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Abstract: To solve the problems of low accuracy, low real-time performance, poor robustness and
others caused by the complex environment, this paper proposes a face mask recognition and standard
wear detection algorithm based on the improved YOLO-v4. Firstly, an improved CSPDarkNet53 is in-
troduced into the trunk feature extraction network, which reduces the computing cost of the network
and improves the learning ability of the model. Secondly, the adaptive image scaling algorithm can
reduce computation and redundancy effectively. Thirdly, the improved PANet structure is introduced
so that the network has more semantic information in the feature layer. At last, a face mask detection
data set is made according to the standard wearing of masks. Based on the object detection algorithm
of deep learning, a variety of evaluation indexes are compared to evaluate the effectiveness of the
model. The results of the comparations show that the mAP of face mask recognition can reach 98.3%
and the frame rate is high at 54.57 FPS, which are more accurate compared with the exiting algorithm.

Keywords: adaptive image scaling; CSPDarknNet53; face mask recognition; PANet; YOLO-v4

1. Introduction

Things such as respiratory infection viruses, toxic and harmful gases and dust sus-
pended in the air can enter the lungs of humans as they breathe and then cause pneumonia,
nerve damage and toxic reactions. In particular, the new coronavirus (COVID-2019) has
spread globally since the end of 2019 which has a great impact on the safety of lives and
property of all human beings. When people are exposed to toxic or harmful gases, wearing
masks can effectively protect them from being endangered, thereby reducing unneces-
sary losses [1]. Therefore, it is of great practical significance to realize the mask wearing
detection algorithm.

At present, in places where masks need to be worn (such as communities, campuses,
supermarkets, hospitals, factories, stations, etc.), the wearing of masks is usually checked
manually. However, this method would cause a waste of human resources and low
efficiency, and most importantly, there are problems such as missing and false detection.
Object detection technology enables us to use the camera and computer integrated way
to realize the face mask wearing detection so that the purpose of non-contact automatic
detection is achieved.

In ref. [2], the authors proposed the LeNet-5 network architecture, which is a classic
work of the convolutional neural network and provides great help for the development of
computer vision. However, due to the influence of computing power and a lack of data
sets at that time, the neural network model in ref. [2] is surpassed by the effect of SVM [3]
under certain computing power conditions. Based on deep learning, until 2012, Hinton [4]
firstly proposed the AlexNet convolutional neural network model, which is respected as a
solid foundation for the development of an object detection algorithm. In that work, the
author used the ReLU activation function [5] to speed up the training of the network during
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the gradient descent process of the model and introduced a Dropout layer to suppress
over-fitting [6] so that the network can extract object features more effectively. In 2014,
He [7] extracted object feature in areas with any aspect ratio by using a Spatial Pyramid
Pooling Network (SPPNet) method, which provided ideas for YOLO-v3 [8], YOLO-v4 [9]
and other detection algorithms to extract features at any scale. In the next year, the residual
block structure in ResNet was introduced to improve the feature expression ability of the
model in [10]. Based on Feature Pyramid Networks (FPN) [11], Liu [12] put forward the
Path Aggregation Network (PANet) to prove the importance of the underlying information
of the feature layer in 2018, thus realizing the circulation of object feature information.

At present, object detection algorithms based on deep learning are usually divided
into two categories. The first is the Two-Stage algorithm based on the R-CNN [13–15]
and TridenNet [16], etc. The existing problems of such Two-Stage algorithms are poor
real-time, large model scale and poor small object detection effect. The second is the
One-Stage algorithm based on the SSD [17–20] and YOLO [21,22], which has high real-time
performance in multi-scale object detection. However, the detection accuracy needs to
be improved.

Combined with the advantages of YOLO series object detection algorithms, some
improved methods of CSPDarkNet53 and PANet are introduced into YOLO-v4 in the
present paper and a model which can enable the mask detection task and achieve optimal
performance is developed. Similarly to papers [23–25], we build the network model
based on deep learning and computer-aided diagnosis. The method used in this article is
described in the flowing chart in Figure 1.
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The contributions of this paper are as follows:

• Aiming at the problem of training time, this paper introduces the improved CSPDark-
Net53 into the backbone to realize the rapid convergence of the model and reduce the
time cost in training.

• An adaptive image scaling algorithm is introduced to reduce the use of redundant
information in the model.

• To strengthen the fusion of multi-scale semantic information, the improved PANet is
added into the Neck module.

• The Hard-Swish activation function introduced in this paper can not only strengthen
the nonlinear feature extraction ability of the network, but also enable the detection
results of the model to be more accurate.

To sum up, in the face mask detection task, the algorithm proposed in this paper has
higher detection accuracy than other typical algorithms, which means the algorithm is
more suitable for the mask detection task. At the same time, the algorithm is more practical
to deploy in public places to urge people to wear masks regularly in order to reduce the
risk of cross-infection.
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2. Related Works
2.1. Problems Exist in Object Detection

There are two key points of face mask wearing detection. One is to locate the position
of the face in the image; the other is to identify whether the face given by the data set is
wearing a mask and if the mask is worn correctly. Problems of the present object detection
algorithm can be attributed to face occlusion, variable face scale, uneven illumination,
density, etc., and these problems seriously affect the performance of the algorithm. Further-
more, the traditional object detection algorithm adopts the selective search method [26]
in feature extraction, leading to problems such as poor generalization ability, redundant
information, low accuracy and poor real-time performance.

