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Abstract: Recently, deep learning-based techniques have shown great power in image inpainting
especially dealing with squared holes. However, they fail to generate plausible results inside the
missing regions for irregular and large holes as there is a lack of understanding between missing
regions and existing counterparts. To overcome this limitation, we combine two non-local mecha-
nisms including a contextual attention module (CAM) and an implicit diversified Markov random
fields (ID-MRF) loss with a multi-scale architecture which uses several dense fusion blocks (DFB)
based on the dense combination of dilated convolution to guide the generative network to restore
discontinuous and continuous large masked areas. To prevent color discrepancies and grid-like
artifacts, we apply the ID-MRF loss to improve the visual appearance by comparing similarities of
long-distance feature patches. To further capture the long-term relationship of different regions in
large missing regions, we introduce the CAM. Although CAM has the ability to create plausible
results via reconstructing refined features, it depends on initial predicted results. Hence, we employ
the DFB to obtain larger and more effective receptive fields, which benefits to predict more precise
and fine-grained information for CAM. Extensive experiments on two widely-used datasets demon-
strate that our proposed framework significantly outperforms the state-of-the-art approaches both in
quantity and quality.

Keywords: image inpainting; implicit diversified Markov random fields; dense connection of dilated
convolution; contextual attention mechanism

1. Introduction

Image inpainting, which synthesizes semantically reasonable and visually plausible
contents in the damaged regions from existing areas, has attracted great attention in
recent years. High-quality image inpainting can be capable of benefiting a wild range of
applications such as unwanted-object-removal [1,2] and photos restoring [3]. Not only it is
necessary to reconstruct textures and contents, but it is also crucial to have insight into the
scene and objects that will be completed. Despite of many years research, image inpainting
is still a challenging task in the field of computer vision as there is an inverse ill-posed
problem [4] in this technique.

Generally, image inpainting approaches can be classified into three categories, diffusion-
based method [5], patch-based method [6] and deep-learning-based method [7]. The first
two methods depend on spreading and copying known information, hence they have
an inferior ability to acquire high-level semantic features. Recently, deep-learning-based
approaches such as convolutional neural networks (CNN) [8] and generative adversar-
ial networks (GAN) [9] have exhausted the powerful capability of reconstructing target
regions from surrounding areas.

Pathak et al. [10] designed a model based on the CNN termed as context encoder,
which consists of an encoder to capture the context of an image into a compact latent
feature representation and a decoder which utilizes that representation to predict the target
region. Although it can achieve promising results, some exquisite details are ignored
due to the more attention on recovering structure information rather than fine details. To
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tackle this issue, many methods adopted a two-stage architecture network. For instance,
Yu et al. [11] introduced a coarse-to-fine framework to rough out the missing contents and
a refined complete module to capture high-level features from known areas. Based on
this network, Iizuka et al. [12] designed a global discriminator and a local discriminator
to distinguish between real images and repaired images respectively, which can maintain
the coherence of missing areas and surrounding regions. Above-mentioned methods
mainly focus on rectangular areas and assume that the missing area is in the middle
of the image. However, this hypothesis is limited to research and cannot be widely
used in practice. Recently, massive methods have been investigated to deal with this
problem. For example, Liu et al. [13] first put forward the mechanism of partial convolution
(PConv) which incorporates re-normalized convolution and a mask-update operation
to replace convolutional layers. Yu et al. [14] presented a gated convolution for free-
form image completion. Furthermore, Ma et al. [15] designed a region-wise network to
boost the capability of the generative model to adaptively learn feature presentations
in different regions. Those methods have achieved promising performance on small
proportion corrupted regions, while show insufficiency when the incomplete regions
occupy a large proportion. Hence, they will inevitably lead to artifacts such as color
discrepancies and blurriness.

To overcome the above-mentioned problems, we mainly focus on arbitrary and large
image defects. Our work builds upon the recently proposed region-wise approach [15],
which employed a region-wise convolution mechanism and trained the network with
a joint loss that consists of reconstruction losses, a style loss, a correlation loss and an
adversarial loss. It performs well when the missing region is discontinuous, while suffers
from obvious grid-shaped artifacts in larger and continuous occluded image regions. This
phenomenon is probably caused by the correlation loss and the style loss since they all
use the gram matrix which pays attention to capturing pixel-wise correlations rather than
taking the global consistency into account. Furthermore, they proposed an adversarial
network to mitigate large area artifacts. However, there is no obvious improvement for
visual performance. Another limitation is that lots of results containing over-smooth and
incomplete structures will be obtained when the damaged area is large. We speculate
that the original model does not have enough capacity to learn feature representations of
different regions. Based on those observations, our proposed approach addresses those
points and further achieves desirable results by focusing on non-local relationships and
multi-scale information. More specifically, we retain original region-wise convolutions and
the two-stage structure in paper [15] for the following reasons. Region-wise convolution
can perform different operations for different regions. However, only adopted region-wise
convolution framework will obtain blurry results. Hence, it is indispensable to incorpo-
rate the refinement network to infer more precise details. Based on the above-mentioned
structure, we first utilized the pretrained VGG model combining with implicit diversified
Markov random fields to substitute Gram-matrix-matching, which can alleviate the effects
of grid-like shape artifacts. However, the repaired results will be blurred when the missing
regions occupy a large proportion. Hence, we introduced the contextual attention module
(CAM) to capture features in background patches and propagate the spatial coherency of
attention. However, we find that the results will contain incorrect textures and incomplete
structures. We analyze that the original cascade dilated convolution cannot provide abun-
dant and accurate information for the CAM. To tackle this problem, we introduced several
dense fusion blocks (DFB) to replace the original cascade dilated convolution and extract
multi-scale features for CAM simultaneously. In conclusion, the combination of CAM and
DFB can achieve the visual authenticity and perceptual plausibility of results.

