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Abstract: The Internet of Things (IoT)-based target tracking system is required for applications such
as smart farm, smart factory, and smart city where many sensor devices are jointly connected to
collect the moving target positions. Each sensor device continuously runs on battery-operated power,
consuming energy while perceiving target information in a particular environment. To reduce sensor
device energy consumption in real-time IoT tracking applications, many traditional methods such
as clustering, information-driven, and other approaches have previously been utilized to select
the best sensor. However, applying machine learning methods, particularly deep reinforcement
learning (Deep RL), to address the problem of sensor selection in tracking applications is quite
demanding because of the limited sensor node battery lifetime. In this study, we proposed a long
short-term memory deep Q-network (DQN)-based Deep RL target tracking model to overcome the
problem of energy consumption in IoT target applications. The proposed method is utilized to select
the energy-efficient best sensor while tracking the target. The best sensor is defined by the minimum
distance function (i.e., derived as the state), which leads to lower energy consumption. The simulation
results show favorable features in terms of the best sensor selection and energy consumption.

Keywords: deep reinforcement learning; internet of things; target tracking; best sensor selection;
energy consumption

1. Introduction

In a 5G sensor network, a massive amount of data are handled via sensor devices in a
large area. International Data Corporation (IDC) research states that 70% of companies will
drive to use 1.2 billion devices for the connectivity management solution by 5G services
worldwide [1]. The Internet of Things (IoT) is the future of massive connectivity under
5G sensor networks. Currently, the IoT is performing a vital role in collecting a large
amount of data via numerous sensors in real-time applications [2]. Kevin Ashton initially
coined the IoT concept in 1999 [1,3]. Sensor-based IoT devices can provide various types of
services, such as health, traffic congestion control, robotics, and data analysis, which play
a significant role in daily life assistance [4]. Target tracking is another critical area where
the sensors can be utilized to collect the target real-time position and report it to a server
with its relevant information. The practice of tracking one or multiple targets has vast
applications in different research areas, such as object tracking (e.g., player, vehicle) [5–7],
border monitoring to prevent illegal crossing, or battlefield surveillance [8], infrared target
recognition [9,10].

In IoT target-tracking scenarios, tracking single or multiple targets can be realized
using one or more sensors. However, it is impractical to utilize a single sensor for col-
lecting the target position information owing to an extended area and will take increased
computation with low tracking accuracy [11]. Therefore, it is pertinent to use multiple
sensors, particularly in tracking applications. Energy consumption in sensor applications is
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a key task because of the sensor battery lifetime [11,12]. Moreover, it is unable to recharge
the sensor battery in most cases. As a result, it is essential to efficiently reduce energy
consumption because energy conservation leads to an increased battery lifespan. There
are various energy consumption reduction methods used in recent years (e.g., clustering,
support vector machine) [13,14]. However, large-scale functional implementation of these
approaches precludes more time and resources.

Reinforcement learning (RL) is a machine learning subfield that solves a problem
without any predefined model. The RL agent learns the suboptimal policy by interacting
with an unknown environment in real-time decision-based applications [15]. The use
of RL comprises two main elements: action and reward. In any dynamic interactive
environment, a precisely selected action will provide the best reward. Thus, providing the
best outcome, based on current observations after acquiring a good reward in a real-time
environment. However, a massive number of autonomous IoT sensors are employed to
intelligently work with a dynamic environment to handle big data in next-generation
5G-based IoT applications (i.e., vehicle tracking, pedestrian tracking) [16]. Figure 1 shows
some applications (e.g., smart transportation system, Intelligent Security System) including
different types of sensors in the area of autonomous IoT. These autonomous IoT sensors
interact and sense the environment to collect and send the relevant information to agent
for taking the suboptimal action. The conventional RL algorithm (e.g., Tabular Q-learning)
takes a higher time to handle this IoT environment because of large dimension sensor
data [17].

