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Abstract: (1) Background: Public sidewalk GIS data are essential for smart city development. We
developed an automated street-level sidewalk detection method with image-processing Google Street
View data. (2) Methods: Street view images were processed to produce graph-based segmentations.
Image segment regions were manually labeled and a random forest classifier was established. We
used multiple aggregation steps to determine street-level sidewalk presence. (3) Results: In total,
2438 GSV street images and 78,255 segmented image regions were examined. The image-level
sidewalk classifier had an 87% accuracy rate. The street-level sidewalk classifier performed with
nearly 95% accuracy in most streets in the study area. (4) Conclusions: Highly accurate street-level
sidewalk GIS data can be successfully developed using street view images.

Keywords: sidewalks; GIS; smart street; street management; image processing

1. Introduction

The concept of the smart city aims to serve an ambitious goal of optimizing urban
resources by observing the usage patterns of city-dwellers. Its application touches a variety
of urban infrastructures, such as a smart grid allowing decentralized energy distribu-
tion, waste management for detecting and separating trash, monitoring of waste and
stormwater, and traffic control for automated vehicles [1]. At the core of the idea are the
Internet of Things (IoT) sensors that collect a large quantity of user data for the control
of Information and Communication Technology (ICT) devices [2]. This implies at least
two crucial opportunities for the industry: massive demand for sensing hardware, and
the availability of big data on how people use urban amenities. This explains why giant
tech companies in consortium with city governments rush to present blueprints for a rosy
future to their constituents.

Despite some small successes, the idea of smart city seems largely unsubstantiated [2].
This is entirely attributable to the ability of the sensors to surveil people’s behavior. Three
years ago, a well-known smart city enterprise was initiated when a government agency
seeking global investment partnered with a tech company to test AI technology on an
urban scale [1]. However, the plan was soon confronted with severe backlash from citizens.
Their concerns were the risk of being the testbed of a pilot project and exposing public data
for products that will eventually be commercialized. The biggest fear was the technical
feasibility of tracing every individual’s entire movements. Even though the company had
repeatedly confirmed that the data would be handled as de-identified bulk, the effort was
not enough to dispel the deep suspicions rooted by recent data breach cases. The issues
raised concerning privacy and ethics seem more than justifiable as sensors and data may
fall into the hands of any future regime or company with ill intent.

Upon realizing the public’s negative image of complete smartification by a single entity,
this study focuses on sensing the legacy city infrastructure, in particular, the sidewalk. The
sidewalk is the primary means of travel and activity of pedestrians, and its safety and
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comfort are key to the livability of an area [3]. Accordingly, many studies have recognized
the sidewalk’s importance in smart city development. They can be categorized into several
topics: traffic and pedestrian flow, physical elements of the built environment, and user’s
perception of the environment [4]. Recently, studies on the sidewalk have attempted to
develop the sidewalk’s new smart applications. For example, one study developed an
automatic pedestrian flow detection method to propose a smart management strategy of
the sidewalk space [5]. Smart applications of the sidewalk include smart control of the
lighting [6], smart street furniture [7], and pavement maintenance [8]. Smart sidewalk
systems are expanding and integrating the sidewalks with a smart crossing that can adjust
signal intervals for older adults, dynamic curbs that allow driverless vehicles to drop and
pick-up passengers, and smart blocks that can change into pavements for either pedestrians
or vehicles [1]. Recently, e-scooter companies have developed sidewalk riding detection
technologies to protect pedestrians from e-scooter users [9]. Sidewalk detection has many
potential applications in smart city development.

To use sidewalks for various smart city applications and developments, researchers
need publicly available sidewalk GIS data showing the sidewalk locations, dimensions,
coverage, physical conditions, or nearby land use contexts. However, public GIS data
for sidewalks are not available in many cities. For example, a study reviewed sidewalk
data in a major metropolitan area (King County, Washington State) in the U.S. and found
that 12 out of 39 jurisdictions within the area did not have sidewalk GIS data open to the
public [10]. When jurisdictions have sidewalk data, their GIS formats were not standardized
because each jurisdiction developed its data for its own purposes. Therefore, sidewalk GIS
data should be processed for standardization across jurisdictions to develop a larger-scale
dataset [11]. As a basic preparation, it is necessary to have standardized, global, and public
sidewalk GIS data across administrative borders.

