network takes as input the BG level, the carbohydrate amounts, and the insulin
dosages (if any) recorded for that time step. Although LSTM1 is sufficient for processing the
input of inertial examples, it cannot be used to process events that appear in the prediction
window (t, t + 10 + τ) of unrestricted examples, for which BGL values are not available.
Therefore, when training on unrestricted examples, we also use a second LSTM model,
LSTM2, whose initial state is computed by projecting the final state of LSTM1 at time t
using a linear transformation. The LSTM2 network is then run over all time steps in the
prediction window (t, t + 10 + τ). The final states of LSTM1 and LSTM2 are concatenated
and fed as input to a fully connected network (FCN) that outputs an estimate of the carbs
or bolus insulin at time step t + 10. In addition to the LSTM final state(s), the FCN also
uses the following features as input:

• The target blood glucose level τ + 10 min into the future, i.e., Gt+10+τ .
• The prediction horizon τ.
• The ToD average for the time frame that contains t + 10.
• For the bolus given carbs scenario only, the planned amount Ct+20 of carbohydrate

becomes part of the input, too.

Figure 1. The neural network architecture for the carbohydrate recommendation scenario. The dashed blue line plots BG
levels, while the solid red line represents the basal rate of insulin. The gray star represents the meal event at time t + 10.
Other meals are represented by squares, whereas boluses are represented by circles. Meals and boluses with a red outline
can appear only in unrestricted examples. The blue LSTM1 units receive input from time steps in the past. The green LSTM2

units receive input from time steps in the prediction window. The purple block stands for the fully connected layers of the
FCN that computes the prediction.

Each LSTM uses vectors of size 32 for the states and gates, whereas the FCN is built
with up to 5 hidden layers, each consisting of 64 ReLU neurons, and one linear output
node. Please note that by using the final state of LSTM1 to initialize LSTM2, the latter’s
final state should theoretically be able to capture any useful information that is represented
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in the final state of LSTM1, which may call into question the utility of concatenating the
two final states. This architectural decision is nevertheless supported empirically through
evaluations on the validation data, which show improvements in prediction performance
when both states are used (Section 6.3).

Figure 2. The general neural network architecture for the bolus and bolus given carbs recommendation scenarios. The ar-
chitecture itself is similar to that shown in Figure 1. The gray star now represents the bolus at time t + 10. For the bolus
recommendation scenario, the events outlined in red or orange are not allowed in inertial examples. However, in the bolus
given carbs scenario, the meal event Ct+20 shown with the yellow outline is an important part of each example, be it inertial
or unrestricted. As such, in this scenario, the dashed Ct+20 becomes part of the input to the FCN.

4.2. Deep Residual Models for Carbohydrate and Insulin Recommendation

Oreshkin et al. [9] have recently introduced a new architecture for time series fore-
casting, the Neural Basis Expansion for Interpretable Time-Series Forecasting (N-BEATS).
The basic building block of N-BEATS is a fully connected structure that initially takes
as input a fixed-size lookback period of past values of the target variable and outputs
both forecast (estimates of future values) and backcast (estimates of past values) vectors.
Blocks are organized into stacks such that the backcast of the current block is subtracted
from its input and fed as input to the next block, whereas the forecast vectors from each
block are summed up to provide the overall stack forecast. The stacks themselves are
chained in a pipeline where the backcast output of one stack is used as input for the next
stack. The overall model forecast is then computed by accumulating the forecasts across all
the stacks.

The N-BEATS architecture was shown in [9] to obtain state-of-the-art performance on
a wide range of time series prediction tasks, which suggests that it can serve as a model
of choice for BGL prediction, too. However, in BGL prediction, time series of variables
other then the primary blood glucose are also available. Rubin-Falcone et al. [8] adapted
the N-BEATS architecture to allow secondary, sparse variables such as meals and bolus
insulin to be used as input, whereas backcasting was still performed only on the primary
forecasting variable, blood glucose. Furthermore, the fully connected structure of the basic
N-BEATS block was replaced with LSTMs to better model the temporal nature of the input.
The last LSTM state was used as input to one fully connected layer whose output was
split into the backcast and forecast vectors. Additional per-block forecast and backcast loss
terms were also added to provide more supervision.

We adapted the deep residual network from [8] to perform carb or bolus recommen-
dations using the LSTM-based architecture from Section 4.1 to instantiate each block in the
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stack, as shown in Figure 3. Compared to the architecture from [8], the most significant
differences are:

1. The use of a chain of two LSTM networks in each block.
2. The inclusion of additional inputs to the fully connected layers, i.e., the target BG

level, the time horizon, and the ToD average.
3. Although backcasting is still done for blood glucose, forecasting is done for carbs or

bolus, depending on the recommendation scenario.

Although Oreshkin et al. [9] used 30 blocks and Rubin-Falcone et al. [8] used 10 blocks,
the validation experiments for the recommendation tasks showed that the most effective
deep residual architecture uses only up to 5 blocks, depending on the recommendation
scenario (Section 6.3).

Figure 3. The N-BEATS inspired deep residual architecture for carbohydrate recommendation. A similar architecture is
used for bolus and bolus given carbs recommendations.

5. Using the OhioT1DM Dataset for Recommendation Examples

To evaluate the proposed recommendation models, we create training and test exam-
ples based on data collected from 12 subjects with type 1 diabetes that is distributed with
the OhioT1DM dataset [19]. The 12 subjects are partitioned in two subsets as follows:

1. OhioT1DM 2018: This is the first part of the dataset, containing data collected from
6 patients. It was used for the 2018 Blood Glucose Level Prediction (BGLP) chal-
lenge [4].

2. OhioT1DM 2020: This is the second part of the dataset, containing data collected from
6 additional patients. It was used for the 2020 BGLP challenge [5].