Agent
State

Reward

Action

Smart Transportation System

▪ Traffic Signal Control

▪ Smart Parking System

▪ Autonomous Driving

Intelligent Security System

▪ Vehicle Tracking

▪ Border Monitoring

▪ Pedestrian Tracking

GPS Speed Sensor Camera RFID

Application

Autonomous IoT Sensor

Data Collection

Figure 1. Autonomous IoT applications.

Deep reinforcement learning (Deep RL) is an extended version of the conventional
RL algorithm to overcome iteration complexity in any large dynamic and interactive
environment [18]. Deep neural network (described as Q-approximator in this paper) is
the main feature of Deep RL, predicting a suboptimal action from a specific state. In an
autonomous IoT target tracking system, Deep RL can be deployed to the sensor devices to
minimize the overall system computational complexity and energy consumption [17,19].
Moreover, there are different kinds of Q-approximators used in the Deep RL method to
solve the energy consumption problem. Dense and long short-term memory (LSTM)-
based Q-approximators are frequently utilized to increase energy efficiency in time-series
environments [20,21]. Note that the LSTM Q-approximator is more suitable than the dense
Q-approximator because of long-term dependencies in an IoT target tracking environment.
The long-term memory features regulate the essential information sequentially (i.e., time-
dependent) to achieve better performance in the learning period [22–24].
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In this study, we proposed a novel Deep RL framework that predicts the suboptimal
energy-efficient sensor to track the target in IoT tracking applications. Our proposed
system utilizes an LSTM deep Q-network (LSTM-DQN) as Q-approximator. Moreover,
a data pre-processing approach is used for better state representation before applying
LSTM Q-approximator. The data pre-processing (e.g., normalization, feature selection)
is significant for achieving stable LSTM Q-approximator [25,26]. In this paper, we use
mini-max normalization into our designed state space to improve LSTM Q-approximator
performance. Furthermore, we also study epsilon-greedy and softmax action-selection
strategies [27] in our proposed target tracking environment. However, the epsilon-greedy
method has faster improvement and convergence ability than the softmax method in our
action space. Therefore, we proposed an LSTM-DQN-epsilon-greedy method and com-
pare it with LSTM-DQN-softmax, Dense-DQN-epsilon-greedy, and Dense-DQN-softmax
approaches in terms of average cumulative rewards, loss convergence, average sensor
selection accuracy, and average cumulative energy consumption.

The remainder of this paper is organized as follows. A description of the related work
is provided in Section 2. Section 3 presents the system preliminaries. Sections 4 and 5 show
our proposed LSTM-DQN-epsilon-greedy algorithm and numerical results, respectively,
for a detailed comparison. Finally, Section 6 presents the conclusion and future directions
of the research work.

2. Related Work

In recent years, researchers have been working and investing much of their time to
solve the problem of excessive energy consumption in tracking-based applications. Below,
applications based on the respective techniques from background studies are presented.

2.1. Tracking Application Based on Information-Driven Approaches

Information-driven is a collaborative sensing technique for various target tracking
applications, where each deployed sensor is responsible for collaborating with other de-
ployed sensors to collect moving target information [28]. Information-driven methods
were first proposed in terms of collaborative sensor selection via the information utility
function [29]. In this information-driven sensor selection method, the authors considered
different Bayesian estimation problems (e.g., entropy and Mahalanobis distance-based util-
ity measurements) to determine which sensor would track the moving target. Wei et al. [30]
proposed a dual-sensor control technique based on the information utility function in a
multi-target tracking application. In this work, the authors used the posterior distance
between sensor and targets (PDST) function to minimize the distance between sensors
and targets, which helped the sensors directly drive the targets. Ping et el. in [31] used
a partially observed Markov decision process (POMDP) to select suboptimal sensors for
tracking multiple targets. The POMDP sensor selection approach is implemented by maxi-
mizing the information gain via a probability hypothesis density (PHD)-based Bayesian
framework. Although the techniques proposed in [29–31] illustrated good tracking results,
there is a limitation in choosing an energy-efficient sensor to make their model work in an
intelligent manner to reduce the computational complexity.