2.2. Existing Work

Some researchers have used the extraction of RGB color information to perform face
mask recognition [27]. However, the article does not consider the case of non-standard
wearing of masks, so the adaptability of the algorithm needs to be further improved.
Combining YOLO-v2 and ResNet50, the authors in [28] realized face mask recognition
whose backbone network is DarkNet-19. However, DarkNet-19 has been optimized by
CSPDarkNet53. The ablation experiment in our paper shows that the CSP1_X module
produces better results than CSPDarkNet53. In [29], the authors pointed out that the
combination of ResNet50 and SVM can realize face mask detection and its accuracy can
reach up to 99.64%. However, the algorithm takes a lot of computational costs. Furthermore,
the combination of SSD and MobileNetV2 for mask detection was proposed in paper [30],
but its model structure is too complex and its performance is inferior to YOLO-v4.

Only two categories are used in the papers mentioned in the above paragraph and
the authors did not consider the influence of wearing masks irregularly on the algorithm.
Therefore, the feature extraction ability and model practicability of these algorithms need
to be improved. In this paper, based on improved YOLO-v4, face mask recognition is
considered and three categories, face_mask, face and WMI, are included. In addition,
the feature extraction ability of this paper is improved by CSP1_X, and CSP2_X impels
PANet to speed up the circulation of semantic features and strengthen feature fusion, thus
improving the robustness of the model.

3. The Model Structure of YOLO-v4 Network

YOLO-v4 is a high-precision and real-time One-Stage object detection algorithm based
on regression proposed in 2020, which integrated the characteristics of YOLO-v1, YOLO-v2,
YOLO-v3, etc., and achieved the current optimum in terms of detection speed and trade-off
of detection accuracy. The model structure is shown in Figure 2, which consists of three
parts: Backbone, Neck, and Prediction.

Combined with the characteristics of the ResNet structure, YOLO-v3 integrated the
residual module into itself and then obtained Darknet53. Based on this, taking the superior
learning ability of Cross-Stage Partial Network (CSPNet) [31] into account, YOLO-v4
constructed the CSPDarkNet53. In the residual module, the feature layer is input and
the higher-level feature information is output. This means the learning goal of the model
in the ResNet module becomes the difference between the output and the input, thus
realizing residual learning while reducing the parameters of the model and strengthening
feature learning. The Neck can be composed of the SPPNet and PANet. In SPPNet, firstly,
the feature layer is convolved three times, and then the input feature layer is maximally
pooled by using the maximum pooling cores of different sizes. The pooled results are
concatenated firstly and then convolved three times, thus improving the network receptive
field. PANet convolves the feature layers after the operation of Backbone and SPPNet
and then up-samples them, that is, making the original feature layers double in height
and width, and then concatenates the feature layers after convolution and up-sampling
with the feature layers obtained by CSPDarkNet53 to realize feature fusion, and then
down-sampling, compressing the height and width, and finally stacking with the previous
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feature layers to realize more feature fusion (five times). The Prediction module can make
predictions by using the feature extracted from the network. Taking a 13 × 13 grid, for
example, it is equivalent to divide the input picture into 13 × 13 grids, and then each grid
will be preset with three prior frames. The prediction results of the network will adjust
the positions of the three prior frames, and finally, it will be filtered by the non-maximum
suppression (NMS) [32] algorithm to obtain the final prediction frame.
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YOLO-v4 proposed a new mosaic data augmentation method to expand the data
set and introduced CIOU as the positioning loss function [33], which made the network
more inclined to optimize in the direction of increasing overlapping areas, thus effectively
improving the accuracy. In the actual complex environment, due to the external interference
such as occlusion and multi-scale, there are still some shortcomings in the face mask
detection directly using YOLO-v4. The main performances are as follows:

There are still problems such as insufficient shallow feature extraction for
multi-scale objects.

In the reasoning stage, the model adds gray bars at both ends of the image to prevent
the image from distorting, but too many gray bars increase the redundant information of
the model.

At the same time, the model has problems such as long training time, high calculation
cost and overfull parameters.

To solve these problems, this paper optimizes and improves the model based
on YOLO-v4.

4. Improved YOLO-v4 Network Model

With the increasing number of layers of the convolutional neural network, the depth of
the network is deepening, and the deeper network structure is beneficial for the extraction
of object features. Thereupon, the semantic information of small objects is increased.
The main improvements presented in this paper based on YOLO-v4 are as follows: The
CSPDarkNet53 is improved into CSP1_X and CSP2_X, and so reduced network modules
to reduce the parameters of feature extraction in the network model; using the CSP2_X
module in Neck can increase information fusion, and the adaptive image scaling method is
used to replace the image scaling method in YOLO-v4.