We evaluate and analyze our proposed method on two standard datasets including
CelebA-HQ and Paris StreetView. Meanwhile, we compare our model with the state-
of-art schemes and provide experimental results to verify the effectiveness of our pro-
posed method.

The main contributions of this paper are summarized as follows:
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• We aim to solve image inpainting tasks for randomly missing regions with a large
proportion and employ an ID-MRF loss to tackle grid-shape artifacts and color dis-
crepancy caused by style loss and correlation loss.

• We innovatively combine the CAM with the DFB module to assist our network to
generate precise and fine-grained contents by borrowing features from distant spatial
location and extracting multi-scale features.

• Experiments on multiple benchmark datasets intuitively show that our method is able
to achieve competitive results.

2. Related Work

Recently, a great deal of literature has proposed numerous methods for image in-
painting. In this section, we will mainly introduce a few methods related to non-local and
multi-scale mechanisms.

2.1. Non-Local Mechanisms

For discontinuous missing regions, semantic information can be easily inferred from
the background. However, it is a challenging task to repair large and continuous masked
areas due to the huge gap between empty missing regions and corresponding possible
recovered contents. Attention mechanism based on the relationship between contextual
and missing regions has been often used in the task of image inpainting. For instance,
Yu et al. [11] proposed a coarse-to-fine generative adversarial network and appended a
contextual attention module to learn feature presentations via matching patches from back-
ground information. However, once the wrong information is captured in the first stage, it
will cause the propagation of the error. On this basis, Sagong et al. [16] proposed a parallel
extended-decoder path with a modified contextual attention module to reduce the number
of convolution operations and create a higher-quality inpainting result simultaneously. For
capturing long-range spatial dependencies, the self-attention mechanism [17] based on
the non-local network [18] was wildly adopted. For instance, Uddin et al. [19] designed a
global and a local attention architecture to obtain global and local coherent information.
Yang et al. [20] exploited a self-attention mechanism and integrated it with structural
information. Liu et al. [21] proposed a non-local module to capture a deeper relationship
of different regions by using a self-attention framework. However, the non-local module
was originally designed for the task of classification and this operation is not sufficient to
significantly improve the performance of our framework. In addition to using the attention
mechanism to obtain non-local information, a pre-trained model of the VGG network [22]
has been wildly adopted to extract non-local features by calculating style loss. The essence
of style loss is learning the relationship of existed and unknown regions by using the
Gram-matrix to calculate the pixel relevance. Although it can preserve the high-frequency
details, there is a tendency to produce grid-shape artifacts and contents that is inconsistent
with the background. With the purpose of further successfully generating high-quality
images, several studies concentrated on taking advantage of similarities of patches as loss
function to learn non-local features. For example, Yang et al. [23] proposed a style transfer
based on an MRF method to promote feature fusion, structure completion and texture
reconstruction. In particular, Wang et al. [24] proposed an MRF-based non-local loss to
encourage network to produce high-quality results by considering content consistency and
texture similarity.

2.2. Multi-Scale Mechanisms

Currently, multi-scale-based methods have shown a significant development of appli-
cations in image inpainting. For instance, Wang et al. [25] introduced a Laplacian-pyramid
model to progressively restore images with different resolutions. Mo et al. [26] introduced
several multi-scale discriminators to generate the results containing more multi-scale in-
formation. Wang et al. [24] proposed a multi-column convolutional neural network to
enlarge the receptive fields by applying different convolutional kernel size. However,
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those methods will be likely to cause resource-consuming and suffer from additional pa-
rameters. The common operation of aggregating multi-scale information and reducing
resource consumption is to enlarge receptive fields by using dilated convolution. In the
work of [12], they replaced the original channel-wise fully connected layer by a cascaded
dilated convolution to broaden the receptive field. To further learn multi-scale features,
Hui et al. [27] utilized dense combinations of dilated convolutions and different dilated
rates to learn larger and more effective receptive fields, which is vital to infer reasonable
structures and contents.

3. Proposed Methods

In this section, we firstly described the process of our method based on the model of
generative adversarial network. Then we introduced the details of the contextual attention
mechanism and the dense connection architecture of dilated convolution. Finally, objective
loss functions including the reconstruction loss, the ID-MRF loss and the adversarial loss
are presented in detail. An overall framework of our method is displayed in Figure 1.
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3.1. The Architecture of Our Framework

As depicted in Figure 1, we take the architecture proposed by Ma et al. [15] as the
backbone of our generator which is composed of several region-wise convolutions and
the cascaded dilated convolution based on the coarse-to-fine structure. On this basis, we
introduce the contextual attention module (CAM) and use the dense connection of dilated
convolution as dense fusion block (DFB) to replace the original cascaded convolution. The
CAM is not suitable for the coarse stage as this phase cannot provide enough accurate and
delicate information for the CAM to borrow and propagate. Moreover, ordinary cascaded
dilated convolution cannot extract multi-scale features of the image. Inspired by those
observations, we integrate DFB into coarse and refinement stages and only employ the
CAM in the refinement stage. In addition, we only embed one CAM as it is sufficient for
feature borrowing and reconstruction. Generally, the combination of DFB and CAM can
synthesize more fine-grained and better results. Moreover, in the work of [11] and [16],
the attention module is used in one branch of the parallel network. However, we find
it is not suitable for our architecture since our model has a strong dependence on skip
connections and dilated convolutions. Based on this observation, we design a novel
refinement framework to improve the robustness of the inpainting model and synthesize
realistic contents simultaneously. It is worth emphasizing that the input of CAM is the
concatenation of the convolutional layers before and after the dilated convolution. As
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shown in Figure 1, given a ground truth image Igt and a binary mask M which denotes
damaged areas (0 for missing regions, 1 for existing counterparts). The corrupted image is