2.2. Machine Learning-Based Techniques for Tracking Application

Machine learning is an excellent technique to overcome the computational complexity
issue in any complicated engineering problem because it is a self-learner, and it does not
need to be reprogrammed [32–35]. Based on background studies, there are three types of
machine learning approaches (i.e., supervised, unsupervised, and reinforcement learning),
which have been intelligently utilized for energy optimization. The study of supervised
learning techniques is beyond the scope of this research.
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2.2.1. Unsupervised Learning-based Clustering Approaches

To address the energy consumption problem, Hosseini and Mirvaziri in [36] intro-
duced a dynamic K-means clustering-based approach to minimize the target tracking error
and energy consumption in wireless sensor networks (WSNs). The proposed technique
uses a tube-shaped layering method for the sensor nodes to reduce energy dissipation
during target tracking. In addition, Tengyue et al. [37] employed a clustering algorithm to
control the sensor energy, which detected the target in a real-time mobile sensor network.
They used the k-means++ algorithm to separate the sensor nodes into sub-groups. The k-
means++ separated the sensor nodes, which carried a higher weighted probability for
target detection, and the remaining unnecessary sensors remained in sleep mode to save
energy consumption. Juan and Hongwei in [38] proposed another clustering approach
to balance energy in terms of multisensory distributed scheduling. Their work used the
energy-balance technique to control the activation and deactivation modes of communi-
cation modules. They employed a multi-hop coordination strategy to decrease energy
consumption. However, these types of unsupervised techniques are time-consuming to
address because of the lack of available prior data labeling [34].

2.2.2. Reinforcement Learning Approaches

Sensor scheduling is a promising approach for reducing energy consumption in many
tracking applications. Muhidul et al. in [39] proposed a cooperative RL to schedule the task
of each node based on the current tracking environment observation. The proposed method
helped the deployed sensor nodes cooperate by sharing the adjacent node information
during tracking. They applied a weighted reward function that combined both energy
consumption and tracking quality matrices to improve the sensor node task scheduling at
a particular time. Moreover, transmission scheduling is another necessary task in which
Deep RL can be applied. Jiang et al. in [40] proposed an approximation technique for
transmitting packets in a scheduling manner for cognitive IoT networks. Their DQN model
utilized two parameters (i.e., the power for packet sending via multiple channels and
packet dropping) to enhance the system capacity in throughput terms. They used a stacked
auto-encoder as a Q-function approximator that mapped the policy to maximize system
performance via a utility-based reward technique. However, they exploited the action
using a comprehensive index evaluation method in a single relay to sync transmission.

To reduce IoT device energy consumption, Mehdi et al. [41] employed a Deep RL
technique to learn an optimal policy for indoor localization problems in IoT-based smart
city services. They deployed a semi-supervised technique to classify unlabeled data and
integrated classified data with label data. They used iBeacons to provide a received
signal strength indicator (RSSI) as an input for a semi-supervised Deep RL model, which
consists of a variational autoencoder neural network Q-learning technique to enhance
indoor localization performance. In [27], the authors used two Deep RL methods (e.g.,
DQN and DDPG) to adjust the activation area radius so the system can minimize the
average energy consumption in terms of vehicle-to-infrastructure (V2I) technology-based
tracking applications. They also used two action selection strategies (e.g., epsilon-greedy
and softmax) to determine the activation area radius.