Time series containing the basal rate of insulin, boluses, meals, and BGL readings
were collected over 8 weeks, although the exact number of days varies from subject to
subject. Insulin and BGL data were automatically recorded by each subject’s insulin
pump. Meal data were collected in two different ways. Subjects self-reported mealtimes
and estimated carbs via a smartphone interface. Subjects also entered estimated carbs
into a bolus calculator when bolusing for meals, and these data were recorded by the
insulin pump.
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5.1. The Bolus Wizard

To determine their insulin dosages, the subjects in the OhioT1DM study used a bolus
calculator, or ”Bolus Wizard (BW),” which was integrated in their insulin pumps. They
used it to calculate the bolus amount before each meal as well as when using a bolus to
correct for hyperglycemia. To use the BW, a subject enters their current blood glucose
level and, if eating, their estimated number of grams of carbohydrate. To calculate a
recommended insulin dosage, the BW uses this input from the subject, plus the amount
of active insulin the subject already has in their system, along with the following three
pre-programmed, patient-specific parameters:

1. The carb ratio, which indicates the number of grams of carbohydrate that are covered
by a unit of insulin.

2. The insulin sensitivity, which tells how much a unit of insulin is expected to lower
the subject’s blood glucose level.

3. The target blood glucose range, which defines an individual’s lower and upper
boundaries for optimal blood glucose control.

All three parameters may vary, for the same individual, throughout the day and over
time (https://www.medtronicdiabetes.com/loop-blog/4-features-of-the-bolus-wizard,
accessed on 25 April 2021). Given this input and these parameters, the BW calculates the
amount of insulin the subject should take to maintain or achieve a blood glucose level
within their target range. The calculation is displayed to the subject as a recommendation,
which the subject may then accept or override.

Based on the inputs and the patient-specific parameters described above, the BW uses
a deterministic formula to calculate the bolus amount before each meal. As such, when
trained in the bolus given carbs recommendation scenario, there is the risk that the deep
learning models introduced in Section 4 might simply learn to reproduce this deterministic
dependency between bolus and carbs, while ignoring the target BG level that is used as
input. However, this is not the case in our experimental settings, for the following reasons:

• The machine learning (ML) models do not have access to any of the three patient-
specific parameters above, which can change throughout the day and over time,
and which are set based on advice from a health care professional.

• The BW uses a fixed target BG range depending on the time of day, whereas the
target in the recommendation scenarios is a more specific BG level, to be achieved at a
specific time in the near future.

• The amount of insulin calculated by the BW is only a recommendation, which is
often overridden by subjects. We ran an analysis of the OhioT1DM dataset in which
we counted how many times the amount of insulin that was actually delivered was
different from the bolus recommendation. The analysis revealed that of all the times
that the BW was used, its recommendation was overridden for about a fifth of the
boluses. Furthermore, there are subjects in the dataset who often did not use the BW
(540 and 567), or who chose to not use the BW at all (596).

Therefore, the ML models will have to go beyond using solely the carbohydrate
amount in the intended meal. To fit the bolus recommendation examples, they will need to
learn the impact that a bolus has on the target BG level for the specified prediction horizon,
taking into account the amount of carbohydrate in the meal as well as the history of carbs,
insulin, and BG levels. This data driven approach to bolus recommendation relieves the
physician from the cognitively demanding task of regularly updating parameters such
as the carb ratio and the insulin sensitivity, which often requires multiple fine-tuning
steps. In contrast, any relevant signal that is conveyed through the carb ratio and insulin
sensitivity is expected to be learned by the ML models from the data.

5.2. Pre-Processing of Meals and BG Levels

While exploring the data, it was observed that self-reported meals and their asso-
ciated boluses were in unexpected temporal positions relative to each other. For many

https://www.medtronicdiabetes.com/loop-blog/4-features-of-the-bolus-wizard
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meals, patients recorded a timestamp in the smartphone interface that preceded the cor-
responding bolus timestamp recorded in the insulin pump. This was contrary to what
was recommended to the subjects by their physician, which was to bolus 10 min before
the meal. This discrepancy is likely due to subjects reporting incorrect mealtimes in the
smartphone interface.

To correct the meal events, we used the data input to the BW in the insulin pump
and ran a pre-processing step that changed the timestamp of each meal associated with a
bolus to be exactly 10 min after that bolus. For these meals, we also used the number of
carbs provided to the BW, which is likely to be more accurate than the estimate provided
by the subject through the smartphone interface. To determine the self-reported meal
event associated with a bolus with non-zero carb input, we searched for the meal that
was closest in time to the bolus, within one hour before or after it. In case there were
two meals that are equally close to the bolus, we selected the one for which the number
of carbs from the smartphone interface was closest to the number of carbs entered into
the BW. If no self-reported meal was found within one hour of the bolus, it was assumed
that the subject forgot to log their meal on the smartphone interface. As such, a meal was
added 10 min after the bolus, using the amount of carbs specified in the BW for that bolus.
Ablation results reported in Section 6.2 show that this pre-processing of meal events leads
to significantly more accurate predictions, which further justifies the pre-processing.

All gaps in BGL data are filled in with linearly interpolated values. However, we filter
out examples that meet any of the following criteria:

1. The BGL target is interpolated.
2. The BGL at present time t is interpolated.
3. There are more than 2 interpolated BGL measurements in the one hour of data prior

to time t.
4. There are more than 12 interpolated BGL measurements in the 6 h of data prior to

time t.

5.3. Mapping Prototypical Recommendation Scenarios to Datasets

According to the definition given in Section 3, the carbohydrate recommendation
scenario refers to estimating the amount of carbohydrate Ct+10 to have in a meal to achieve
a target BG value Gt+10+τ . This is done using the history of data up to and including the
present time t. However, many carbohydrate intake events Ct+10 are regular meals, which
means that they are preceded by a bolus event at time t. Since in the carbohydrate recom-
mendation scenario we are especially interested in scenarios where the subject eats to correct
or prevent hypoglycemia, we created two separate datasets for carbohydrate prediction:

1. Carbs(±b): this will contain examples for all carbohydrate intake events, with (+b) or
without (−b) an associated bolus.