Igt = Igt �M (1)

where the symbol � denotes the multiplication of corresponding elements of two matrices.
We feed the concatenation of Igt and M as inputs to the coarse network instead of Igt, which
is beneficial for the network to concentrate more on valid pixels. Then the predicted image
I1
pred as the same resolution as the original image will be obtained. We integrate the masked

area in I1
pred with the opposite regions in the background as the composite image of the first

stage. It can be denoted by the equation as below:

I1
comp = Igt + I1

pred � (1−M) (2)

Then the I1
comp is sent to the refinement network to provide more information and the

model can yield the refined image I2
pred, which is used to obtain

I2
comp = Igt + I2

pred � (1−M) (3)

Moreover, we only consider the local predicted region in the phase of the adversary.
Specifically, two local predicted images I1

pred � (1−M), I2
pred � (1−M) in every stage are

feed together into the discriminator to enhance the capability of generator. In addition, we
adopt the recently proposed technology of spectral normalization [28] which controls the
Lipschitz constant of the discriminator.

3.2. Contextual Attention Mechanism

Recently, the attention mechanism has been widely used in image inpainting tasks
and exhibits a great potential in the generation of high-quality images. Since there is a
strong necessary to apply a non-local mechanism to deal with continuous and large missing
regions, we employ a contextual attention mechanism (CAM) in the refinement network
to enhance the power of the generator to obtain sharper and pleasing results from initial
prediction models. Yu et al. [11] firstly proposed the contextual attention module which
borrows the patches from the background to fill holes. However, it utilizes the cosine
similarity to match similar patches, which may influence the feature extraction due to
the normalization operation. Furthermore, Sagong et al. [16] modified this module by
replacing the cosine similarity with Euclidean distance. It is more feasible to match and
propagate more reasonable contents since the Euclidean distance can not only take the
angle of different patches into account, but also consider the size of them. We refer to
this method to achieve the propagation of non-local features. The process of the attention
mechanism can be defined as follows:

The first step is to divide the feature maps into background and foreground regions:
background indicates known regions and foreground denotes opposite counterparts. We
can obtain the background area though multiplying the mask by feature maps. Then
we extract patches from different regions and reshape those patches of background as
convolutional filters. Then we measure the similarity score d(x,y),( x′, y′) between foreground
patch

(
fx,y
)

and background patch
(
b x′, y′

)
by the function:

d(x,y),(x′ ,y′) = tanh(−(
d(x,y),(x′ ,y′) −m

(
d(x,y),(x′ ,y′)

)
σ
(

d(x,y),(x′ ,y′)

) )) (4)

where
d(x,y),(x′ ,y′) = || fx,y − bx′ ,y′ || (5)

where m and σ indicate the constant value.
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Finally, the foreground region is reconstructed from the weighted sum of background
patches, and the importance of the background patch is judged by the similarity score.
With the assistance of the tan h function, our model has the ability to accurately distinguish
background and foreground, so as to better match and propagate features. Moreover, this
module plays an important role in alleviating the influence of redundant information and
synthesizing the satisfactory results by adaptively differentiating and fusing long-range
spatial information.

3.3. Dense Connection of Dilated Convolution

Although the CAM has delivered a remarkable improvement performance in the
reconstruction of structures and contents, it depends on the accuracy of initially predicted
images. In addition, it has been proved that if the coarse network performs not well, the
refinement phase will take advantage of irrelevant information and feature patches to
match and attend [16]. We also find that the skip connection in our framework benefits
the network to learn more valid and deeper information. Inspired by those observations,
we design a dense connection of dilated convolution which is similar to the structure in
paper [27]. As illustrated in Figure 1, the middle layers of the network consist of a series
of dense fusion blocks (DFB) based on the dense connection of dilated convolutions and
the concrete structure of every DFB is presented in Figure 2. Different from the common
cascaded dilated convolutions [11] using various dilated rates, which may restrict the range
flexibility of the generator, our dense combination has a large respective field and can
adaptively learn more effective information. Specifically, a 3 by 3 convolution is employed
to reduce parameters of input feature maps and concentrate on more valid features by
decreasing the channels to a quarter of the original counterparts. Then there are four
dilated convolution branches with different dilated rates of 2, 4, 8 and 16, respectively,
and every convolution utilizes 3 by 3 kernel size. Suppose xi{i = 1, 2, 3, 4} indicates the
four branches, C(·) indicates the convolutional operator and yi{i = 1, 2, 3, 4} denotes the
output after C(·). The process of our dense connection can be demonstrated as follows:

yi =


xi i = 1
Ci(xi−1 + xi) i = 2
Ci(yi−1 + xi) 2 < i ≤ 4

(6)

We can obtain multi-scale information by connecting all the outputs y1, y2, y3, y4.
Then a 1 by 1 convolution is adopted to aggregate features. It is worth notable that all the
convolution layers in the DFB have the same structure as the other counterparts in our
architecture. A series of DFBs enjoy the ability to preserve multi-scale information and
increase the richness of extracted features by enlarging the receptive fields.
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3.4. Loss Functions

The task of image inpainting is an ill-posed problem in that there are a number of
possible results. Therefore, it is crucial to use loss functions to select the most reasonable
and realistic one. In our experiment, we rely on several loss functions to optimize networks
in the training process.

3.4.1. Reconstruction Loss

Reconstruction loss is a straightforward method that can measure pixel-wise differ-
ences between the predicted region and the associated surroundings. We prefer to adopt
L1 distance to calculate the reconstruction loss rather than L2 distance as the latter will
produce images with much blurriness [29]. We will verify this conclusion in the abla-
tion studies. In our two-stage model, the overall reconstruction losses can be expressed
as follows:

Lre = ||I1
pred − Igt||1 + ||I2

pred − Igt||1 (7)

The pixel reconstruction loss can guarantee the consistency of contents in the generated
area and the background area. Moreover, this function can benefit to reconstruct initial
structural information while some high-frequency details will be ignored.
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3.4.2. ID-MRF Loss

The style loss and correlation loss in paper [15] are prone to cause grid-shape artifacts
and color discrepancy when repairing large continuous masked regions. We also find that
the repaired target region will be very blurry if removing loss functions which focus on
the relationship of different parts. Aiming to address those problems and motivated by
the work of paper [30] and [24], we adopted an ID-MRF loss to capture complex image
layouts and provide plausible contents with the same pattern in visual and style to the
ground truth.