The Deep RL method has not been widely applied for energy saving in IoT target
tracking applications, particularly in energy-efficient sensor selection approaches. Intel-
ligently selecting the appropriate sensor to track the target is challenging because the
target position varies over time, creating tracking environment uncertainty. In this case,
the DQN-based Deep RL is a sophisticated method because it has the best learning ca-
pability when interacting with an uncertain dynamic environment. In DQN, selecting a
Q-approximator for the tracking environment is vital for obtaining improved learning
performance. Therefore, we utilized the LSTM Q-approximator to predict the suboptimal
decisions (i.e., sensor selection) based on sequential information (i.e., target position) with
the assistance of different gate operations.
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Our study is based on a discrete action space, which means that the proposed LSTM Q-
approximator selects the most energy-efficient sensor among a finite set of sensors. Authors
in [27] showed epsilon-greedy and softmax-based action selection methods for the discrete
action space. The epsilon-greedy-based sensor-selection technique presented improved
efficiency compared to the softmax technique in the simulation results. Thus, we proposed
the LSTM-DQN method with epsilon-greedy action selection (described as LSTM-DQN-
epsilon-greedy in this study) in a target tracking environment to select the best sensor for
maximum energy conservation. Table 1 represents a comparison of different existed RL
methods to reduce the energy consumption of the sensor.

Table 1. Related work that use RL-based methods to reduce the energy consumption of the sensor.

Study RL-Based Methods Action-Selection Solution Evaluation Metrics

[39] SARSA (λ) epsilon-greedy sensor scheduling energy consumption

[40]
Q-table with

stacked autoencoder epsilon-greedy transmission scheduling
average power

consumption and system utility

[27]
DQN, DDPG with

LSTM
epsilon-greedy

and softmax
radius adjustment

of the activated area
average cumulative rewards

and energy consumption

Proposed
method LSTM-DQN

epsilon-greedy
and softmax best sensor selection

average cumulative rewards,
loss convergence,

average best sensor selection
accuracy, and average

average cumulative energy
consumption

3. Preliminaries
3.1. System Overview

Figure 2 illustrates the tracking environment where multiple sensor devices repre-
sented as S = {S1, S2, ....., SD} are deployed at different positions to observe the moving
targets, T = {T1, T2, ....., TL}, where L is the number of targets moving in the test area.
The area consists of subareas X = {X1, X2, ....., XN}, where N is the number of subareas.

In this study, our proposed LSTM-DQN-epsilon-greedy scheme allows one sensor to
track a single target at time t in a particular area, which eventually leads to tracking T targets
in N subareas. For instance, the selected sensors shown in green detect the targets, as shown
in Figure 2. The remaining sensors remained unselected to minimize energy consumption.

Deep RL 

Agent

Target State 

Initialized

Action

(Select Best Sensor)

Reward

Target Next 

State

Environment

Target Detection Selected Sensor Unselected Sensor

𝟏) Area (𝑿𝟐)

Area (𝑿𝟑) Area (𝑿𝟒)

Area (𝑿

Figure 2. Deployed sensors for tracking target-based environment.
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For suboptimal sensor selection, our proposed LSTM-DQN-epsilon-greedy-based IoT
tracking system tracks more than one target simultaneously in four subareas X1, X2, X3,
and X4, as shown in Figure 2, thus allowing the system to track all T targets in the first
attempt. If we apply a single DQN algorithm for all N subareas, there is a possibility of not
achieving the required goal because when the system interacts with a large area, the sensor
selection space is more complicated to utilize the algorithm for effective simultaneous
tracking more than one target.

To select the best sensor, it is imperative to estimate the distance between the moving
target and the sensors. A sensor with the minimum distance to the target location was
selected. However, in any practical scenario, the sensor has some noisy (i.e., Gaussian
noise) measurements; thus, it can not collect the target position precisely. This study
considers that our target tracking environment is linear, including normally distributed or
Gaussian process noise and some measurement errors. Kalman filter is suitable for any
linear environment along with Gaussian noise to predict the target information with more
precision [42–44]. Moreover, because of having linear features, the Kalman filter does not
require significant memory except knowing only the prior state, which assists in predicting
the target state over time [44]. Therefore, For the accurate measurement in a linear and
noisy environment, the Kalman filter was used to localize the target position.

3.2. Kalman Filter

The Kalman filter estimates the current system state from a series of noisy measure-
ments, which is useful in tracking applications [42,45–47]. The Kalman filter is a recursive
estimator based on Bayesian filter theory that can compute the target state along with the
uncertainty [43,44]. The system has two significant steps: prediction and updating. Various
essential Kalman filter parameters are listed in Table 2.