2. Carbs(−b): this will contain examples only for carbohydrate intake events without
(−b) an associated bolus.

Most of the Carbs(−b) examples are expected to happen in one of three scenarios:
(1) when correcting for hypoglycemia; (2) before exercising; and (3) when having a bedtime
snack to prevent nocturnal hypoglycemia. Given that they are only a small portion of
the overall carbohydrate events, in Section 7 we present results for both Carbs(±b) and
Carbs(−b) recommendation scenarios.

Furthermore, mirroring the two bolus recommendation scenarios introduced in
Section 3, we introduce the following notation for the corresponding datasets:

1. Bolus(±c): this will contain examples for all bolus events, with (+c) or without (−c)
an associated carbohydrate intake.

2. Bolus(+c): this will contain examples only for the bolus events with (+c) an associated
carbohydrate intake.

The three major recommendation scenarios introduced in Section 3 can then be
mapped to the corresponding datasets as follows:
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1. Carbohydrate Recommendations: Estimate the amount of carbohydrate Ct+10 to have
in a meal to achieve a target BG value Gt+10+τ .

• Carbs(−b), inertial: this reflects the prototypical scenario where a carbohydrate
intake is recommended to correct or prevent hypoglycemia.

2. Bolus Recommendations: Estimate the amount of insulin Bt+10 to deliver with a bolus
to achieve a target BG value Gt+10+τ .

• Bolus(±c), inertial: this reflects the prototypical scenario where a bolus is recom-
mended to correct or prevent hyperglycemia. Because in the inertial case a carb
event cannot appear after the bolus, this could also be denoted as Bolus(−c).

3. Bolus Recommendations given Carbohydrates: Expecting that a meal with Ct+20
grams of carbohydrate will be consumed 20 min from now, estimate the amount of
insulin Bt+10 to deliver with a bolus 10 min before the meal to achieve a target BG
value Gt+10+τ .

• Bolus(+c), inertial: this reflects the prototypical scenario where a bolus is recom-
mended before a meal.

5.4. Carbohydrate and Bolus Statistics

Table 1 shows the number of carbohydrate events in each subject’s pre-processed data,
together with the minimum, maximum, median, average, and standard deviation for the
number of carbs per meal. Overall, the average number of carbs per meal is between 22
and 69, except for subjects 570 and 544 whose meal averages and standard deviations are
significantly larger. Table 2 shows similar statistics for boluses and their dosages, expressed
in units of insulin. Overall, the number of boluses is more variable than the number of
meals. There is also a fairly wide range of average bolus values in the data, with subject
567 having a much higher average than other subjects. It is also interesting to note that
subject 570, who had the largest average carbs per meal, had more than twice the number
of boluses than any other subject while at the same time having the lowest average bolus.
Subject 570 also used many dual boluses, which we did not use as prediction labels because
the scope of the project covers only recommendations for regular boluses.

Table 1. Per subject and total meal and carbohydrate per meal statistics: Minimum, Maximum, Median, Average, and Stan-
dard Deviation (StdDev). Carbs(±b) refers to all carbohydrate intake events; Carbs(−b) refers to carbohydrate intakes
without a bolus. Statistics are shown for the 2018 subset, the 2020 subset, and for the entire OhioT1DM dataset.

Carbs Per Meal (g)

Subject Carbs(±b) Carbs(−b) Minimum Maximum Median Average StdDev

559 215 83 8.0 75.0 30.0 35.5 15.5
563 225 28 5.0 84.0 31.0 33.8 18.0
570 174 39 5.0 200.0 115.0 106.1 41.5
575 297 122 1.0 110.0 40.0 40.0 22.0
588 268 73 2.0 60.0 20.0 22.7 14.6
591 264 60 3.0 77.0 28.0 31.5 14.1

2018 Total 1443 405 1.0 200.0 33.0 41.5 32.7

540 234 14 1.0 110.0 40.0 50.2 29.8
544 206 41 1.0 175.0 60.0 68.7 36.3
552 271 25 3.0 135.0 26.0 36.7 29.3
567 207 5 20.0 140.0 67.0 67.0 21.5
584 233 44 15.0 78.0 60.0 54.6 11.6
596 300 277 1.0 64.0 25.0 25.1 14.0

2020 Total 1451 406 1.0 175.0 42.0 48.2 29.5

Combined Total 2894 811 1.0 200.0 39.0 44.9 31.3
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Table 2. Per subject and total boluses and insulin units statistics: Minimum, Maximum, Median, Average, and Standard
Deviation (StdDev). Bolus(±c) refers to all bolus events; Bolus(+c) refers to bolus events associated with a meal. Statistics
are shown for the 2018 subset, the 2020 subset, and for the entire OhioT1DM dataset.