Suppose I1
pred and Igt be the predicted image and the ground-truth image respectively,

Φl
p is the feature maps derived from the lth feature layer of a pretrained VGG model.

Similarly, Φl
GT is the feature maps of the original image. Let m and n indicate one of the

patches extracted from Φl
p and Φl

GT , respectively. The relative similarity between m and n
is defined as

RS(m, n) = exp


 µ(m, n)

max
ν∈Rn(Φl

GT)
µ(m, ν) + δ

/s

 (8)

where µ(·, ·) indicates the cosine similarity. Rn

(
Φl

GT

)
denotes all the neural patches in

Φl
GT excepting for n. δ and s indicate positive constants. Then we normalize RS(m, n) to

RS(m, n) = RS(m, n)/ ∑
v∈Rn(Φl

GT)

RS(m, v) (9)

The ID-MRF loss of lth feature layer between Φl
p and Φl

GT is defined as

LM(l) = −log(
1
h ∑

n∈Φl
GT

max
m∈Φl

P

RS(m, n)) (10)

where h is normalization constant. Different from common cosine similarity, the ID-MRF
loss concentrates on relative distance which benefits to find high-quantity patches in the
neighborhood. By minimizing LM(l), the process of m in Φl

p seeking for some non-local
similar candidates in Φl

GT will constrain the network to generate images closer to the
real counterparts.

Let the predicted image is I2
pred. Then it is projected to a more advanced feature space

using pre-trained VGG16 on ImageNet. We use conv3_2 and conv4_2 to indicate image
texture and conv4_2 to describe semantic structures. The ID-MRF loss is defined as:

Lmr f = LM(conv4_2) +
4

∑
i=3

LM(convi_2) (11)

Since the correlation loss and style loss are pixel-wise methods rather than patch-wise,
our ID-MRF loss has the ability to establish the relationship of long-term contents.

3.4.3. Adversarial Loss

Only relying on generator cannot guarantee to yield plausible results. The experi-
ments in [31] have confirmed that the adversarial network can benefit to remove grid-like
artifacts. Motivated by this research and aiming to produce pleasing results, we adopted a
discriminator to encourage the generator to synthesize visually consistent results. Given
Igt, I1

pred,and I2
pred, we penalize the predicted missing regions rather than the entire image
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and concatenate those areas with the corresponding mask as inputs of the discriminator.
To sum up, the learning objective for the discriminator in our experiments is formulated as:

Lad
.
v = αE

(
D
(

Igt � (1−M), M
))

+E
(

1− D
(

I1
pred � (1−M), M

))
+E
(

1− D
(

I2
pred � (1−M), M

)) (12)

where D and M indicate discriminator and the mask respectively. We set α as 0.01.
For the generator, it struggles to improve the quality of synthesis results to fool the

discriminator, while the task of the discriminator is to judge whether the predicted image
is true or fake until the discriminator is indistinguishable from those images obtained by
the generator.

3.4.4. Overall Loss

Finally, we obtain the hybrid loss function which is a linear combination of the
construction loss Lre, the ID-MRF loss Lmr f and the adversarial loss Ladv.

L = λ1Lre + λ2Lmr f + λ3Ladv (13)

where λ1, λ2, λ3 are weights of different loss components. Our joint loss function can
ensure the generator to produce semantically-reasonable and visually-realistic results.

4. Experiments

In this section, we present the datasets used in this work and our experimental imple-
mentation. We also compare our approach with several state-of-the-art image inpainting
methods to evaluate the effectiveness of our model qualitatively and quantitatively. Finally,
we conduct ablation studies to examine the effect of different components in our model.

4.1. Datasets and Masks

We validate our method on two public and widely-used datasets: CelebA-HQ dataset
and Paris StreetView dataset. The former focuses on human face and contains 30,000
images, the latter collected from street views of Paris contains 14,900 training images
and 100 test images. We use the original train, test and validation splits for these two
datasets. Moreover, we adopt an algorithm to generate irregular masks during training
and testing, which is more suitable for the situation of natural damaged images and can
avoid over-fitting.

4.2. Implementation Details

Our proposed framework is implemented in Tensorflow. The size of input images is
256 by 256 and the batch size is 4. Our model is optimized by the Adam algorithm with
a learning rate of 1× 10−4 and β1 = 0.5, β2 = 0.9. We train our model on the NVIDIA
2070 GPU (8GB) and NVIDIA 2080Ti GPU (11GB). To stable the process of training, we
divide it into two steps. Specifically, we train our model without the adversarial loss
for the former 20 epochs and append it for the latter 10 epochs. Since we find that the
larger proportion of our MRF loss will cause the propagation of incorrect contents, while
over-smooth and blurry results will be obtained when their proportion is lower. Motivated
by this observation, the trade-off parameters λ1, λ2 and λ3 are set to 20, 1 and 0 in the
first step. In the second step of training, we deploy the adversarial network and set λ1 as
10, λ2 as 1, λ3 as 1. The masked image includes missing regions with variable numbers,
sizes, shapes and locations during every iteration. In particular, the proportion of arbitrary
damaged areas varies from 0% to 40% during training. In addition, we experimentally set
the number of DFB to 8. It takes 2 s to predict missing regions with any shapes and 1 day
to train 20 epochs of 28,000 high-resolution images.
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4.3. Comparative Experiments

We apply our network to perform qualitative and quantitative comparison exper-
iments with several state-of-the-art methods including contextual attention (CA) [11],
partial convolution (PConv) [13], GatedConv (GC) [14], EdgeConnect (EC) [32], Pluralistic
Image Completion (PIC) [33] and Region-Wise Conv (RWC) [15]. To fairly evaluate, we
carry out the experiments on discontinuous and continuous missing regions and every
test image has the corresponding mask. For CA, GC and RWC, we train their models
on CelebA-HQ dataset and Paris StreetView dataset with the released code. For EC
and PIC, we directly adopt the pre-trained model as our training results perform not
as good as the released results. As to PConv, we refer to the implementation on github
(https://github.com/MathiasGruber/PConv-Keras, accessed on 15 December 2020) and
follow the suggestions of authors for training since there are no public codes.