Standardized street view images may be useful if it is possible to extract sidewalk
information from street view images provided by private or crowdsourced services such
as Google Street View (GSV), Apple Look Around, the Mapillary project, and KartaView.
Many studies have used GSV images to extract street-side information for street facility
assessment or street behavior detection [12–16]. Because street view images are available in
many countries and have similar image formats, they can be used to produce sidewalk data.

The current study aims to develop an automated method to develop sidewalk GIS
data using computer vision and machine learning with extracting sidewalk information
from Google Street View (GSV) images.

2. Materials and Methods

The overall process is illustrated in Figure 1. Detailed methods are explained in the
following sections.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 11 
 

 

 

Figure 1. Street-level sidewalk classification process. 

2.1. Sample Points 

Street view services provide street images given a point on the street. We developed 

our study sample of streets, using the following procedure. First, we selected street seg-

ments from the study area, defined as Erie and Niagara Counties, NY, covering urban and 

rural areas in the Buffalo–Niagara Falls metropolitan region. In the study area, public 

street network segments were used from the street network dataset built from the 2013 

TIGER Census street line files, excluding ones that were non-traversable by pedestrians 

(e.g., highways or onramps). This step collected all street segments possibly having side-

walks. Second, street segment polylines were split at every vertex and at a 30-ft interval 

distance. Because most streets have curb cuts or partial sidewalks, we needed to determine 

the sidewalk presence at multiple locations on a street segment. After initial screening 

GSV images along continuous streets, the 30-ft interval was chosen to avoid image over-

laps between adjacent GSV images. For each split segment, we characterized its geometric 

properties including the azimuth, calculated by the angle of the split street segment’s ori-

entation. Third, we generated each split segment’s center point where street images will 

be collected, yielding a total of 1,393,294 (center) points. Finally, from the generated 

points, we randomly sampled 2000 points as our study sample set. Each point has its lat-

itude and longitude information and the azimuth of the street that the point generated 

from. Sampled points were used as locations where GSV images were collected via Street 

View Static application programming interface (API). 

2.2. Eye-Level Street Images 

Out of the 2000 sample points, GSV images were available at 1632 points. In addition, 

we removed invalid points where we did not need to determine the sidewalk’s presence. 

We decided to exclude 413 street points located within 50 ft of street intersections because 

they legitimately have no sidewalks. At each point, the left and the right side of eye-level 

street images were obtained using GSV Static API [13]. Using the street azimuth infor-

mation, we were able to specify the left and the right side of a street point (subtracting or 

adding 90° to the street’s azimuth). The field of view was set to 120° and image size was 

set to 640 pixels by 640 pixels. Finally, we have 1219 points, yielding the GSV study sample 

consisting of 2438 GSV images in the left and right side of their streets. The final sample 

served to develop an object-based classification algorithm to detect sidewalks. GSV im-

ages were obtained within Python 3.7 and street segment azimuth calculation was con-

ducted with PostgreSQL and PostGIS 2.0. 

Figure 1. Street-level sidewalk classification process.



Sensors 2021, 21, 3300 3 of 11

2.1. Sample Points

Street view services provide street images given a point on the street. We developed
our study sample of streets, using the following procedure. First, we selected street
segments from the study area, defined as Erie and Niagara Counties, NY, covering urban
and rural areas in the Buffalo–Niagara Falls metropolitan region. In the study area, public
street network segments were used from the street network dataset built from the 2013
TIGER Census street line files, excluding ones that were non-traversable by pedestrians (e.g.,
highways or onramps). This step collected all street segments possibly having sidewalks.
Second, street segment polylines were split at every vertex and at a 30-ft interval distance.
Because most streets have curb cuts or partial sidewalks, we needed to determine the
sidewalk presence at multiple locations on a street segment. After initial screening GSV
images along continuous streets, the 30-ft interval was chosen to avoid image overlaps
between adjacent GSV images. For each split segment, we characterized its geometric
properties including the azimuth, calculated by the angle of the split street segment’s
orientation. Third, we generated each split segment’s center point where street images will
be collected, yielding a total of 1,393,294 (center) points. Finally, from the generated points,
we randomly sampled 2000 points as our study sample set. Each point has its latitude
and longitude information and the azimuth of the street that the point generated from.
Sampled points were used as locations where GSV images were collected via Street View
Static application programming interface (API).