Table 2. Kalman filter parameters.

Symbols Description

α0 Initial state matrix
P0 Initial process covariance matrix

αk−1 Previous state matrix
Mk Measurement input
G Kalman gain

Acck Control variable matrix
Pk−1 Previous process covariance matrix
Nkα Predicted noise matrix
Nkp Process noise matrix

X, Y, Z Transition matrix
Me Measurement error covariance matrix
H, I Identity matrix

The initial state matrix α0 indicates the early stage target observation and consists of
four key information pieces such as the x- (x) and y-axis (y) positions, velocity along the x-
(vx) and y-axis (vy). In general, the covariance process measures the variation in random
variables. The covariance for the four random variables is defined as follows:

σ(x, y, vx, vy) =
1

n− 1

n

∑
i=1

(xi − x)(yi − y)(x′i − vx)(y′i − vy), (1)



Sensors 2021, 21, 3261 7 of 22

where n is the number of samples, and the covariance matrix is defined as σ(x, y, vx, vy)T .
The initial state α0 and process covariance matrices P0 are expressed as,

α0 =


x
y

vx
vy

 (2)

P0 =


σ2x σxσy σxσvx σxσvy
σyσx σ2y σyσvx σyσvy
σvxσx σvxσy σ2vx σvxσvy
σvyσx σvyσy σvyσvx σ2vy

. (3)

In the Kalman filter, the prediction step estimates the current predicted state αk and
the process error covariance matrix Pk, which are expressed as,

αk = Xαk−1 + YAcck + Nkα, (4)

Pk = X(Pk−1XT) + YAcck + Nkp , (5)

where αk−1 and Pk−1 denote the previous state and process error covariance matrices,
respectively. The variable X represents the state transition matrix for the previous state
αk−1, and Y is the input transition matrix for the control vector. The Acck in (6) shows the
acceleration of the moving target, given as,

YAcck =
[ 1

2 ∆T2ax 1
2 ∆T2ay ∆Tax ∆Tay

]T , (6)

where ∆T represents the time for one cycle, while ax and ay are the acceleration control
variables. In the updated step, we estimate a new measurement Mk for state prediction at
time step k. The Kalman gain G is one of the main features in the Kalman filter method,
which gives the ratio of the uncertainty of error in prediction and measurement state [42].
Moreover, Kalman gain indicates how much the prediction state of the target should be pre-
cise. If the value of Kalman gain is increased gradually, which means the uncertainty error
of the measurement is small, and the value of the Kalman gain is low when the measure-
ment error covariance is larger than the process error covariance. The new measurement
Mk and gain G are described as follows:

Mk = Z− Hαk, (7)

G =
(Pk HT)

H.(Pk HT) + Me
, (8)

where Z, H, and Me represent the transition, identity matrix, and measurement error
covariance matrix, respectively. After estimating the Kalman gain G, the predicted state αk
and process error covariance matrix Pk are updated in (9) and (10), respectively:

αk = Xαk + GMk, (9)

Pk = [(I − (GH)) + Pk]. (10)

Here, Mk is the updated measurement which is obtained by subtracting the transition or
measured matrix (Z) from the predicted state (αk) as described in (7). The update predicted
state and process error covariance matrix in (9) and (10) will be used in the next time step.

3.3. Best Sensor Selection

The designed LSTM-DQN-epsilon-greedy system uses multiple sensors to track the
target position. We consider one target at a particular time in a specific subarea as shown
in Figure 2. The system operates in such a manner that it does not allow all sensors
concurrently to track the target due to limited battery lifespan of the sensor devices.
Therefore, the system intelligently adjudicates to select the best sensor using our proposed
Deep RL method while the moving target arrives within that sensor’s range. The sensor
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with low energy consumption is considered the best sensor and is apportioned to acquire
target position information. In the example shown in Figure 2, if the energy consumption
of the four sensors (i.e., S1, S2, S3, and S4) are 6J, 5J, 7J, and 8J, respectively, then sensor S2
is selected to track the target. In this way, we can conserve the energy of the other three
sensors. As a result, the overall system capability has improved in a particular subarea.