4.3.1. Qualitative Comparison

Figures 3 and 4 present the inpainting results of different state-of-the-art approaches
on some samples selected from CelebA-HQ and Paris StreetView datasets. GT indicates
the ground-truth image. To make a comprehensive and objective comparison of various
methods, we explore the effect of different missing ratios of masks ranging from 0–40%,
which is consistent with the training phase. Observing from Figures 3 and 4, inpainting
results of CA suffer from visible distortions and inconsistency because it is originally
designed for restoring regular missing holes. Among the rest of algorithms, EC reconstructs
images with more accurate and intact structures when the missing region is narrow, but it
still faces artifacts compared to the ground truth. PIC is proposed for the task of generating
reasonable and diverse results hence it is difficult to approximate the true distribution of
images. Although PConv and GC are designed to deal with irregular missing regions,
they fail to repair some structure information such as the eye and some details in building.
RWC is designed to cope with arbitrary masked images. It can successfully repair correct
contents when the missing region is discontinuous, while brings strong grid-like artifacts
and incomplete structures in large continuous missing parts. For face images, our model
has the ability to repair missing glasses, synthesize symmetrical eyes and predicted vivid
results. For Paris StreetView datasets, our method exhibits a superior performance with
more intact structures and exquisite details. From what has been discussed above, we can
draw the conclusion that our model exhibits competitive results with fine-grained details,
pleasing textures and consistent structures with the help of the combination of the ID-MRF
loss, dense fusion blocks and the contextual attention module.

https://github.com/MathiasGruber/PConv-Keras
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4.3.2. Quantitative Comparison

We evaluate our model with five commonly used image quality metrics: the L1 loss,
the L2 loss, the peak signal-to-noise ratio (PSNR), the structure similarity index (SSIM) and
the Frechet Inception Distance (FID). Specifically, the PSNR measures the difference in pixel
values of two images, and SSIM measures the similarities between the reconstructed image
and the original image. Larger PSNR and SSIM values indicate smaller gaps between the
generated image and the ground truth. Moreover, the L1 loss can reflect the ability to create
the image as possible as closer to the real counterpart. L2 indicates the mean square error.
The value of FID was introduced to calculate the Wasserstein-2 distance between the two
distributions by utilizing the pre-trained Inception-V3 model [34].

Tables 1 and 2 list full comparisons of all discussed methods in terms of five metrics
with different ratios of irregular masks. As is illustrated in those Tables, we can obtain the
conclusion that it is more difficult to repair the missing regions on Paris StreetView dataset
since the values of PSNR and SSIM on it are commonly lower than the counterparts on
CelebA-HQ dataset and the scores of L1 loss, L2 loss and FID are higher. For discontinuous
damaged regions, it is quite obvious that our method shows a relative improvement in
terms of all indicators. Moreover, CA shows a competitive value of PSNR at the mask ratio
of 0–10%. At the same time, it faces a strong performance degradation accompanying with
the increasing damaged regions. PConv, ED and PIC show the almost same performance
on those two datasets and gain inferior indicators compared with GC, RWC and ours since
they lake the deep understanding of semantic information and the correlation between
existing regions and surroundings. The quantitative results demonstrate that our model
achieves better scores in most cases. It is worth noting that the average value of PSNR
increased by 1.28 for continuous missing regions on Paris StreetView dataset.

Table 1. Quantitative comparisons on discontinues missing region, where the bold indicates the best performance, and the
underline denotes the sub-optimal results, + indicates the higher is better, while—indicates the lower is better.

MASK
CelebA-HQ Paris StreetView

CA PConv EC PIC GC RWC Ours CA PConv EC PIC GC RWC Ours

PSNR +

0–10% 34.89 34.24 34.58 34.69 39.28 41.76 42.25 35.30 34.20 34.56 34.02 37.85 41.52 42.19
10–20% 27.54 31.01 31.22 31.31 32.65 34.32 34.95 28.83 30.52 30.91 30.26 30.97 34.26 35.11
20–30% 24.14 28.21 28.58 28.61 29.07 30.46 31.18 25.56 27.67 28.13 27.30 27.01 30.15 31.12
30–40% 22.83 26.95 27.35 27.56 27.92 29.45 30.18 23.85 26.31 26.70 25.83 25.96 29.08 30.04

SSIM +

0–10% 0.972 0.938 0.945 0.944 0.984 0.990 0.991 0.972 0.948 0.950 0.947 0.983 0.989 0.990
10–20% 0.904 0.908 0.917 0.912 0.950 0.964 0.966 0.902 0.909 0.915 0.904 0.937 0.961 0.965
20–30% 0.838 0.872 0.879 0.876 0.908 0.930 0.935 0.835 0.869 0.871 0.850 0.873 0.918 0.927
30–40% 0.763 0.839 0.847 0.843 0.873 0.905 0.913 0.754 0.810 0.829 0.799 0.828 0.892 0.904

L1−(10−3)