4.1. Backbone Feature Extraction Network

The residual module introduced into YOLO-v4 is to enhance the learning ability of
the network and reduce the number of parameters. The operation process of the residual
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module (Res-unit) can be summed up as follows. Firstly, perform 1 × 1 convolution; then
3 × 3 convolution; and weighting the two outputs of the module at last. The purpose of
weighting is to increase the information of the feature layer without changing its dimension
information. In CSPDarkNet53, the set of feature layers of the image is input, and then con-
volution down-sampling is performed continuously to gain higher semantic information.
Therefore, the last three layers of Backbone have the highest semantic information, and
then the last three layers of features are selected as the input of SPPNet and PANet. The
network structure of CSPDarkNet53 is shown in Figure 3.
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Although YOLO-v4 uses the residual network to reduce the computing power require-
ment of the model, its memory requirement still needs to be improved. Therefore, in this
paper, the network structure of CSPDarkNet53 of YOLO-v4 is improved to the CSP1_X
module, as shown in Figure 4.
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Compared with CSPDarkNet53 in Figure 2, the improved network uses the H-swish
activation function [34], as shown in Equation (1):

H − swish(x) = x
ReLU(x + 3)

6
(1)

As the Swish function [35] contains the Sigmoid function, the calculation cost of the
Swish function is higher than the ReLU function, but the Swish function is more effective
than the ReLU one. Howard used the H-swish function on mobile devices [36] to reduce
the number of accesses to memory by the model, which further reduced the time cost.
Therefore, in this paper, the advantages of the H-swish function are used to reduce the
running time requirements of the model on condition of ensuring no gradient explosion,
disappearance and other problems. At the same time, the detection accuracy of the model
is advanced.

In CSP1_X, the input feature layer of the residual block is divided into two branches.
One is used as the residual edge for convolution operation. The other plays the role
of the trunk part, performs 1 × 1 convolution operation at first, then performs 1 × 1
convolution to adjust the channel after entering the residual block, and then performs the
3 × 3 convolution operation to enhance the feature extraction. At last, the two branches are
concatenated, thus merging the channels to obtain more feature layer information. In this
paper, three CSP1_X modules are used in the improved Backbone, where X represents the
number of residual weighting operations in the residual structure. Finally, after stacking,
a 1 × 1 convolution is used to integrate the channels. Experiments show that using this
residual structure can make the network structure easier to optimize.
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4.2. Neck Network

The convolutional neural network requires the input image to have a fixed size. In
the past convolution neural network, the fixed input was obtained by cutting and warping
operations, but these methods easily bring about problems such as object missing or
deformation. To eliminate such problems, researchers proposed SPPNet to remove the
requirement of fixed input size. To gain multi-scale local features, YOLO-v4 introduced
the SPPNet structure based on YOLO-v3. In order to further fuse the multi-scale local
feature information with the global feature information, we add the CSP2_X module to the
PANet structure of YOLO-v4 to enhance the feature extraction, which helps to speed up
the flow of feature information and enhance the accuracy of the model. CSP2_X is shown
in Figure 5.
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Figure 5. CSP2_X module structure.

The common convolution operation is adopted in the Neck network in YOLO-v4,
while the CSPNet has the advantages of superior learning ability, reduced computing
bottleneck and memory cost. Adding the improved CSPNet network module based
on YOLO-v4 can further enhance the ability of network feature fusion. This combined
operation can realize the top-down transmission of deeper semantic features in PANet, and
at the same time fuse the bottom-up deep positioning features from the SPPNet network,
thus realizing feature fusion between different backbone layers and different detection
layers in the Neck network and providing more useful features for the Prediction network.

4.3. Adaptive Image Scaling

In the object detection network, the image data received by the input port have a
uniform standard size. For example, the standard size of each image in the handwritten
numeral recognition data set MNIST is 28 × 28. However, different data sets have differ-
ent image sizes, and ResNet fixes the input image to 224 × 224. Two standard sizes of
416 × 416 and 608 × 608 are provided at the input port of the YOLO-v4 detection network.
Traditional methods for obtaining standard size mainly include cutting, twisting, stretching,
scaling, etc., but these methods are easy to cause problems such as missing objects, loss
of resolution and a reduction in accuracy. In the previous convolutional neural network,
it was necessary to unify the image data to the standard size manually in advance, while
YOLO-v4 standardized the image size directly by using the data generator, and then input
the image into the network to realize the end-to-end learning process. In the training and
testing stage of YOLO-v4, the sizes of input images are 416 × 416 and 608 × 608. When
standardizing images of different sizes, the original images are scaled firstly; then gray
images with sizes of 416 × 416 or 608 × 608 are generated; and finally, the scaled image is
overlaid on the gray image to obtain image data of standard size.

Taking the unregulated mask image as an example, the image processed by the
scaling algorithm is shown in Figure 6. In Figure 6, A is the original input image. After
calculating the scaling ratio of the original input image, image B is obtained by the BICUBIC
interpolation algorithm [37], and C is a gray image with the standardized size. Finally, the
original image can be pasted into the gray image, and the standardized standard input
image D can be obtained. The image scaling algorithm reduces the resolution without
distortion, but in practical applications, most images have different aspect ratios, so after
scaling and filling by this algorithm, the gray image sizes at both ends of the image are not
the same. If the filled gray image size is too large, there is information redundancy which
increases the reasoning time of the model.
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Therefore, this paper introduces an adaptive image scaling algorithm to adaptively
add the least red edge to the original image. The steps of this algorithm are shown
in Algorithm 1.

Algorithm 1 Adaptive image scaling.

Input: W and H are the width and height of the input image.
TW and TH are the width and height of the object image of standard size.