2.2. Eye-Level Street Images

Out of the 2000 sample points, GSV images were available at 1632 points. In addition,
we removed invalid points where we did not need to determine the sidewalk’s presence.
We decided to exclude 413 street points located within 50 ft of street intersections because
they legitimately have no sidewalks. At each point, the left and the right side of eye-
level street images were obtained using GSV Static API [13]. Using the street azimuth
information, we were able to specify the left and the right side of a street point (subtracting
or adding 90◦ to the street’s azimuth). The field of view was set to 120◦ and image size was
set to 640 pixels by 640 pixels. Finally, we have 1219 points, yielding the GSV study sample
consisting of 2438 GSV images in the left and right side of their streets. The final sample
served to develop an object-based classification algorithm to detect sidewalks. GSV images
were obtained within Python 3.7 and street segment azimuth calculation was conducted
with PostgreSQL and PostGIS 2.0.

2.3. Image Pre-Processing

First, GSV images were standardized by being cropped to their lower halves, in order
to reduce image variation in sidewalk detection and to focus on sidewalk areas. Second,
for each GSV image, pixels were grouped into discrete regions using a graph-based image
segmentation method [17]. A region in a GSV image was treated as a unit to label whether
or not it was a sidewalk. The graph-based segmentation method considers a pixel as a node
connected through edges to its neighboring nodes (pixels) in a graph and groups pixels into
regions based on pixel similarity. To have a better performance in segmentation, we tested
the K-Nearest-Neighbor method with different parameter sets with a random sub-sample
(sample size = 100; ~4% of the GSV study sample). When the Gaussian smoothing filter
parameter σ = 0.5 and the size of nearest neighbors K = 10, the segmented results have fewer
over-segmented regions and less noise in the region boundaries. Third, segments with
<1000 pixels were considered as noise and were excluded from the analysis. Finally, we
applied a dilation operation for removing noise exiting in the boundary between regions.

2.4. Feature Extraction

For each image region, we extracted features from the following four perspectives: its
relative location in the image, geometric features, color, and the number of lanes contained
within the region, explained below.
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• Location: Horizontal (x) and vertical (y) distance in pixels from the bottom left corner
of the image to the segment’s centroid were calculated.

• Geometric features: A segment’s size (number of pixels in the region) and perimeter
(number of pixels in the boundary) in pixels were measured. The equivalent diameter,
defined as the diameter of a circle with the same area of the region, was calculated. We
calculated a segment’s orientation from the major axis orientation to fit the segment’s
boundary. The shape irregularity was measured as the number of vertexes of the
segment’s minimum convex hull. In general, sidewalk segments tend to have more
regular shapes (close to rectangles or parallelograms) than other types of segments
(e.g., trees).

• Color: A segment’s color was characterized using a standard color library (SCL)
for sidewalks. We randomly sampled 10 true sidewalk segments from our study
sample dataset and created their standard RGB (red, green, and blue) and HSV (hue,
saturation, value) histograms. For each region, histograms for each six color bands
were created and measured for their cumulative distances from the SCL histograms,
yielding six color features.

• Number of lanes: for each GSV image, the number of lanes were estimated with the
following steps. First, images were sharpened using three morphological elements
for three major directions (45◦, 90◦, and 135◦), to create easily recognizable contrasts
around potential lanes.

Second, we used the Hough transformation, an invariant edge detector method, to
detect edges of lanes [18]. Third, Hough peaks (i.e., local maximums) were identified as
lane vertexes. The parameter of Hough peaks was set as 2, based on our review on sample
images. Fourth, the maximum value of the gap between two connected peaks was set as 5
and the minimum length of each lane was set as 80 pixels to remove small noises, based on
reviewing and testing with the sample images. Finally, the number of lanes were calculated
from the detected lane vertexes.