3.4. Reinforcement Learning (RL)

The RL agent is used as a decision-maker to take the best action (at) from the set
of possible actions over the current state (st). The RL agent does not learn with the
labeled training dataset, but learns from its experience with environmental interaction.
During environmental interaction at a particular time, the agent receives an immediate
reward (rt) and jumps to the next state (st+1). The entire process continues until the agent
reaches the final state and begins a new episode after resetting the environment.

Tabular Q-learning (TQL) is a common model-free RL approach that is considered
an off-policy algorithm because the Q-function learns from the interactive environment
by taking random actions during exploration time [48]. Taking action with the help of
exploration is essential because initially, the agent has no idea about the new state in
an environment; therefore, the agent needs to explore the environment. After acquiring
environmental experience by exploration, the agent can easily exploit the environment by
utilizing the greedy strategy. The exploration and exploitation technique is also called the
epsilon-greedy technique [19]. As a result that the TQL is a value-based method, the agent
learning policy is utilized through the value function (Q-value) of state-action pairs. In TQL,
the Q-value Q(st, at) of an individual action of a particular state is stored in a matrix called
the Q-table, which is updated in each time step in (11),

Q(st, at) = Q(st−1, at−1) + ∂(rt + γ max(Q(st+1, at+1))−Q(st−1, at−1)), (11)

where ∂ and γ ∈ [0, 1] represent the learning rate and discount factor, respectively. Note
that, ∂(rt + γ max(Q(st+1, at+1))) denotes as discounted temporal difference (TD) target,
which gives the maximum Q value of next state in (11). Further, to estimate the TD error
during the training of Q-learning, we subtract the value of TD target from previous Q value
(Q(st−1, at−1)). The learning rate is used, which tells how fast the Q-values are updated
along with TD error. Moreover, the discount factor gives stability between immediate
and upcoming or future rewards. If the discount factor is near to 1, then the reward will
be more in the future. Otherwise, the system focuses on the immediate reward when
the discount factor is near to 0. However, TQL has difficulty in extending the Q-table
to a large environment, as it is only appropriate for a small environment. To extend the
method to a large environment it is necessary for an agent to learn the value function with
a Q-approximator instead of saving all values into a Q-table.

3.5. Deep-Q-Network

The DQN was introduced by Mnih et al. in [18] based on the Deep RL method
with the help of a deep neural network, which is known as a Q-approximator. The Q-
values of different actions are predicted by utilizing the Q-approximator in a particular
state. In DQN, there is a possibility of a significant correlation between the data, forming
the Q-approximator instability during the training period. Following this, experience
replay memory and mini-batch techniques are utilized to obtain a stable Q-approximator.
Experience replay memory (E) stores the experience (st, at, rt, st+1) in each time step to
re-utilize previous experiences multiple times. After storing each experience, the DQN uses
the mini-batch technique to randomly sample data from the experience replay memory to
converge the Q-approximator loss. It can also reduce the correlation between the samples
and improve the agent’s learning performance. Moreover, we estimate the predicted and
target Q-values with two different Q-approximators θ and θ′, respectively, to obtain a stable
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Q-approximator by optimizing the loss during the training period. The Q-approximator
loss L(θ) is described as,

L(θ) = (rt + γ max(Q(st+1, at+1; θ′))−Q(st, at; θ))2. (12)