0–10% 5.40 13.40 12.94 13.00 4.10 1.63 1.56 5.06 13.34 13.19 13.48 4.26 2.50 1.61
10–20% 18.09 16.22 16.00 6.03 8.68 5.67 5.37 12.49 17.13 16.79 17.56 9.92 6.42 5.24
20–30% 24.43 21.03 20.33 20.18 16.82 10.30 9.63 21.46 22.17 21.78 23.64 18.20 12.11 10.34
30–40% 32.98 24.12 23.29 23.08 18.40 13.59 12.67 29.93 27.09 25.99 28.37 23.22 15.47 13.43

L2−(10−3)

0–10% 0.61 0.54 0.50 0.48 0.19 0.13 0.11 0.42 0.55 0.52 0.58 0.29 0.16 0.13
10–20% 2.25 1.12 0.98 0.95 0.69 0.49 0.42 1.51 1.19 1.13 1.27 1.09 0.59 0.49
20–30% 4.64 1.94 1.75 1.70 1.58 1.13 0.96 3.28 2.33 2.10 2.54 2.73 1.45 1.18
30–40% 6.19 2.55 2.23 2.11 1.95 1.39 1.17 4.68 3.15 2.80 3.38 3.37 1.83 1.49

FID−

0–10% 1.97 1.58 1.47 1.37 0.37 0.23 0.18 8.32 5.52 4.47 6.12 3.06 1.55 1.13
10–20% 8.95 2.77 2.61 2.29 1.37 0.84 0.70 25.37 13.12 10.33 14.06 12.66 6.24 4.58
20–30% 13.98 4.26 3.74 3.20 2.40 1.62 1.38 36.14 17.53 15.67 21.94 24.58 13.68 9.90
30–40% 27.06 6.18 5.40 4.36 3.55 2.14 1.82 57.93 30.06 26.26 34.20 34.18 17.00 12.98
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Table 2. Quantitative comparisons on continues missing region, where the bold indicates the best performance, and the
underline denotes the sub-optimal results, + indicates the higher is better, while—indicates the lower is better.

MASK
CelebA-HQ Paris Street View

CA PConv EC PIC GC RWC Ours CA PConv EC PIC GC RWC Ours

PSNR +

0–10% 32.11 32.02 32.70 32.91 36.43 37.70 38.30 32.83 31.48 33.09 32.30 33.98 36.18 37.69
10–20% 25.33 27.33 28.05 28.00 29.00 29.54 30.02 26.39 27.14 28.74 27.18 27.28 29.32 30.58
20–30% 22.86 24.59 25.11 24.81 25.63 26.10 26.61 23.40 24.47 26.02 24.26 24.33 26.13 27.50
30–40% 20.21 21.32 21.99 21.58 22.31 22.80 23.39 20.69 21.73 23.24 21.60 21.79 23.24 24.31

SSIM +

0–10% 0.971 0.936 0.945 0.942 0.979 0.982 0.982 0.962 0.901 0.933 0.926 0.960 0.977 0.981
10–20% 0.905 0.898 0.906 0.901 0.944 0.944 0.947 0.900 0.880 0.895 0.881 0.903 0.928 0.940
20–30% 0.863 0.845 0.866 0.853 0.896 0.897 0.903 0.837 0.833 0.844 0.828 0.847 0.872 0.891
30–40% 0.790 0.790 0.801 0.792 0.835 0.837 0.849 0.756 0.757 0.782 0.748 0.770 0.808 0.836

L1−(10−3)

0–10% 7.15 15.38 14.26 14.21 4.95 2.84 2.65 6.28 15.10 14.14 14.83 5.78 4.15 2.83
10–20% 17.26 20.25 19.77 19.91 11.05 8.85 8.26 15.60 22.67 19.55 22.42 14.49 10.84 8.75
20–30% 27.49 28.12 26.93 27.69 18.98 16.76 17.19 27.03 28.85 26.23 31.54 24.46 19.22 15.85
30–40% 45.36 41.68 39.75 41.24 31.91 29.80 27.72 42.51 40.24 36.98 45.10 37.66 31.28 26.97

L2−(10−3)

0–10% 1.23 0.96 0.84 0.64 0.54 0.46 0.41 0.82 1.14 0.73 0.97 0.72 0.52 0.39
10–20% 3.93 2.55 2.15 1.04 1.49 1.58 1.46 3.08 3.03 1.92 3.12 2.81 1.78 1.46
20–30% 6.92 4.87 4.00 1.61 3.07 3.21 2.95 6.00 5.56 3.42 5.79 5.23 3.56 2.75
30–40% 12.99 9.21 8.01 2.08 6.38 6.66 5.98 10.60 9.23 6.35 9.77 8.91 6.53 5.44

FID−

0–10% 1.09 1.63 1.56 1.48 0.53 0.49 0.43 7.52 9.14 6.72 8.39 6.21 4.78 3.83
10–20% 3.28 3.06 2.84 2.38 1.47 1.49 1.36 15.44 14.03 12.09 13.32 15.79 12.45 11.79
20–30% 8.02 4.15 4.02 3.31 2.46 3.48 2.45 27.66 23.45 20.11 24.53 27.41 21.56 19.81
30–40% 12.44 6.23 5.86 4.63 4.13 6.20 4.01 38.53 36.23 28.43 37.37 38.85 30.45 30.53

4.4. Ablation Studies

In this section, we analyze the contribution of each component in our proposed
model to the final performance by presenting the inpainting results quantitatively and
qualitatively. First, we respectively compare the repair results under the constraints of
L1 and L2 reconstruction loss. Then we present the results obtained by the correlation
loss (CL), the style loss (SL), the ID-MRF loss (IM), the combination of IM and adversarial
loss (IM+AD). Subsequently, we utilize IM+AD as baseline (BL) and append the attention
module into BL (BL+AT) to validate its effectiveness. Finally, we replace the cascaded
dilated convolution in BL with several dense fusion blocks (DFB) to identify its role in our
whole model, which can be expressed as BL(Rcdc)+DFB.