In total, 14 features were extracted and their values were normalized between 0 and 1,
with a linear transformation using min-max scaling.

2.5. Labeling Ground Truth

We had two analysts to visually inspect all image regions processed above, to label
them as sidewalk or non-sidewalk. A GSV image with a sidewalk region was labeled as a
sidewalk GSV image. The manual labeling results served as the ground truth dataset to
train and test the classification models explained below. A custom-made interactive tool,
using MATLAB, was developed (Figure 2). The tool displays the original GSV image and
its segmented image side-by-side. Analysts were trained to point to all sidewalk regions in
the given GSV image. Then, the tool labeled the indicated segments as sidewalks and the
rest of the segments as non-sidewalks. Figure 2 shows a screen capture of the tool with a
GSV example. GSV images with a region labeled as sidewalk were considered as sidewalk
GSV images.
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2.6. Training, Testing, and Classifier Model

Once segments were labeled and sidewalk GSV images were determined, we estab-
lished a training and a test set with a two-step process. First, we split all GSV images into a
training image group (two-thirds of the entire sample) and a test image group (one-third,
the rest of the entire sample). The groups were stratified with respect to the ratio of the
number of sidewalk and non-sidewalk GSV images. Second, we developed a segment-
level training set, consisting of all segments from the image-level training group and a
segment-level test set from the image-level test group.

We established a random forest model, using the segment-level test set, classifying
a segment as sidewalk or non-sidewalk. The random forest model, based on a machine-
learning algorithm, has been widely applied in various areas including image classification
for its high accuracy, robustness, and low possibility of overfitting [18,19]. Previous studies
used random forest models to classify or label image segments in GSV images [20,21].
The training set had imbalanced classes (more non-sidewalk than sidewalk segments)
and may yield a low prediction accuracy of the minority class. To address the issue, we
down-sampled the majority class (non-sidewalk) to the same sample size of the minority
class (sidewalk class) and adjusted voting thresholds [22]. We applied varying levels of the
voting threshold and selected the final model that produced the lowest within-class errors
in both classes.

2.7. Aggregation at the Image and Street Levels

Using the selected model, each segment’s probability of being sidewalk was estimated.
If a GSV image had a segment with a sidewalk probability equal or greater than R, the
sidewalk image determination threshold, the GSV was considered to have sidewalk. Oth-
erwise, it was considered as a non-sidewalk GSV image. Low R values may produce false
positive errors and high R values may produce false negative errors. We conducted a
sensitivity analysis to find an adequate R value. We applied R values between 0.1 and
0.95 at a 0.05-interval and measured rates of false positive, false negative, and overall
errors, using the training set. The R value with the lowest error rates was selected and
then applied to the image-level sidewalk classification. We obtained the overall lowest
error rate.

Our aim was to determine sidewalk presence or absence of a side of a street. Potential
errors at the image level may be reduced and are aggregated into a larger group, at the
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street level. For example, a 250-foot street has 6 GSV image points at 30-foot intervals, for
one side, excluding two end portions with a 50-foot distance (Figure 3). The image-level
classifier developed above determines the sidewalk presence of each of 6 images with an
error rate. A street’s side is determined as having sidewalk when half or more of the GSV
images are classified as sidewalk images. In the example, 4 out of 6 images are classified as
sidewalks, which determines the street as a sidewalk street on the site studied.
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We assumed that the image-level classifier has an error rate E, which is the lowest error
rate of the classifier above. With varying lengths of streets, we conducted 1000 simulations
of street-level sidewalk classifications to assess how different levels of E affect street-level
classifications of different street lengths. We examined the distribution of streets in New
York State, using topologically-corrected and simplified OSMnx street network data [23].

We used R version 3.5.1 (R Foundation for Statistical Computing, Vienna, Austria)
and R randomForest package for establishing random forest models.