4. The Proposed LSTM-DQN-Epsilon-Greedy Method
4.1. Long Short-Term Memory-Based Q-approximator

In our proposed system, we use LSTM as a Q-approximator to select the best sensor.
In our target tracking scenario, the position of the target is updated over time. The LSTM is
a specific type of recurrent neural network (RNN) with the ability to learn long-term de-
pendencies that can memorize and connect related patterns over a time-series input [22,23].
Moreover, another reason behind deploying LSTM for our designed system is that it works
flawlessly in a dynamic environment because it depends on the gate operation. The gates
regulate the information flow and can also decide which information should be stored or
removed. The LSTM consists of four gates: forget (Fst), input (Xst), cell (Cst), and output
(Ost) states. These four gates store the combined information of the previously hidden
(ht−1) and the current input layer (xt) and apply the “sigmoid” operation to all gates
except the cell state that is finally activated by “tanh” operation, as shown in Figure 3.

𝒉𝒕−𝟏

𝒙𝒕

𝒄𝒕−𝟏

+

𝑭𝒔𝒕 𝑿𝒔𝒕 𝑪𝒔𝒕 𝑶𝒔𝒕~ ~~~

X

X

+

𝒄𝒕

~

X

𝒉𝒕

+Addition Multiply X ~Sigmoid ~tanh

Figure 3. LSTM architecture.

In the LSTM mechanism, when the forget state output is near 1, it keeps the data
and transfers it to multiply with the previous cell state value (Ct−1). The input and cell
state gates receive the same information as the forget state gate. After separately applying
“sigmoid” and “tanh” operations to input and cell state gate, the outputs are multiplied
with each other and added to the forget state output multiplying of the previous cell state
value for acquiring a new cell state (Ct). Finally, the output of the new cell state and output
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state gate after the sigmoid operation multiply with each other to obtain the new hidden
state (ht).

4.2. Mini-Max Normalization-Based State Space

The proposed LSTM-DQN-epsilon-greedy model acts as an agent that takes the
current state as the input. Estimated minimum distance leads to low energy consumption
at a specific time. The sensor with the minimum distance and energy consumption is
considered to be the best sensor for an individual area. Therefore, we organized our state
with individual distances (i.e., dS1 , dS2 , ..., dSD ) between the target and sensors. The distance
is measured at each time step by using the Euclidean distance formula in (13),

dSD (t) =
√
(Ptargetxcord − PxcordSD

)2(t) + (Ptargetycord − PycordSD
)2(t), (13)

where PxcordSD
, PycordSD

, Ptargetxcord , and Ptargetycord are the positions of all the deployed sen-
sors and the moving target in the two dimensional x-y plane. Furthermore, the position
of any target is computed using the Kalman filter. Note that the state has different dis-
tance value ranges, which can create instability for the Q-approximator. Therefore, it is
necessary to preprocess the state value by normalization before sending it to the LSTM
Q-approximator [25]. We use the mini-max normalization method, which is represented
as statenormalized(t) =

(st−min(st))
max(st)−min(st)

to scale the state between 0 and 1 to enhance the state
quality before sending it to our proposed LSTM Q-approximator.

4.3. Epsilon-Greedy Discrete Action Space

The discrete action space (A = {AS1 , AS2 , ..., ASD}) represents all the allocated sensors
(i.e., S1, S2, ..., SD), respectively, in a defined area. The LSTM-DQN-epsilon-greedy agent
selects the best sensor as an action that consumes minimum energy during target tracking.
The energy consumption (EconSD

) of each sensor at time step (t) is estimated using (14),
where dSD , powSensor, and ttrack indicate the distance value between a particular sensor
(SD) and the target, the working mode sensor power, and time to track the target in a
single area, respectively. Similarly, we measured the energy consumption for the other
N areas. Note that the energy consumption of all sensors is stored in an array as (Econall )
in (15). Furthermore, the selected sensor energy consumption (Econaction ) and minimum
energy consumption (Econmin ) are obtained from (16) and (17). Finally, we estimate the total
energy consumption (Econtotal ) and energy savings in a particular observation using (18)
and (19), respectively:

EconSD
(t) = dSD (t)× powsensor(t)× ttrack(t), (14)

Econall (t) = EconSD:1∼D
(t), (15)