It can be seen from Figures 5 and 6 that the L2 reconstructed loss suffers from more
severe blurring and shadow-like artifacts than L1 loss. Moreover, the CL will incur obvious
color discrepancy and SL tends to produce images containing more high-resolution details
that are inconsistent with non-missing regions such as grid-like and aliasing artifacts. The
reason for this phenomenon may be that those losses lack the advanced semantic feature
and the reasonable extraction of spatial information to guide image synthesis. By utilizing
the ID-MRF loss, the grid-like artifacts can be alleviated while over-smooth and blurry
results will be obtained in large missing regions. Adversarial loss can further mitigate the
effect of blurriness, but it is far from meeting the visual requirements. Moreover, pleasing
contents and reasonable structures cannot be guaranteed by using either AT or DFB. By
integrating them, the repairing images show an obvious visual enhancement on pleasing
structures and textures.
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As shown in Tables 3 and 4, the value of L2 loss is far worse than the L1 loss in terms
of those five indicators, which is consistent with visual appearance. Compared with the
correlation loss and style loss, most of the metrics are enhanced by a large margin under
the ID-MRF loss constraint. This phenomenon indicates that the loss based on the non-
local mechanism is more appropriate for improving the high relevance between hole and
background regions than those counterparts based on pixel-wise correlations. By gradually
embedding adversarial loss and the attention module and using the BL(Rcdc)+DFB module,
the performance of our model is improved stably. In particular, the combination of CAM
and DFB can achieve a superior performance than using any of them alone. We attribute
this phenomenon to the joint effect of the enlargement of the receptive field and the
reconstruction of non-local relevant features.
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Table 3. Quantitative results of ablation studies on discontinuous missing regions, where + indicates the higher is better, while—indicates the lower is better, the bold indicates the
best performance.

CelebA-HQ Paris Street View

MASK L2 L1 CL SL IM IM+AD
(BL) BL+AT BL(Rcdc)

+DFB
All

Model L2 L1 CL SL IM IM+AD
(BL) BL+AT BL(Rcdc)

+DFB
All

Model

PSNR
+

0–10% 39.40 41.49 41.47 41.45 41.46 41.60 41.55 41.61 42.25 40.49 41.63 41.31 41.18 41.69 41.74 42.14 42.01 42.19
10–20% 32.87 34.76 34.13 34.05 34.75 34.88 34.85 34.93 34.95 33.66 34.57 34.23 34.01 34.63 34.70 35.00 34.90 35.11
20–30% 29.35 30.95 30.26 30.19 30.95 31.09 31.04 31.18 31.18 29.92 30.57 30.20 30.03 30.54 30.69 31.03 30.99 31.12
30–40% 28.35 30.02 29.26 29.18 30.02 30.14 30.12 30.22 30.18 28.82 29.51 29.16 28.96 29.63 30.03 29.92 29.87 30.04

SSIM +

0–10% 0.983 0.990 0.990 0.990 0.989 0.989 0.989 0.989 0.991 0.987 0.989 0.989 0.989 0.989 0.989 0.990 0.990 0.990
10–20% 0.947 0.966 0.962 0.962 0.965 0.965 0.965 0.965 0.966 0.954 0.962 0.960 0.960 0.961 0.962 0.964 0.963 0.965
20–30% 0.907 0.935 0.925 0.925 0.933 0.933 0.933 0.934 0.935 0.909 0.922 0.916 0.916 0.920 0.921 0.925 0.923 0.927
30–40% 0.872 0.913 0.898 0.899 0.911 0.912 0.912 0.912 0.913 0.878 0.896 0.889 0.889 0.896 0.897 0.902 0.899 0.904

L1−(10−3)

0–10% 4.54 3.80 1.73 1.70 3.77 3.76 3.78 3.76 1.56 2.11 1.73 2.59 2.54 1.74 1.73 1.64 1.64 1.61
10–20% 8.15 7.00 6.03 5.92 6.91 6.85 6.92 6.86 5.37 7.03 5.68 6.59 6.51 5.78 5.67 5.36 5.35 5.24
20–30% 14.70 11.16 11.12 10.80 10.96 10.80 10.92 10.76 9.63 13.75 11.69 12.39 12.22 11.56 11.18 10.60 10.59 10.34
30–40% 19.32 13.75 14.61 14.25 13.50 13.32 12.73 13.29 13.67 18.06 14.67 15.87 15.68 14.54 14.54 13.78 13.76 13.34

L2−(10−3)

0–10% 0.19 0.14 0.13 0.14 0.14 0.14 0.14 0.13 0.11 0.16 0.14 0.16 0.16 0.14 0.13 0.13 0.13 0.13
10–20% 0.64 0.45 0.51 0.52 0.45 0.44 0.44 0.43 0.42 0.60 0.53 0.58 0.60 0.52 0.52 0.49 0.50 0.49
20–30% 1.39 1.02 1.19 1.20 1.01 0.99 1.00 0.97 0.96 1.42 1.31 1.44 1.49 1.29 1.28 1.23 1.23 1.18
30–40% 1.72 1.23 1.46 1.48 1.22 1.20 1.20 1.18 1.17 1.81 1.63 1.79 1.87 1.65 1.61 1.54 1.51 1.49

FID−

0–10% 0.51 0.30 0.27 0.24 0.24 0.22 0.22 0.21 0.18 2.39 2.01 1.96 1.80 1.39 1.37 1.26 1.32 1.13
10–20% 1.84 1.11 1.07 0.93 0.84 0.77 0.78 0.74 0.70 8.68 7.47 7.31 6.67 5.47 4.91 4.68 4.85 4.58
20–30% 3.53 2.28 2.19 1.79 1.67 1.51 1.53 1.45 1.38 20.77 18.59 16.22 14.37 12.17 10.23 9.98 9.76 9.90
30–40% 4.81 3.02 3.01 2.39 2.21 1.93 1.95 1.87 1.82 28.51 25.04 27.71 19.62 15.82 13.40 13.97 13.20 12.98
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Table 4. Quantitative results of ablation studies on continuous missing regions, where + indicates the higher is better, while—indicates the lower is better, the bold indicates the
best performance.