Begin
scaling_ratio ← min{TW /W, TH/H}
new_w←W × scaling_ratio
new_h← H × scaling_ratio
dw ← TW − new_w
dh ← TH − new_h
d← mod(max(dw, dh), 64)
padding← d/2

if (W, H) 6= (neww_, new_h):
image← resize(input_image, (new_w, new_h))

new_image← add_border(image, (padding, padding))
End
Output: new_image

The process of this algorithm can be understood as follows: In the first step, TW and
TH in the standard size of the object image are divided by W and H of the input image,
respectively, and then their minimum value scaling_ratio is treated as the scaling factor. In
the second step, multiply the scaling factor by the original image’s W, H, respectively, and
then take new_w and new_h as the scaled dimensions of the original image. In the third
step, the TW and TH of the object image are subtracted by new_w and new_h, respectively,
to obtain dw and dh. In the fifth step, obtain the maximum value of dw and dh, and then
calculate the remainder of this maximum value and 64. As the network model will carry out
five down-sampling operations, the size of the original input image is five times that of the
feature graphs after five down-sampling operations, and each down-sampling operation
can compress the height and width of the feature graphs of the last time to 1

2 of the original.
Therefore, the size of the feature map obtained after five down-sampling operations is 1/32
of the original image, so the length and width must be multiples of 32. In this paper, 64 is
also required, and the remainder is assigned as d. The fifth step is to calculate the padding
of the red edge on both sides of the image. For the sixth step, if W, H and new_w, new_h
are not the same, scale the original image to the image of new_w and new_h, respectively.
The last step is to fill the two sides of the image after scaling to obtain a new image.
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Similarly, the image of wearing a mask irregularly, for instance, after being processed
by the adaptive scaling algorithm, is shown in Figure 7.
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Comparing Figure 6 with Figure 7, it can be observed that the original image adds the
least red edge at both ends of the image after adaptive scaling, thus reducing redundant
information. When the model is used for reasoning, the calculation will be reduced, and
the reasoning speed of object detection will be promoted.

4.4. Improved Network Model Structure

The improved network model is shown in Figure 8, in which three CSP1_X modules
are used in the Backbone of the backbone feature extraction network, and each CSP1_X
module has X residual units. In this paper, considering the calculation cost, the residual
modules are connected in series into the combination of X residual units. This operation can
replace the two 3 × 3 convolution operations with a combination of 1 × 1 + 3 × 3 + 1 × 1
convolution module. The first 1× 1 convolution layer can compress the number of channels
to half of the original one and reduce the number of parameters at the same time. The
3 × 3 convolution layer can enhance feature extraction and restore the number of channels.
The last 1 × 1 convolution operation restores the output of the 3 × 3 convolution layer, so
the alternate convolution operation is helpful for feature extraction, ensures accuracy and
reduces the amount of computation.
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The Neck network is mainly composed of the SPPNet and improved PANet. In this
paper, the SPPNet module enlarges the acceptance range of backbone features effectively,
and thus significantly separates the most important contextual features. The high computa-
tional cost of model reasoning is mainly caused by the repeated appearances of gradient
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information in the process of network optimization. Therefore, from the point of view of
network model design, this paper introduces the CSP2_X module into PANet to divide the
basic feature layer from Backbone into two parts and then reduces the use of repeated gra-
dient information through cross-stage operation. In the same way, the CSP2_X module uses
the combination of 1 × 1 + 3 × 3 + 1 × 1 convolution module to reduce the computation
cost and ensure accuracy.

The Prediction module uses the features extracted from the model to predict. In this
paper, the Prediction network is divided into three effective feature layers: 13 × 13 × 24,
26 × 26 × 24 and 52 × 52 × 24, which correspond to big object, medium object and small
object, respectively. Here, 24 can be understood as the product of 3 and 8, and 8 can be
divided into the sum of 4, 1 and 3, where 4 represents the four position parameters of the
prediction box, 1 is used to judge whether the prior box contains objects, and 3 represents
that there are three categories of mask detection tasks.

4.5. Object Location and Prediction Process

The YOLO-v3, YOLO-v4 and the models used in this paper are all predicted by the
Prediction module after extracting three feature layers. For the 13 × 13 × 24 effective
feature layer, it is equivalent to divide the input picture into 13 × 13 grids, and each grid
will be responsible for object detection in the area corresponding to this grid. When the
center of an object falls in this area, it is necessary to use this grid to take charge of the object
detection. Each grid will preset three prior boxes, and the prediction results of the network
will adjust the position parameters of the three prior boxes to obtain the final prediction
results. Similarly, the prediction process of effective feature layers of 26 × 26 × 24 and
52 × 52 × 24 is the same as that of feature layers of 13 × 13 × 24.

In Figure 9, the feature layer is divided into 13 × 13 grids to illustrate the process
of object location and prediction. Figure 9a represents the original input image of three-
channel color with a size of 416 × 416 × 3. Figure 9b is obtained from the feature extraction
of the input image through the network, which represents the effective feature layer with
the size of 13 × 13 × 24 in the Prediction module. The feature layer is divided into
13 × 13 grids and each grid has three prior boxes which are represented by green boxes.
Their center points are cx and cy, width and height are pw and ph, respectively. The final
prediction box is a blue box with center points tx and ty, width and height bw and bh,
respectively. Figure 9c is an input image mapped by Figure 9b, which means that the size
of the prior box, grid point, prediction box, height and width in Figure 9c is 32 times that
of Figure 9b. Therefore, when the center of the face wearing a mask irregularly falls within
the orange box, this grid is responsible for face detection. The prediction results of the
network will adjust the positions of the three prior boxes, and then the final prediction box
will be screened out by ranking the confidence level and NMS to obtain Figure 9d as the
detection result of the network.