3. Results

In total, the study area included 79,875 street segments, yielding 1,393,294 center
points of split segments. Figure 4 shows locations of GSV image points and the study area.
The image points were located mostly within urban boundaries and a small portion in
low-density rural areas. From 1219 points, we collected 2438 GSV images in the left or right
side of streets. The image pre-processing applied the graph-based segmentation for the
all images, yielding a total of 78,255 segmented image regions. Of the regions, 2002 were
manually labeled as sidewalks and 76,253 as non-sidewalk regions. Next, we extracted
features of the sidewalk image regions and non-sidewalk image regions. Table 1 shows
descriptive statistics of the regions. On average, sidewalk regions located in the upper
parts in GSV images (Y mean: 617.95 vs. 331.62) have high values in some RGB and HSV
histogram distributions, and tend to have regular shapes, small sizes, large perimeters, and
small number of lanes, compared to non-sidewalk regions. We established a random forest
classifier model using the features. Figure 5 shows the importance of features (variables) of
the segment-level random forest classifier model. As expected, the horizontal location, and
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R, B, G, and V histogram distributions had the top five important features, meaning the
location and the color composition are more important than others in detecting sidewalk
image regions.

Image regions were aggregated at the GSV image level. At the GSV image level, we
conducted a sensitivity analysis of the sidewalk error rate with respect to R, the sidewalk
image threshold. It turns out that the R value of 0.9 yields the lowest overall error rate (8%)
in the training set and the lowest (13%) in the test set (Table 2). In the test set, 13% of the
errors are from 7% of false negative errors and 6% of false positive categories.

Finally, we aggregated the GSV image-level sidewalk information into the street-level
information, to determine the sidewalk presence or absence of a street. Table 3 shows the
street-level sidewalk detection accuracy values with respect to the street lengths and the
hypothetical image-level sidewalk detection error rates. With an image-level error rate (E)
of 13% (when R is set to 0.9), the street-level sidewalk detection accuracy is over 95% when
the aggregated GSV images are 2 or more (or the street length is ≥130 ft). Thus, when
a street is 130 feet or longer, which is 91.7% of cases, the sidewalk detection accuracy is
always over 95%. This is true even when the image-level error rate increases from 13%
to 19%. When a street is 190 feet or longer (meaning the street has 4 or more GSV image
points), street-level sidewalk detection is nearly 99% accurate under the image-level error
rates of 0.13. In New York State, 13.9% of all streets were shorter than 190 feet. Thus,
for most streets (86.1%), this street-level classifier successfully determines if a street has
sidewalk (99% accuracy).
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Table 1. Segmented image region: descriptive statistics before standardization.

Variables Sidewalk Regions
(n = 2002)

Non-Sidewalk Regions
(n = 76,253)

Mean SD

Location X 132.14 38.00 Location X
Y 617.95 180.78 Y

Color R 0.41 0.15 Color R
G 0.45 0.17 G
B 0.38 0.16 B
H 0.50 0.23 H
S 0.22 0.13 S
V 0.38 0.17 V

Geometric Shape Index 73.67 48.75 Geometric Shape Index
Orientation −0.28 11.11 Orientation

Size 4442.10 5316.13 Size
Perimeter 407.01 337.94 Perimeter
Equivalent
diameter 67.69 32.77 Equivalent

diameter

Number of lanes 0.02 0.20 Number of lanes

Sensors 2021, 21, x FOR PEER REVIEW 8 of 11 
 

 

Table 1. Segmented image region: descriptive statistics before standardization. 

Variables  
Sidewalk Regions 

(n = 2002) 

Non-Sidewalk Regions 

(n = 76,253) 

  Mean SD   

Location X 132.14 38.00 Location X 

 Y 617.95 180.78  Y 

Color R 0.41 0.15 Color R 

 G 0.45 0.17  G 

 B 0.38 0.16  B 

 H 0.50 0.23  H 

 S 0.22 0.13  S 

 V 0.38 0.17  V 

Geometric  Shape Index 73.67 48.75 Geometric  Shape Index 

 Orientation −0.28 11.11  Orientation 

 Size 4442.10 5316.13  Size 

 Perimeter 407.01 337.94  Perimeter 

  
Equivalent  

diameter 
67.69 32.77   

Equivalent  

diameter 

Number of lanes  0.02 0.20 Number of lanes  

 

Figure 5. Importance of variables in the random forest model. 