Insulin Per Bolus (u)

Subject Bolus(±c) Bolus(+c) Minimum Maximum Median Average StdDev

559 186 132 0.1 9.3 3.6 3.7 1.9
563 424 197 0.1 24.7 7.8 8.0 4.2
570 1345 132 0.2 12.1 1.3 1.8 2.1
575 271 175 0.1 12.8 4.4 4.1 3.0
588 221 195 0.4 10.0 3.5 4.3 2.3
591 331 204 0.1 9.4 2.9 3.1 1.8

2018 Total 2758 1035 0.1 24.7 1.9 3.5 3.4

540 521 220 0.1 11.4 2.0 3.0 2.8
544 264 149 0.7 22.5 5.0 6.5 4.9
552 426 246 0.1 16.0 2.8 3.9 3.3
567 366 202 0.2 25.0 11.4 12.0 5.8
584 311 188 0.1 16.2 9.1 7.3 3.1
596 230 0 0.2 7.6 3.3 3.0 1.5

2020 Total 2118 1169 0.1 25.0 4.0 5.8 5.0

Combined Total 4876 2204 0.1 25.0 2.9 4.5 4.3

5.5. From Meals and Bolus Events to Recommendation Examples

In all recommendation scenarios, the prediction window ranges between the present
time t and the prediction horizon t+ 10+ τ. For the carbohydrate or bolus recommendation
scenarios, the meal or the bolus is assumed to occur at time t + 10. For the bolus given
carbs scenario, the bolus occurs at time t + 10 and is followed by a meal at time t + 20,
which matches the pre-processing of the meal data. For evaluation purposes, we set τ
to values between 30 and 90 min with a step of 5 min, i.e., τ ∈ {30, 35, 40,. . . , 90} for
a total of 13 different values. As such, each meal/bolus event in the data results in 13
recommendation examples, one example for each value of τ. Although all 13 examples use
the same value for the prediction label, e.g., Bt+10 for bolus prediction, they will differ in
terms of the target BG feature Gt+10+τ and the τ feature, both used directly as input to the
FC layers in the architectures shown in Figures 1 and 2. For the bolus given carbs scenario,
the 13 examples are only created when there is a meal that had a bolus delivered 10 min
prior. Due to the way the data are pre-processed, it is guaranteed that if a meal had a bolus
associated with it, the bolus will be exactly 10 min before the meal.

The fast-acting insulin that the subjects use has its strongest glucose lowering effect 1
to 1.5 h after it is taken (https://www.medtronicdiabetes.com/sites/default/files/library/
download-library/workbooks/BasicsofInsulinPumpTherapy.pdf, accessed 25 April 2021).
We decided to limit the prediction horizon to this 1.5-h limit for two main reasons. First,
extending it beyond 90 min in the inertial scenario would lead to significantly fewer
examples for those time horizons, because the inertial scenario requires that no other
events happen during the prediction window. Second, the longer the prediction window,
the more likely that hidden variables occur that have an impact on the BGL, and thus cause
the model to underperform. We use the term hidden variables to refer to any relevant
subject-specific factors or physical activities such as walking or exercise that are either not
reported or under-reported in the data.

Table 3 shows the number of inertial examples for 5 prediction horizons, as well as the
total over all 13 possible prediction horizons. Table 4 shows the number of unrestricted ex-
amples. Since the same number of unrestricted examples are available for every prediction
horizon, only the totals are shown. The only exceptions would be if an event were near

https://www.medtronicdiabetes.com/sites/default/files/library/download-library/workbooks/BasicsofInsulinPumpTherapy.pdf
https://www.medtronicdiabetes.com/sites/default/files/library/download-library/workbooks/BasicsofInsulinPumpTherapy.pdf
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the end of a subject’s data and the prediction horizon t + 10 + τ goes past the end of the
dataset for some value of τ.

Table 3. Inertial (I) examples by recommendation scenario and prediction horizon. Carbs(±b) refers to all carbohydrate
intake events; Carbs(−b) refers to carbohydrate intakes without a bolus.

Carbs(±b) Recommendation Carbs(−b) Recommendation

Horizon Training Validation Testing Total I Training Validation Testing Total I

τ = 30 1192 340 331 1863 265 53 40 358
τ = 45 1156 334 321 1811 255 51 40 346
τ = 60 1121 318 315 1754 243 50 40 333
τ = 75 1057 301 293 1651 226 44 34 304
τ = 90 975 279 278 1532 200 40 31 271
All 13 horizons 14,343 4103 4007 22,453 3100 620 486 4206

Bolus(±c) recommendation Bolus(+c) recommendation

Horizon Training Validation Testing Total I Training Validation Testing Total I

τ = 30 461 160 143 764 856 267 271 1394
τ = 45 416 142 124 682 833 259 258 1350
τ = 60 368 124 104 596 816 253 249 1318
τ = 75 303 102 96 501 790 243 243 1276
τ = 90 271 90 86 447 743 234 229 1206
All 13 horizons 4732 1606 1423 7761 10,514 3269 3249 17,032

Table 4. Unrestricted (U) examples by recommendation scenario, also showing, in the last column,
the total number of non-inertial (U − I) examples. Carbs(±b) refers to all carbohydrate intake events;
Carbs(−b) refers to carbohydrate intakes without a bolus.

Scenario Training Validation Testing Total U Total U − I

Carbs(±b) 17,937 5106 4943 27,986 5533
Carbs(−b) 4140 853 624 5617 1411
Bolus(±c) 19,640 6279 6136 32,055 24,294
Bolus(+c) 12,052 3784 3816 19,652 2620

For the carbohydrate and bolus given carbs recommendation scenarios, the gap
between the number of inertial and unrestricted examples is not very large, as most examples
qualify as inertial examples. However, in the bolus recommendation scenario, there is
a very sizable gap between the number of inertial vs. unrestricted examples. This is
because a significant number of boluses are associated with meals, and since these meals
are timestamped to be 10 min after the bolus, the result is that a bolus at time t + 10 will be
associated with a meal at time t + 20. Therefore, for preprandial boluses at t + 10, the meal
at time t + 20 will prohibit the creation of inertial recommendation examples, because by
definition inertial examples do not allow the presence of other events in the prediction
window (t, t + 10 + τ).

6. Experimental Methodology

For each of the 12 subjects in the dataset, their time series data are split into three sets,
as follows:

• Testing: the last 10 days of data.
• Validation: the 10 days of data preceding the testing portion.
• Training: the remainder of the data, around 30 days.