YOLO-v3 is an improved version based on YOLO-v2, which solves the multi-scale
problem of objects and improves the detection effect of the network on small-scale objects.
At the same time, YOLO-v3 uses binary cross-entropy as the loss function, so that the
network can realize multi-category prediction with one boundary box. YOLO-v3 and
YOLO-v4 prediction methods are adopted in the prediction process in the present paper, as
shown in Figure 9b, and tx, ty, tw and th are the four parameters that the network needs to
learn, which are:

bx = σ(tx) + cx (2)

by = σ(ty) + cy (3)

bw = pwetw (4)

bh = pheth (5)

In the training process, the network constantly learns four parameters tx, tx, ty and
tw, thus constantly adjusting the position of the prior box to approach the position of the
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prediction box, and finally obtaining the final prediction result. σ(tx) and σ(ty), respectively,
represent that tx and ty are constrained by the Sigmoid function to ensure that the center of
the prediction box falls within the grid.
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The confidence score reflects the accuracy of the model predicting that an object is a
certain category, as shown in Equation (6).

Con f idence = Pr(Classi|Object)× Pr(Object)× IoUtruth
pred (6)

In Equation (6), Pr(Classi|Object) means the probability of what kind of object it is
when it is known to be an object. Pr(Object) represents the probability of whether the
prediction box contains an object. If an object is included, Pr(Object) = 1, otherwise it
equals 0. IoUtruth

pred tells us the overlap ratio between the predicted box and the true box [38].

4.6. The Size Design of Prior Box

For the mask detection data set in this paper, it is necessary to set appropriate prior
box sizes to obtain accurate prediction results. The size of the prior box obtained by the
k-means clustering algorithm is shown in Table 1.
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Table 1. The size of the prior box.

Feature Map Receptive Field Prior Box Size

13 × 13 large object
(221 × 245)
(234 × 229)
(245 × 251)

26 × 26 medium object
(165 × 175)
(213 × 222)
(217 × 195)

52 × 52 small object
(46 × 51)

(82 × 100)
(106 × 201)

5. Experimental Data Set
5.1. Data Set

At present, the published mask data sets are few, and there are problems such as
poor content, poor quality and single background which cannot be directly applied to
the face mask detection task in a complex environment. Under such context, this paper
adopts the method of using my own photos and screening from the published RMFD [39]
and MaskedFace-Net [40] data sets to manufacture a data set of 10,855 images, of which
7826 are selected for training, 868 for verification and 2161 for testing. When creating the
data set, we fully consider the mask type, manufacturer, color and other factors to meet the
richness of the data set. Therefore, the model algorithm has stronger generalization ability
and detection ability in practical use. People’s behavior of covering their faces with objects
that are not masks easily leads to the false detection of objects in the algorithm, hence, we
treat this kind of behavior as “face”. In the whole data set, there are 3615 images without
masks, 3620 images with masks regularly and 3620 images with masks irregularly. The face
in each picture corresponds to a label, and each label corresponds to a serial number. In this
paper, the detection tasks are divided into three categories: serial number 0 corresponds
to the “face”, indicating that no mask is worn; serial number 1 is equal to “face_mask”,
showing that the face wears a mask regularly; and serial number 2 is equivalent to “WMI”,
which means wearing masks irregularly. The sample distribution of different categories
in the data set is shown in Table 2, where images represent the number of categories and
objects represent the number of instances [41].

Table 2. Distribution of different types of samples in the data set.

Sort
Training Set Validation Set Testing Set

Images Objects Images Objects Images Objects

face 2556 2670 338 350 721 753
face_mask 2685 2740 219 228 716 730

WMI 2585 2604 311 311 724 730
total 7826 8014 868 889 2161 2213

5.2. Region Division of Real Box

Whether a face is standard for wearing a mask can be judged by the exposure of the
nose, mouth and chin in the face. We randomly selected 100 original images from the data
set as the research object, and the area between eyebrows and chin in the images as the
research area. We can conclude that the nose is located at the height of 28.5–55% of the
image. The mouth is distributed in 55–81% of the image. The chin is located at 81–98%
of the image, as shown in Figure 10. Therefore, based on this conclusion, we use the
LabelImg tool to label every face in each picture in the data set and determine its category
and coordinate information to obtain the real box.
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Figure 10. Division of key parts.

Generally speaking, the face is completely exposed if not wearing a mask. The
nonstandard wearing of masks can be attributed to four situations: the nose is exposed; the
nose and mouth are exposed; the mouth, nose and chin are all exposed; and only the chin
is exposed. To wear a mask in a standard way, you need to ensure that the front and back
of the mask are correctly distinguished, and the upper and lower sides of the mask must
be used to press the metal strips on both sides of the nose bridge with both hands to make
the upper end of the mask close to the bridge of the nose, and the left and right ends of the
mask close to the cheeks. Then, stretch the mask downwards so that the mask does not
leave wrinkles and better covers the nose, mouth and chin. Figure 11 shows the standard
and non-standard way of wearing a mask.
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6. Experimental Results and Analysis

To verify the advantages of the improved model compared with other detection
models, a great deal of experiments are carried out to illustrate the validity of the model
performance.

6.1. Experimental Platform and Parameters

The configuration parameters of the software and hardware platform implemented by
the algorithm in this paper are shown in Table 3.
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Table 3. Configuration parameters.

Device Configuration

Operating system Windows 10
Processor Inter(R)i7-9700k

GPU accelerator CUDA 10.1, Cudnn 7.6
GPU RTX 2070Super, 8G

Frames Pytorch, Keras, Tensorflow
Compilers Pycharm, Anaconda

Scripting language Python 3.7
Camera A4tech USB2.0 Camera

Before the model in this article starts to be trained, its hyperparameters need to be
initialized. The model continuously optimizes the parameters during the training process
so that it speeds up the convergence of the network and prevents it from overfitting. All
experiments in this paper are performed under the epoch of 50, batch size of 8 and the
input image size of 416 × 416 × 3. The parameter adjustment process is shown in Table 4.