Table 2. Error rates by varying R (the sidewalk image determination threshold) in the training and test sets. 

R Training Set (1622 Images from 52,471 Segments) Test Set (813 Images from 25,784 Segments) 

 Error Rate   Error Rate   

 False Negative False Positive All False Negative False Positive All 

0.10 0.67 0.00 0.67 0.67 0.00 0.67 

0.15 0.55 0.00 0.55 0.56 0.00 0.56 

0.20 0.49 0.00 0.49 0.48 0.00 0.48 

0.25 0.44 0.00 0.44 0.45 0.00 0.45 

0.30 0.40 0.00 0.40 0.40 0.00 0.41 

0.35 0.36 0.00 0.36 0.38 0.00 0.38 

0.40 0.33 0.00 0.33 0.35 0.00 0.35 

0.45 0.29 0.00 0.29 0.30 0.00 0.30 

0.50 0.26 0.00 0.26 0.28 0.00 0.28 

Figure 5. Importance of variables in the random forest model.

Table 2. Error rates by varying R (the sidewalk image determination threshold) in the training and test sets.

R
Training Set (1622 Images from 52,471 Segments) Test Set (813 Images from 25,784 Segments)

Error Rate Error Rate
False Negative False Positive All False Negative False Positive All

0.10 0.67 0.00 0.67 0.67 0.00 0.67
0.15 0.55 0.00 0.55 0.56 0.00 0.56
0.20 0.49 0.00 0.49 0.48 0.00 0.48
0.25 0.44 0.00 0.44 0.45 0.00 0.45
0.30 0.40 0.00 0.40 0.40 0.00 0.41
0.35 0.36 0.00 0.36 0.38 0.00 0.38
0.40 0.33 0.00 0.33 0.35 0.00 0.35
0.45 0.29 0.00 0.29 0.30 0.00 0.30
0.50 0.26 0.00 0.26 0.28 0.00 0.28
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Table 2. Cont.

R
Training Set (1622 Images from 52,471 Segments) Test Set (813 Images from 25,784 Segments)

Error Rate Error Rate
False Negative False Positive All False Negative False Positive All

0.55 0.24 0.00 0.24 0.25 0.01 0.25
0.60 0.21 0.00 0.21 0.22 0.01 0.23
0.65 0.18 0.00 0.18 0.19 0.01 0.20
0.70 0.15 0.00 0.15 0.15 0.02 0.17
0.75 0.13 0.01 0.13 0.13 0.03 0.16
0.80 0.10 0.01 0.11 0.11 0.03 0.14
0.85 0.08 0.02 0.10 0.09 0.04 0.13

0.90 * 0.04 0.04 0.08 * 0.07 0.06 0.13
0.95 0.01 0.07 0.09 0.03 0.11 0.15

* Selected R based on the lowest in-class and overall error rates in the training set (shown in bold).

Table 3. Street-level accuracy rate given different levels of image-level accuracy 0.79 (E = 0.21) and 0.87 (E = 0.13).

Number of GSV
Images [Count]

Street
Length [ft]

Length Distribution
in the Study Area Street-Level Accuracy [%]

Accumulated
Frequency [%]

Where Image-Level
Error Rate (E) = 0.13 *

(Given R = 0.90)
E = 0.15 E = 0.17 E = 0.19 E = 0.21

0 <100 6.3 NA NA NA NA NA
1 ≥100, <130 8.3 0.87 0.85 0.83 0.81 0.79
2 ≥130, <160 11.0 0.98 0.98 0.97 0.96 0.96
3 ≥160, <190 13.9 0.95 0.94 0.92 0.91 0.89
4 ≥190, <220 16.7 0.99 0.99 0.98 0.98 0.97
5 ≥220, <250 20.4 0.98 0.97 0.96 0.95 0.93
6 ≥250, <280 26.0 1.00 0.99 0.99 0.99 0.98
7 ≥280, <310 32.4 0.99 0.99 0.98 0.97 0.96
8 ≥310, <340 38.1 1.00 1.00 1.00 0.99 0.99
9 ≥340, <370 42.7 1.00 1.00 0.99 0.99 0.98

10+ ≥370 100.0 1.00 1.00 1.00 0.99 0.99

* E = 0.13, the image-level error rate of the random forest classifier, tested with the test set.