The blood glucose, carbs, and insulin values are all scaled to be between [0, 1] using
maximum and minimum values computed over training data. When computing the
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performance metrics at test time, the predicted values are scaled back to the original range.
The training loss function is set to be the mean squared error between the meal or bolus
values recorded in the data and the estimates computed by the output node of the fully
connected layers in the LSTM-based architectures, or by the accumulated forecasts in the
N-BEATS models. The Adam [21] gradient-based algorithm is used for minimizing the
loss during training, for which the learning rate and the mini-batch size are tuned on the
validation data. To alleviate overfitting, dropout and early stopping with an inertia of
10 epochs are used in all experiments.

Before training a personalized model for a specific subject, a generic model is first pre-
trained on the union of all 12 subjects’ training data. The generic model is then fine-tuned
separately for each individual subject, by continuing training on that subject’s training
data only. The pre-training allows the model parameters to be in a better starting position
before fine-tuning, allowing faster and better training. The learning rate and batch size are
tuned for each subject on their validation data. For each subject, the results are aggregated
over 10 models that are trained with different seedings of the random number generators.

The metrics used to evaluate the models are the Root Mean Squared Error (RMSE)
and the Mean Absolute Error (MAE). Two scores are reported for each of the LSTM-based
and N-BEATS-based recommendation models:

1. The 〈model〉.mean score calculates the average RMSE and MAE on the testing data
across the 10 models trained for each subject, and then averages these scores across
all subjects.

2. The 〈model〉.best score instead selects for each subject the model that performed best
in terms of MAE on the validation data, out of the 10 models trained for that subject.
The RMSE and MAE test scores are averaged over all subjects.

The units for RMSE and MAE are grams (g) for carbohydrate recommendations and
units of insulin (u) for bolus recommendations. Two sets of models were trained for each
recommendation scenario: a set of models was trained and evaluated on inertial examples
and a set was trained and evaluated on unrestricted examples.

6.1. Subject Selection for Testing in Each Recommendation Scenario

Although using both the 2018 and 2020 subsets of the OhioT1DM Dataset [19,22]
provides us with data from 12 total subjects, not all 12 can be used in each scenario, due
to insufficient examples in their respective development or test subsets. The subjects
whose data were used or not at test time are listed below for each scenario, together with
a justification:

• Carbs(±b) Recommendation: Subjects 567 and 570 were left out at test time. Subject 567
had 0 meal events in the testing portion of their data. Subject 570 frequently used dual
boluses; as such, there were very few inertial examples for this subject at all. Of the
few inertial examples that were available, 0 were in the testing or validation portions
of the data.

• Carbs(−b) Recommendation: Due to the limited number of examples for this scenario,
we trained and evaluated models only for the subjects whose data contained at least
50 carb events with no associated bolus. These are subjects 559, 575, 588, and 591.
Although subject 596 also had a sufficient number of carb events, we discovered that
all carbohydrate inputs for their BW were 0. As a consequence of this missing data, it
cannot be determined which boluses were used for BGL correction, and which were
used to cover meals. Therefore, subject 596 cannot be used in this scenario.

• Bolus(±c) Recommendation: Subjects 544 and 567 were left out at test time. Subject
544 had few inertial examples overall, and 0 in the validation portion of the data.
This is because most bolus events in their data were used in conjunction with a meal.
Similar to the carbohydrate recommendation scenario, subject 567 was not used in
this scenario because of the lack of meal events in their test data. The missing meal
data would make the bolus recommendation results for this subject unrealistic and
indistinguishable between the inertial and unrestricted cases.
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• Bolus(+c) Recommendation: Subjects 567, 570, and 596 were left out at test time. As ex-
plained for other scenarios above, subject 567 had 0 meals in the test portion of their
data. For subject 570, there were 0 inertial examples in the test portion. As explained
for the Carbs−b recommendation scenario, due to missing BW data, for subject 596 it
cannot be determined which boluses were used for BGL correction, and which were
used to cover meals, so their data cannot be used in this scenario, either.

Irrespective of which subjects are used at test time, the data from all 12 patients is
used for pre-training purposes in each recommendation scenario. Furthermore, the set
of subjects stays consistent between the inertial and unrestricted cases for any given
recommendation scenario.

6.2. Evaluating the Impact of Pre-Processing of Meals

To determine the utility of the pre-processing of meals procedure introduced in
Section 5.2, we trained and evaluated N-BEATS-based models for the carbohydrate rec-
ommendation scenario Carbs(±b) using the original data vs. using the pre-processed data.
When training on pre-processed data, we report in Table 5 two validation results: when
evaluating on all the pre-processed meals in the validation data (pre+) vs. evaluating
only on meals that were not added during pre-processing (pre−). The results show that in
both cases the pre-processing of meals leads to statistically significant improvements in
RMSE and MAE. Pre-processing of meals also benefits the bolus recommendation scenario,
as shown in Table 6. These results can be seen as further evidence of the fact that the
meal timestamps recorded in the smartphone interface are unreliable and that mealtimes
should instead be anchored to the bolus timestamps recorded by the BW, as done in the
pre-processing procedure.

Table 5. Results with pre-processing of meals (pre) vs. original raw data for meal events (raw), for the
carbohydrate recommendation scenario Carbs(±b) on unrestricted examples. pre+ refers to using
all pre-processed meals (shifted original meals and added meals), whereas pre− does not use meals
added by the pre-processing procedure. We show results for different combinations of pre-processing
options during Training and evaluation on Validation data, e.g., the first row indicates raw data were
used during both training and evaluation. The symbol † indicates a p-value < 0.03 when using a
one-tailed t-test to compare against the results without pre-processing (raw).