Table 4. The hyperparameters of the model.

Hyperparameters Before Initialization After Initialization

initial learning rate 0.01000 0.00320
optimizer weight decay 0.00050 0.00036

momentum 0.93700 0.84300
classification coefficient 0.50000 0.24300

object coefficient 1.00000 0.30100
hue 0.01500 0.01380

saturation 0.70000 0.66400
value 0.40000 0.46400
scale 0.50000 0.89800
shear 0.00000 0.60200

mosaic 1.00000 1.00000
mix-up 0.00000 0.24300

flip up-down 0.00000 0.00856

6.2. The Performance of Different Models in Training

In the training process, the model updates its parameters from the training set to
achieve better performance. To verify the effect of CSP1_X and CSP2_X modules on the
improved model, this paper compares the training performance with other object detection
models, as shown in Table 5.

Table 5. Comparison of different models in parameters, model size, and training time.

Model Parameters Model Size Training Time

Proposed work 45.2 MB 91.0 MB 2.834 h
YOLO-v4 61.1 MB 245 MB 9.730 h
YOLO-v3 58.7 MB 235 MB 8.050 h

SSD 22.9 MB 91.7 MB 3.350 h
Faster R-CNN 27.1 MB 109 MB 45.830 h

It can be seen that with the parameters of this model, 15.9 MB are reduced compared
with YOLO-v4 and 13.5 MB are less than YOLO-v3. At the same time, the model size
is 0.371 and 0.387 times that of YOLO-v4 and YOLO-v3, respectively. Under the same
conditions, the training time of this model is 2.834 h, which is the lowest of all the models
compared in the experiment.

In Faster R-CNN, the authors used the Region Proposal Network (RPN) to generate
W × H × K candidate regions, which increases the operation cost. Meanwhile, Faster
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R-CNN not only retained the ROI-Pooling layer in it but also used the full connection layer
in the ROI-Pooling layer, which brought the network many repeated operations and then
reduced the training speed of the model.

6.3. Comparision of Reasioning Time and Real-Time Performance

In this paper, video plays a role to verify the real-time performance of the algorithm.
FPS (Frames Per Second) is often used to characterize the real-time performance of the
model. The larger the FPS becomes, the better the real-time performance will be. In
the meantime, the adaptive image scaling method is used to verify the reliability of the
algorithm in the reasoning stage, as shown in Table 6.

Table 6. Comparison of different models in test time, reasoning time, FPS.

Model One Image Test Time All Reasoning Time FPS

Proposed work 0.022 s 144.7 s 54.57
YOLO-v4 0.042 s 151.1 s 23.83
YOLO-v3 0.047 s 153.1 s 21.39

SSD 0.029 s 97.0 s 34.69
Faster R-CNN 0.410 s 1620.7 s 2.44

In the present work, we use the same picture to calculate the test time and compare
the total reasoning time on the test set. It can be seen from the table that the adaptive image
scaling algorithm can effectively reduce the size of red edges at both ends of the image, and
the detection time consumed in the reasoning process is 144.7 s, which is 6.4 s less than that
of YOLO-v4. However, thanks to its model structure, SSD consumes the shortest reasoning
time. Faster R-CNN consumes the most time in reasoning, which is a common feature of
the Two-Stage algorithm. Meanwhile, the FPS of our algorithm can reach 54.57 FPS, which
is the highest among all comparison algorithms, while Faster R-CNN reaches the lowest.

6.4. The Parameter Distuibution of Different Network Layers

In general, the spatial complexity of the model can be reflected by the total number
of parameters. We analyze the distribution of parameters from various network parts of
different models in this paper, thus verifying the effectiveness of the improved backbone
feature extraction network and PANet, as shown in Table 7.

Table 7. The parameter distribution of different modules in different models.

Module Faster R-CNN SSD YOLO-v3 YOLO-v4 Proposed Work

Backbone - - 40,620,740 30,730,448 9,840,832
Neck - - 14,722,972 27,041,012 37,514,988

Prediction - - 6,243,400 6,657,945 43,080
All parameters 28,362,685 24,013,232 61,587,112 64,014,760 47,398,900

All CSPx - - - 26,816,384 -
All CSP1_X - - - - 8,288,896
All CSP2_X - - - - 18,687,744

All layers 185 69 256 370 335

In YOLO-v4, its parameters are mainly distributed in the backbone feature extraction
network, and a different number of residual modules is used to extract deeper information,
but as the network gets deeper, the parameters will become more and this will complicate
the model. It can be seen from Table 7 that the algorithm in this paper has fewer parameters
in the backbone network, which is due to the use of the shallower CSP1_X module, and
it effectively reduces the size of the model. Furthermore, five CSP2_X modules are used
in the Neck module to gather more parameters, which is more helpful to enhance feature
fusion. At last, our model has 335 layers in total, 35 less than YOLO-v4.
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6.5. Model Testing

After the model training is completed, the trained weights are used to test the model,
and the model is evaluated from many aspects. For our face mask data set, the test results
can be classified into three categories: TP (true positive) means that the categories in the test
set are the same as the test results; FP (false positive) means the number of samples in the
detected object category is inconsistent with the real object category; and FN (false negative)
indicates that the real sample is detected as the opposite result or in the undetected category.
For all positive cases judged by the model, the number is (TP + FP), so the proportion of
real cases (TP) is called the precision rate, which represents the proportion of samples of
real cases in positive cases among samples detected by the model, as shown in Equation (7).