4. Discussion

The current study used a graph-based image segmentation method to build street-
level sidewalk GIS data using GSV images [16]. This approach is relatively simple. It
uses a small size of training samples, not requiring high computing power nor highly
sophisticated techniques. This is because our approach used multiple aggregations (seg-
mented regions to images and images to streets). At the segment level, accuracy levels
may not be high enough. However, when they are aggregated, errors are canceled out
by successful classifications. For the purpose of sidewalk inventory development, we
just need street-level sidewalk presence information. The current study showed that our
method successfully and sufficiently presents excellent accuracy rates (95–99%).

The study’s approach has several strengths. First, the method can be applied to any
areas where GSV services are available. The study area covers a wide range of urban and
rural regions having sufficient spatial variability. Second, our approach may be useful
even in areas where GSV services are not available, yet where some other similar services
are available. GSV data formats are similar across providers. Given a location, a user can
retrieve street images with parameters, which can be translated across service providers.
For example, a study used GSV data to detect street-side greenery [21]. Another study
used Baidu Street View data [24]. They both have common approaches. Third, this method
will substantially save monetary and time cost in building sidewalk GIS data. In our
study, it took about 24 person-hours to manually label sidewalks in about 2500 GSV image
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samples. It would take 560 person-hours if we manually labeled the entire 1.4 M sidewalk
image points from the study area of 2400 mi2 (≈6200 km2). Manual labeling usually
requires additional time and costs for cross-validation and data management, meaning that
a larger dataset means even larger labor and costs. The current automated method reduces
considerable time and cost of data development. Furthermore, the method is reproducible.
Thus, it may be used for continuous sidewalk data management.

The current study presents a relatively simple method to develop sidewalk inventory
data using publicly available or commercial street view data. We tested the reliability
of the accuracy value of our approach, using five-fold cross validation. The five sets of
validation yielded accuracy values with a 2.88%-point difference between the minimum
and maximum accuracies (data not shown), suggesting that our image-level accuracy
possibly increases or decreases by that difference. However, such changes in accuracy do
not affect street-level outcomes, as shown in Table 3.

Our method used a graph-based image segmentation. We did not consider advanced
image-processing methods like Deep Learning because they usually require a large training
sample. For the current purpose of sidewalk detection, the graph-based method is sufficient
and feasible to produce an excellent agreement rate over 95%.

Our study may have limitations. Like other studies using image recognition, the
current study’s performance depends on the quality of source images. We observed
from random spot checking that some large shades in street images may lead to mis-
classifications. Shades tend to make multiple objects into one object. We reviewed potential
methods to restore shades or shadows. However, we determined not to apply the restora-
tion method because we had sufficiently high success rates in our data without using it.
Future studies may need to apply shade restoration techniques when shades significantly
affect classification performance.

Recent studies use Light Detection and Ranging (LiDAR) sensors to detect street
facilities [25,26]. LiDAR sensors collect direct data and may capture precise details of the
street environments. Future studies are needed to integrate street view image data with
LiDAR-collected information to assess street environments.

The current study focused on the sidewalk. Comprehensive street assessment may
be possible when we have additional information as neighborhood qualities and condi-
tions [27,28]. Objective data methods like our study may contribute to build smart street
management and neighborhood planning strategies.

5. Conclusions

We developed an automated method to detect sidewalk presence at the street level
using Google Street View data. The sidewalk detection at the image level shows an
acceptable accuracy rate of 87%. When the sidewalk information is aggregated into the
street level, which is practical for smart sidewalk management purposes, the sidewalk
detection shows excellent accuracy rates ranging 95–99%. Street images are useful to
produce highly accurate sidewalk GIS data.
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