CelebA-HQ Paris Street View

MASK L2 L1 CL SL IM IM+AD
(BL) BL+AT BL(Rcdc)

+DFB
All

Model L2 L1 CL SL IM IM+AD
(BL) BL+AT BL(Rcdc)

+DFB
All

Model

PSNR
+

0–10% 34.70 37.65 37.00 37.03 37.17 37.29 37.44 38.19 38.30 34.39 36.92 35.49 35.67 37.16 37.26 37.47 37.58 37.69
10–20% 27.95 29.81 29.08 28.98 29.72 29.84 29.93 29.95 30.03 28.22 29.94 28.90 28.95 30.13 30.22 30.47 30.32 30.58
20–30% 24.77 26.39 25.71 25.58 26.31 26.44 26.44 26.53 26.61 25.31 27.01 25.79 25.83 27.04 27.11 27.28 27.38 27.50
30–40% 21.65 23.14 22.54 22.42 23.02 23.15 23.30 23.34 23.39 22.81 23.93 22.95 22.83 24.01 24.19 24.23 24.33 24.31

SSIM +

0–10% 0.975 0.982 0.980 0.980 0.980 0.981 0.981 0.983 0.982 0.974 0.979 0.976 0.976 0.979 0.980 0.980 0.980 0.981
10–20% 0.931 0.947 0.938 0.939 0.944 0.945 0.946 0.947 0.947 0.924 0.935 0.926 0.925 0.935 0.936 0.937 0.937 0.940
20–30% 0.881 0.904 0.887 0.889 0.900 0.901 0.901 0.903 0.903 0.868 0.886 0.869 0.868 0.886 0.887 0.889 0.889 0.891
30–40% 0.821 0.851 0.824 0.824 0.846 0.846 0.850 0.850 0.849 0.811 0.830 0.803 0.800 0.830 0.832 0.833 0.834 0.836

L1−(10−3)

0–10% 6.62 2.86 3.13 3.04 5.15 5.09 5.03 2.69 2.65 4.43 3.96 4.33 4.20 3.71 2.97 2.95 2.92 2.83
10–20% 14.89 8.85 9.69 9.42 10.80 10.61 10.38 8.39 8.26 13.37 10.44 11.53 11.22 9..91 9.13 8.92 9.04 8.75
20–30% 23.84 16.61 18.18 17.76 18.22 17.88 17.60 17.50 17.19 23.63 17.88 20.30 19.97 17.37 16.68 16.82 16.93 15.85
30–40% 42.68 29.01 31.61 30.93 30.57 30.24 28.71 27.72 27.72 37.10 29.85 33.05 32.72 28.58 27.81 27.57 27.36 26.97

L2−(10−3)

0–10% 0.66 0.43 0.52 0.52 0.46 0.45 0.45 0.43 0.41 0.60 0.45 0.53 0.55 0.43 0.42 0.42 0.40 0.39
10–20% 2.12 1.51 1.77 1.77 1.55 1.52 1.52 1.47 1.46 2.08 1.58 1.86 1.94 1.53 1.52 1.45 1.51 1.46
20–30% 4.14 3.08 3.58 3.62 3.15 3.06 3.01 2.96 2.95 3.78 2.85 3.60 3.76 2.86 2.91 2.81 2.81 2.75
30–40% 8.32 6.34 7.24 7.30 6.50 6.35 6.08 6.00 5.98 6.61 5.67 6.92 7.18 5.53 5.42 5.51 5.38 5.44

FID−

0–10% 0.91 0.61 0.58 0.52 0.53 0.49 0.47 0.45 0.43 7.58 5.93 5.32 4.95 4.72 3.88 3.59 3.79 3.83
10–20% 2.99 1.96 1.89 1.61 1.68 1.51 1.46 1.45 1.36 19.02 15.08 16.61 13.73 14.01 12.67 12.31 12.31 11.79
20–30% 6.18 3.69 3.51 2.84 3.02 2.67 2.63 2.63 2.45 30.95 28.48 28.86 23.89 25.29 21.49 20.55 20.21 19.81
30–40% 11.15 6.53 5.98 4.60 4.98 4.48 4.10 4.33 4.01 44.30 40.31 40.80 32.89 37.71 34.80 32.60 32.61 30.53
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5. Conclusions and Future Work

This paper combines two non-local mechanisms which consist of the ID-MRF loss
and the contextual attention module (CAM) with a multi-scale method named the dense
fusion block (DFB) which relies on the dense connection of dilated convolution. Under the
interaction of the various proposed mechanisms, our model can repair large continuous
and discontinuous missing regions at the same time. Specifically, the ID-MRF loss can
suppress color discrepancies and grid-like artifacts cause by the correlation loss and the
style loss in the task of image inpainting. On this basis, we integrate the CAM with DFB to
further predict high-quality results with more fine details. The former can capture long-
term spatial information by borrowing or copying the feature information from known
background patches and the latter can extract multi-scale features by enlarging receptive
fields. Experimental results demonstrate that our proposed model can achieve superior
performance than state-of-the-art methods both in quantity and quality.

Although DFB have an impact on the performance improvement of our model, this
contribution is insufficient, and they require considerable computational resources due
to the structure of dense connection. Hence, further improvements can be achieved by
reducing the parameters of the network. In addition, the receptive-field-aware module [35]
demonstrates a strong capability of enlarging the receptive field in the task of image
segmentation. It will be a very meaningful work to combine this technology with our model.
Thus, future research will focus on how to apply the receptive-field-aware framework to
image inpainting.
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