Precision =
TP

TP + FP
(7)

For all positive examples in the test set, the number is (TP + FN). Therefore, the recall
rate is used to measure the ability of the model to detect the real cases in the test set, as
shown in Equation (8).

Recall =
TP

TP + FN
(8)

To characterize the precision of the model, this article introduces AP (Average Preci-
sion) and mAP (mean Average Precision) indicators to evaluate the accuracy of the model,
as shown in Equations (9) and (10).

AP =
∫ 1

0
P(R)dR (9)

mAP =
∑N

i=1 APi

N
(10)

Among them, P, R, N, respectively, represent precision, recall rate and the total number
of objects in all categories.

Through Equations (7) and (8), it can be found that there is a contradiction between
precision rate and recall rate. Therefore, the comprehensive evaluation index F-Measure
used to evaluate the detection ability of the model can be shown as:

Fα =
(α2 + 1)× P× R

α2(P + R)
(11)

When α = 1, F1 represents the harmonic average of precision rate and recall rate, as
shown in Equation (12):

F1 =
2× P× R
(P + R)

(12)

If F1 is higher, the test of the model will be more effective. We use 2161 images with a
total of 2213 objects as the test set. The test results of the model with IOU = 0.5 are shown
in Table 8.

It can be seen from Table 8 that the model in this paper reaches the maximum value in
TP and the minimum value in FN, and this means that the model itself has good detection
ability for samples. At the same time, the model reaches the optimal value in the F1 index
compared with other models.

To further compare the detection effect of our model with YOLO-v4 and YOLO-v3 on
each category in the test set, the AP value comparison experiments of several models are
carried out under the same experimental environment, as shown in Table 9.
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Table 8. Sample detection results of different models on the test set.

Models Sort Size Object TP FP FN P R F1

Proposed work

face 416 × 416 753 737 50 16 0.936 0.979 0.957
face_mask 416 × 416 730 725 23 5 0.969 0.993 0.980

WMI 416 × 416 730 712 39 18 0.948 0.975 0.961
Total 416 × 416 2213 2174 112 39 0.951 0.982 0.967

YOLO-v4

face 416 × 416 753 666 42 87 0.941 0.885 0.910
face_mask 416 × 416 730 705 199 25 0.780 0.966 0.860

WMI 416 × 416 730 670 195 60 0.775 0.918 0.840
Total 416 × 416 2213 2041 436 172 0.832 0.923 0.870

YOLO-v3

face 416 × 416 753 640 53 113 0.924 0.850 0.890
face_mask 416 × 416 730 686 23 44 0.968 0.940 0.950

WMI 416 × 416 730 623 26 107 0.960 0.853 0.900
Total 416 × 416 2213 1949 102 264 0.950 0.881 0.913

Table 9. The comparative experiments of AP of different models in three categories.

Sort Size IOU Face Face_Mask WMI

Proposed work
416 × 416 AP@.50 0.979 0.995 0.973
416 × 416 AP@.75 0.978 0.995 0.983
416 × 416 AP@.50:.95 0.767 0.939 0.834

YOLO-v4
416 × 416 AP@.50 0.943 0.969 0.944
416 × 416 AP@.75 0.680 0.899 0.800
416 × 416 AP@.50:.95 0.541 0.740 0.670

YOLO-v3
416 × 416 AP@.50 0.921 0.981 0.941
416 × 416 AP@.75 0.617 0.888 0.835
416 × 416 AP@.50:.95 0.559 0.789 0.724

SSD
300 × 300 AP@.50 0.941 0.986 0.988
300 × 300 AP@.75 0.503 0.920 0.926
300 × 300 AP@.50:.95 0.518 0.789 0.790

Faster R-CNN
600 × 600 AP@.50 0.943 0.974 0.950
600 × 600 AP@.75 0.700 0.927 0.866
600 × 600 AP@.50:.95 0.612 0.824 0.769

It can be seen from Table 9 that the performance of the AP value of our model is higher
than YOLO-v4, YOLO-v3, SSD and Faster R-CNN under different IOUs, thus the average
precision of our model is effectively verified. However, in the case of SSD in AP@.50, its
AP in the category of “WMI” reaches the highest value.

In this paper, mAP is introduced to measure the detection ability of the model for all
categories, and the model is tested on IOU = 0.5, IOU = 0.75 and IOU = 0.5:0.05:0.95 to
further evaluate the comprehensive detection ability of the model, as shown in Table 10.

Table 10. The mAP comparison experiments of different models in all categories.

Model mAP@.50 mAP@.75 mAP@.50:95

Proposed work 0.983 0.985 0.847
YOLO-v4 0.952 0.793 0.680
YOLO-v3 0.948 0.780 0.689

SSD 0.972 0.783 0.691
Faster R-CNN 0.956 0.831 0.735

It can be seen that when IOU = 0.5, the mAP of this model is 3.1% higher than that
of YOLO-v4 and 1.1% higher than SSD. Under the condition of IOU = 0.5:0.95, a more
rigorous test is carried out, and the experiment shows that mAP@.50:95 is 16.7% and 15.6%
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higher than YOLO-v4 and SSD, respectively. This fully shows that the model is superior
to YOLO-v4 and SSD in comprehensive performance. It is worth pointing out that the
mAP of Faster R-CNN is higher than YOLO-v4 and YOLO-v3, but the FPS is the lowest,
which also implies the common characteristics of the Two-Stage detection algorithm: high
detection accuracy and low real-time. At the same time, we illustrate the performance of
different models in terms of test performance in a visual way, as shown in Figure 12.
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Figure 12. Visualization of different models in performance testing.