Pre-Processing

Training Validation RMSE MAE

N-BEATS.mean raw raw 13.42 10.32
pre+ pre− 9.38 † 6.59 †

pre+ pre+ 8.84 † 6.16 †

N-BEATS.best raw raw 12.32 9.28
pre+ pre− 8.48 † 5.90 †

pre+ pre+ 8.12 † 5.53 †

Table 6. Results with pre-processing of meals (pre) vs. original raw data for meal events (raw), for the
Bolus(±c) recommendation scenario on unrestricted examples. All meals (shifted or added) are used
for the pre-processed data. The symbol † indicates a p-value < 0.01 when using a one-tailed t-test to
compare against the results without pre-processing (raw).

Pre-Processing RMSE MAE

N-BEATS.mean raw 1.85 1.41
pre 1.30 † 0.92 †

N-BEATS.best raw 1.81 1.32
pre 1.22 † 0.84 †
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6.3. Tuning the Architecture and the Hyper-Parameters on the Development Data

Table 7 show the results of the LSTM- and N-BEATS-based models, with vs. without
using the final state produced by the LSTM1 component as input to the fully connected
network. The results show that using the final state from LSTM1 directly as input leads
to a substantial improvement for the carbohydrate recommendation scenario Carbs(±b),
while maintaining a comparable performance for the bolus recommendation scenario.
Consequently, in all remaining experiments the architecture is set to use the final state of
LSTM1 as input to the FC layers.

Table 7. Performance of the LSTM- and N-BEATS-based models, with (+) and without (−) the final
state s1 of LSTM1 as part of the input to the FC Layers.

LSTM.mean RMSE MAE N-BEATS.mean RMSE MAE

Carbs(±b) −s1 10.14 7.56
Carbs(±b) −s1 10.27 7.58

+s1 8.99 6.57 +s1 8.84 6.16

Bolus(±c) −s1 1.33 0.97
Bolus(±c) −s1 1.33 0.85

+s1 1.41 1.03 +s1 1.30 0.92

In the original N-BEATS model of Oreshkin et al. [9], the backcast and forecast outputs
of each block are produced as the result of two separate fully connected layers. In the
block architecture shown in Figures 1–3 however, the FC Layers component uses just one
final fully connected layer to produce both backcast and forecast values. The results in
Table 8 show that overall, using a joint final layer is competitive or better than using
separate layers.

Table 8. N-BEATS-based model results, with a separate vs. joint final fully connected layer for
computing backcast and forecast values.

N-BEATS.mean RMSE MAE

Carbs(±b) separate 8.77 6.48
joint 8.84 6.16

Bolus(±c) separate 1.32 0.94
joint 1.30 0.92

For each prediction scenario, the hyper-parameters for both the LSTM-based and
N-BEATS-based models were tuned on development data. The inertial and unrestricted
models are tuned independent of each other. The learning rate was tuned by monitoring
the learning curves, using values between 0.0002 [8] and 0.1. After multiple experiments,
a fixed learning rate of 0.001 was observed to give the best results on development data in all
scenarios. The number of blocks in N-BEATS, the number of FC layers in the LSTM, and the
dropout rate were then tuned in that order. The number of N-BEATS blocks was selected
from {1, . . . , 10}, the number of layers was selected from {1, 2, 3, 4, 5}, whereas the dropout
rate was tuned with values from {0, 0.1, 0.2, 0.3, 0.4 0.5}. The tuned values are shown in
Table 9 for the LSTM models and Table 10 for the N-BEATS models. Overall, the LSTM-
based models worked best with only 2 or 3 fully connected layers in all scenarios, whereas
the N-BEATS-based models worked best with 4 or 5 fully connected layers. The tuned
number of blocks in the N-BEATS-based models varied between 3 and 5, depending on
the scenario and the unrestricted vs. inertial case. The tuned dropout rates varied a lot
between scenarios for the LSTM-based models, with rates ranging from 0 to 0.5, whereas
the tuned rates for N-BEATS-based models varied between 0.2 and 0.5.
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Table 9. Tuned hyper-parameters for the LSTM-based models.

Hyper-Parameters

Scenario Examples FC Layers Dropout

Carbs(±b) Inertial 3 0.1
Unrestricted 3 0.1

Bolus(±c) Inertial 3 0.0
Unrestricted 2 0.3

Bolus(+c) Inertial 2 0.2
Unrestricted 2 0.5

Table 10. Tuned hyper-parameters for the N-BEATS-based models.

Hyper-Parameters

Scenario Examples Blocks FC Layers Dropout

Carbs(±b) Inertial 5 2 0.3
Unrestricted 3 3 0.3

Bolus(±c) Inertial 5 4 0.2
Unrestricted 4 4 0.2

Bolus(+c) Inertial 5 4 0.5
Unrestricted 3 5 0.2

The size of the LSTM state was tuned to 32, whereas the size of each fully connected
layer was tuned to 64, which is substantially smaller than the hidden size of 512 used in the
original N-BEATS model [9]. For the carbohydrates without bolus scenario Carbs(−b), due
to the much smaller number of examples, we reduced the number of units in the LSTM
networks and fully connected layers by a factor of 2. The same hyper-parameters that
were tuned on the general carbohydrate recommendation scenario Carbs(±b) were used
for Carbs(−b).

The largest models discussed in this paper are the N-BEATS-based inertial models for
the two bolus recommendation scenarios. With close to 11,000 parameters, these models
take up less than 1 MB of memory, which indicates that they could be deployed on a
wearable device or smartphone. The tuning, training, and testing experiments were run on
an architecture with a 12-core Intel i7 CPU and 64 GB of RAM, supported by an NVIDIA
GeForce GTX 1080TI GPU with 11 GB of memory. Training a single N-BEATS-based
model on this architecture takes approximately 40 s, whereas making one recommen-
dation prediction at test time takes only 0.1 s. Pre-training the model on the training
data from all 12 subjects takes approximately 8 min, while the hyper-parameter tuning
procedure, which requires training multiple times, takes approximately 30 h for each
recommendation scenario.