The pictures used in the comparative experiment in Figure 12 are from the test set of
this paper. Each experiment is conducted in the same environment. Meanwhile, visual
analysis is carried out on condition of the confidence level 0.5. In the figure, the number
of faces in the image from left to right is constantly increasing, so the distribution of
faces is denser, and the problems of occlusion, multi-scale and density in a complex
environment are fully considered, which offers convenience to fully prove the robustness
and generalization ability of the model. From the analysis of the figure, it can be found
that the performance of the model used in this paper is better than the other four in test
results, but all the models have poor detection results for severe occlusion and half face.
We consider that the cause of this problem is because of the lack of images with serious
missing face features in the data set, which leads to less learning of these features and the
poor generalization ability of the model. Therefore, one of the main tasks in the future is to
expand the data set and enrich the diversity of features.

6.6. Influence of Different Activation Functions

We use the Mish activation function [42] to highlight the effect of the H-swish activa-
tion function on the results of this paper, as shown in Table 11.
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Table 11. Influence of different activation functions.

Function Train Time Face Face_Mask WMI mAP@.50

H-swish 2.834 h 0.979 0.995 0.973 0.983
Mish 3.902 h 0.971 0.995 0.973 0.980

L-ReLU 2.812 h 0.975 0.985 0.974 0.978
ReLU 3.056 h 0.970 0.972 0.969 0.970

Sigmoid 2.985 h 0.966 0.968 0.963 0.966

It can be seen from Table 11 that in the same situation, using H-swish as the activation
function can obtain better detection results. Therefore, the mask detection model has
stronger nonlinear feature learning ability under the action of the H-swish activation
function. At this time, the model has the highest detection accuracy in the comparison
experiment of activation functions.

6.7. Analysis of Ablation Experiment

We use ablation experiments to analyze the influence of the improved method on the
performance of the model. The experiments are divided into five groups as comparisons.
The first group is YOLO-v4. In the second group, the CSP1_X module is introduced into the
backbone feature extraction network module of YOLO-v4. The third group is the CSP2_X
module introduced into the Neck module of YOLO-v4. In the fourth group, both CSP1_X
and CSP2_X modules are added into YOLO-v4 at the same time. The last set of experiments
is the result of the model in this article. The experimental results are shown in Table 12.

Table 12. Ablation experiments.

CSP1_X CSP2_X H-Swish Face Face_Mask WMI mAP@.50 FPS

× × × 0.943 0.969 0.944 0.952 23.83√
× × 0.982 0.984 0.972 0.979 43.47

×
√

× 0.969 0.993 0.962 0.975 45.45√ √
× 0.971 0.993 0.967 0.977 47.65√ √ √

0.979 0.995 0.973 0.983 54.57

It can be seen from the analysis in the table that the use of the CSP1_X module in
the backbone feature extraction network enhances the AP values of the three categories,
and at the same time, the and FPS are increased by 2.7% and 19.64 FPS, respectively, thus
demonstrating the effectiveness of CSP1_X. Different from YOLO-v4, this paper takes
advantage of the CSPDarkNet53 module and introduces the CSP2_X module into Neck to
further enhance the learning ability of the network in semantic information. Experiments
show that CSP2_X also improves the AP values of the three categories, and mAP and
FPS are increased by 2.3% and 21.62 FPS, respectively, compared with YOLO-v4. From
the comparative experiments of the fourth and the fifth groups, we find that the H-swish
activation function significantly ameliorates the detection accuracy of the model.

In summary, the improved strategies proposed in this paper based on YOLO-v4
are meaningful for promoting the recognition and detection of face masks in complex
environments.

7. Conclusions

In this paper, an improved algorithm based on YOLO-v4 is proposed to solve the
problem of mask wearing recognition. Meanwhile, the effectiveness and robustness of this
model are verified by the comparative study of two kinds of object detection algorithms.

This article can be summarized as follows:

• Firstly, the CSP1_X module is introduced into the backbone feature extraction network
to enhance feature extraction.
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• Secondly, the CSP2_X module is used in the Neck module to ensure that the model
can learn deeper semantic information in the process of feature fusion.

• Thirdly, the Hard-Swish activation function is used to improve the nonlinear feature
learning ability of the model.

• Finally, the proposed adaptive image scaling algorithm can reduce the model’s rea-
soning time.

The experimental results show that the algorithm proposed in this paper has the high-
est detection accuracy compared with others for strict mask detection tasks. Meanwhile, the
phenomena of false and missing detection have been reformed. Moreover, the algorithm in
this paper effectively decreases the requirements of the model on training cost and model
complexity, which enables the model to not only be deployed on medium devices but
also be extended to other object detection tasks, such as mask wearing detection tasks of
students, passengers, patients, and other staff.

However, in the present work, there are still some problems in insufficient feature
extraction for difficult detection samples or even missing and false detection cases. In
addition, the case of wearing a mask when the light is insufficient is also not considered.
Therefore, the next step should be expanding the data set based on the standard mask
wearing criteria and obtaining further improvements for the model in the present work,
and so extending it to more object detection tasks.
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