7. Experimental Results

Table 11 shows the results for the two baselines and the two neural architectures: the
LSTM-based (Figures 1 and 2) and the N-BEATS-based (Figure 3). Across all scenarios
and for both example classes, the neural models outperform both baselines, often by a
wide margin. Furthermore, the N-BEATS-based models outperform their LSTM-based
counterparts across all evaluations with inertial examples, which are the ones with the
most practical utility. In general, there is little difference between the best model scores
and the average model scores, which means that the model performance is relatively stable
with respect to the random initialization of the network parameters.
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Table 11. Results for each recommendation scenario, for both classes of examples. The simple †
indicates a p-value < 0.05 when using a one-tailed t-test to compare against the baseline results; the
double ‡ indicates statistical significance for comparison against the baselines as well as against the
competing neural method; the ↑ indicates significant with respect to the Global Average baseline only.

Inertial Unrestricted

Carbs(±b) Recommendation RMSE MAE RMSE MAE

Global Average 20.90 17.30 20.68 17.10
ToD Average 20.01 15.78 19.82 15.68

LSTM.mean 11.55 7.81 10.99 7.40
LSTM.best 10.95 7.50 10.50 7.31

N-BEATS.mean 9.79 ‡ 6.45 ‡ 10.34 7.04
N-BEATS.best 9.92 6.56 10.07 † 6.75 †

Inertial Unrestricted

Carbs(±b) Recommendation RMSE MAE RMSE MAE

Global Average 15.92 13.71 14.66 12.19
ToD Average 15.55 13.45 14.27 11.93

LSTM.mean 14.02 11.47 14.70 12.27
LSTM.best 13.75 10.92 14.94 12.57

N-BEATS.mean 13.76 11.42 13.69 ↑ 11.09 ↑

N-BEATS.best 14.52 11.78 14.17 11.47

Inertial Unrestricted

Bolus(±c) Recommendation RMSE MAE RMSE MAE

Global Average 2.40 2.13 2.84 2.30
ToD Average 2.21 1.86 2.71 2.17

LSTM.mean 1.75 1.35 1.53 1.10
LSTM.best 1.70 1.30 1.50 1.05

N-BEATS.mean 1.56 † 1.20 ‡ 1.49 † 1.04
N-BEATS.best 1.65 1.26 1.51 1.03 †

Inertial Unrestricted

Bolus(+c) Recommendation RMSE MAE RMSE MAE

Global Average 3.00 2.35 3.04 2.39
ToD Average 2.87 2.21 2.90 2.25

LSTM.mean 1.02 0.73 1.00 0.73
LSTM.best 0.94 0.67 1.00 † 0.72 †

N-BEATS.mean 0.89 0.65 1.11 0.82
N-BEATS.best 0.85 † 0.61 † 1.06 0.78

For the prediction of carbohydrates without an associated bolus scenario Carbs(−b),
the improvement brought by the two neural models over the two baselines was less
substantial, which is to be expected for two reasons. First, the baselines do much better in
this scenario than in the more general carbohydrate recommendation scenario Carbs(±b)

because most of the carb intakes are relatively small, e.g., hypo correction events where
subjects are advised to eat a fixed amount of carbohydrate. Second, and most importantly,
the number of training carbohydrate events and their associated examples in the Carbs(−b)

scenario is much smaller than in the Carbs(±b) scenario (Table 1), which makes ML models
much less effective.
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Figure 4 shows boxplots of the absolute error of the N-BEATS model for each of the
four recommendation scenarios per subject. Overall, the median error is lower than the
average error, which is skewed by outliers. Error analysis reveals that outliers are largely
caused by noise in the data reported by subjects in the smartphone interface, or in some
cases in the bolus wizard. For example, in the Carbs(±b) scenario, where the median errors
are generally small, subject 540 has an average error that is significantly higher than the
median due to 13 particularly large outliers. These outliers have an average absolute error
of about 64 g, which were clipped to 50 carbs in the boxplot. All these 13 examples stem
from the same meal event of 90 g that the subject reported for 11am. However, the meal
timestamp appears to be wrong, because the bolus of 8.5 units associated with the meal had
a timestamp nearly an hour and a half after the meal. The pre-processing procedure was
not able to correct the meal timestamp because it only looks for meals and boluses that are
at most one hour apart. Therefore, due to the meal being reported much earlier than when
it really happened, the subsequent BGL did not change much and so the N-BEATS model
output a small number of carbs, resulting in a large absolute error. Subject 596 has the
largest box (representing the range in which 50% of the absolute errors fall). This is largely
because the pre-processing procedure could not be applied to subject 596’s data, since the
subject did not use the bolus wizard. For the Carbs(−b) scenario, the boxes are generally
larger than those in the Carbs(±b) plot, which is consistent with the results in Table 11.
For the Bolus(±c) scenario, the boxplot for subject 575 is not shown because this subject
has a very small number of test examples, making the boxplot flat and uninformative.
In both Bolus(±c) and Bolus(+c) scenarios, subject 563 had several large outliers, for which
the average absolute error is 9.7 units and 6.5 units, respectively. This subject had a few
boluses that had non-zero carbohydrate input to the BW, but had no carbohydrate events
temporally close to the bolus. As such, the pre-processing procedure added a meal event
10 min after the bolus containing the number of carbs that were entered into the bolus
wizard. Based on the BGL behavior, it is likely that the subject either did not eat in these
situations, or that the number of carbs in the meal that the subject actually ate differed
significantly from the amount of carbs they entered into the BW. Overall, subjects 563 and
584 have the largest errors in the Bolus(±c) scenario. According to the statistics reported
in Table 2, of all subjects used at test time, these 2 subjects have the highest average
amount of insulin per bolus, at 8.0 and 7.3 units, respectively. Subject 567 is not included
in this analysis because they had 0 carbohydrate events in their test data (as explained in
Section 6.1).

In all experiments reported so far, one model was trained for all prediction horizons,
using the value of τ ∈ {30, 35, . . . , 90} as an additional input feature. This global model
was then tested on examples from all prediction horizons. To determine if transfer learning
happens among different prediction horizons, for each value of τ ∈ {30, 45, 60, 75, 90} at
test time, we compare the performance of the globally trained model vs. the performance
of a model trained only on examples for that particular prediction horizon, using inertial
examples for both. We chose the inertial case for this experiment because it corresponds
better to the intended use of a carbohydrate or bolus recommendation system. Furthermore,
we experiment only with the N-BEATS-based model because of its better performance in
the inertial case. The results in Table 12 show transfer learning clearly happening for the
carbohydrate recommendation Carbs(±b) and bolus given carbs recommendation Bolus(+c)

scenarios, where the models trained on all prediction horizons outperform those trained
only on a specific prediction horizon when evaluated on that prediction horizon. For the
bolus recommendation scenario Bolus(−c) (i.e., Bolus(±c) inertial) the results were mixed,
with transfer learning being clear only for the short τ = 30 time horizon. Transfer learning
results for the Carbs(−b) scenario are not calculated due to the lack of a sufficient number
of training examples for each prediction horizon. The results in Table 12 also show that
in general there is a downward trend in the error as the time horizon is increased, which
makes the evaluation on longer prediction horizons worth pursuing in future work.
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Figure 4. Boxplots showing the absolute error per subject for each recommendation scenario achieved by the N-BEATS.best
model in the inertial scenario. The orange lines within each box represent the median absolute errors, while the red crosses
represent the average absolute errors. The green circles represent outliers. To avoid stretching the figures, outliers were
clipped at 25 for the Carbs(±b) scenario, 8 for the Bolus(±c) scenario, and 5 for the Bolus(+c) scenario. The number of clipped
outliers is shown next to the subject’s largest outlier. Above the top line is shown, for each subject, the percentage of test
examples that are outliers.
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Table 12. Comparison between models trained on all prediction horizons vs. one prediction horizon τ, when evaluated on
the prediction horizon τ. The symbol † indicates a p-value < 0.05 when using a one-tailed t-test to compare against the one
prediction horizon results.

Carbs(±b) Recommendation

τ = 30 τ = 45 τ = 60 τ = 75 τ = 90 Average

Trained on RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

N-BEATS.mean One τ 9.74 6.72 10.24 6.89 10.06 6.85 10.52 7.19 9.82 6.73 10.08 6.88
All τ 9.96 6.57 9.98 6.56 9.84 6.50 9.55 † 6.30 † 9.37 6.22 9.74 6.43

N-BEATS.best One τ 9.92 6.70 10.39 6.90 10.21 6.88 10.62 7.18 9.92 6.66 10.21 6.86
All τ 9.84 6.50 9.94 6.56 10.02 6.57 9.76 6.34 † 9.43 6.08 9.80 6.41

Bolus(−c) Recommendation

τ = 30 τ = 45 τ = 60 τ = 75 τ = 90 Average

Trained on RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

N-BEATS.mean One τ 1.82 1.42 1.57 1.24 1.51 1.24 1.37 1.10 1.40 1.17 1.53 1.23
All τ 1.75 1.33 1.61 1.24 1.47 1.17 † 1.38 1.10 1.28 1.03 † 1.50 1.17 †

N-BEATS.best One τ 1.77 1.37 1.54 1.21 1.51 1.23 1.38 1.10 1.34 1.11 1.51 1.20
All τ 1.72 1.28 1.75 1.33 1.58 1.23 1.45 1.12 1.44 1.13 1.59 1.22

Bolus(+c) Recommendation

τ = 30 τ = 45 τ = 60 τ = 75 τ = 90 Average

Trained on RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

N-BEATS.mean One τ 0.98 0.73 0.91 0.69 0.91 0.69 0.95 0.74 0.93 0.72 0.94 0.71
All τ 0.95 0.68 0.87 0.65 0.86 0.65 0.87 † 0.65 † 0.86 † 0.64 † 0.88 † 0.65 †

N-BEATS.best One τ 0.94 0.69 0.91 0.69 0.92 0.68 0.93 0.71 0.91 0.70 0.92 0.69
All τ 0.94 0.66 0.84 0.62 † 0.82 † 0.59 † 0.82 † 0.61 † 0.83 † 0.61 † 0.85 † 0.62 †

8. Conclusions and Future Directions

This paper presents a general LSTM-based neural architecture, composed of two
chained LSTMs and a fully connected network, for training models that make recommen-
dations to aid in the self-management of type 1 diabetes. It focuses on recommendations
for carbohydrate to consume or insulin to take to achieve a target blood glucose level,
but recommendations might also be made for any type of quantitative event impacting
BGLs. A deep residual N-BEATS-based architecture was also developed, using the chained
LSTMs as a component in its block structure. Experimental evaluations show that the
proposed neural architectures substantially outperform a global average baseline as well
as a time-of-day-dependent baseline, with the N-BEATS-based models outperforming the
LSTM-based counterparts in all evaluations with inertial examples. The trained models
are shown to benefit from transfer learning and from a pre-processing of meal events that
anchors their timestamps shortly after their corresponding boluses. Overall, these results
suggest that the proposed recommendation approaches hold significant promise for easing
the complexity of self-managing blood glucose levels in type 1 diabetes. Potential future
research directions include investigating the proposed pre-processing of carbohydrate
events for blood glucose level prediction and exploring the utility of the two neural archi-
tectures for recommending exercise. To enable reproducibility and future experimental
comparions, we are making our code publicly available on the SmartHealth Lab web site
at http://smarthealth.cs.ohio.edu/nih.html.
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