Econaction(t) = Econall [ASD ](t), (16)

Econmin(t) = min(Econall (t)), (17)

Econtotal (t) =
D

∑
SD=1

EconSD
(t), (18)

Esave(t) = Econtotal (t)− Econaction(t). (19)

We use epsilon-greedy as an action-selection strategy in the designed system be-
cause it is suitable for the discrete action space. In the epsilon-greedy approach, ini-
tially, the agent takes a random action to explore the environment through the epsilon
method. There are three key parameters: maximum-epsilon (εmax), minimum-epsilon
(εmin), and epsilon-decay (εdecay) that are considered to fix the epsilon period. First, it
begins with the maximum-epsilon value and then decays with an absolute epsilon-decay
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value at each time step. The epsilon period is completed when the value of epsilon reaches
the minimum-epsilon. Subsequently, the agent greedily exploits the environment to take
suboptimal action with the proposed LSTM Q-approximator, as shown in Figure 4.

LSTM(8 Units)

Dense(4)

Output

~

DENSE(8)

DENSE(16)

DENSE(16)

~

DENSE(8)

Relu Sigmoid

~

~

~

~

~

~

Normalized-

State

Figure 4. Proposed LSTM Q-approximator.

The rectified linear unit (ReLU) is used in the first three layers, whereas the sig-
moid activation function works at the output layer. The ReLU is used to obtain the
unbounded positive outcome, whereas sigmoid is used in the output layer to obtain a
positive bounded outcome between 0 and 1. Moreover, the LSTM Q-approximator pre-
dicts the Q-values for all possible actions, which are defined in the action space. Finally,
the agent selects the suboptimal action with the highest action-Q value that is obtained by
arg max(Q(statenormalizedt ,at ;θ)).

4.4. Binary-Based Reward Space

The primary goal of our proposed system is to maximize the cumulative rewards after
a certain number of steps; therefore, it needs to generate a suitable reward mechanism
to improve the agent action. The binary reward function is used in the proposed system
design as follows:

rt =

{
1 if Econaction = Econmin

0 if Econaction 6= Econmin ,

where rt is the reward at time t; further, if the energy Econaction is equal to Econmin , it returns
1; otherwise, the output will be 0. The proposed LSTM-DQN-epsilon-greedy system
architecture and algorithm are shown in Figure 5 and Algorithm 1, respectively.
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Figure 5. Proposed LSTM-DQN-epsilon-greedy system architecture.

Algorithm 1: The proposed LSTM-DQN-epsilon-greedy algorithm.
Input : Distance between sensor and target position . input = [dS1 → dSD ]
Output : Best sensor selection accuracy and energy consumption
initialization() . Total number of episodes eptotal , Total number of steps steptotal ,
Training hyperparameters, Size of replay memory E, Sensor position, Target
kalman state

for (Episode 1 to eptotal) do
st = reset_environment() . Get the initial state using (13)
Cumulative rewards, cr = 0
for (time-step, t = 1 to steptotal) do

Preprocess st as statenormalizedt . Mini-Max normalization
rand = random.uniform(0,1)
ε = max(εmin, ε)
if (rand < ε) then

take action randomly . Exploration
ε = ε× εdecay

else
action = arg max(Q(statenormalizedt ,at ;θ)) . Exploitation

end
Calculate EconSD :1∼D , Econaction and Econmin . From (14), (16) and (17)
Calculate Econtotal and Esave . From (18) and (19)
Predict next target kalman state using Kalman Filter
Calculate st+1 . From (13)
Normalize st+1 as statenormalizedt+1
Calculate rt
cr = cr + rt . Sum of all rewards in any episode
E.append(statenormalizedt , at, rt, statenormalizedt+1 ) . Store experiences
Perform random mini-batch sampling from Experience Replay Memory E

target =

{
rt if rt = 0
rt + γ max(Q(statenormalizedt+1 , at+1; θ′)) if rt = 1

Perform gradient descent of (target−Q(st, at; θ))2 to update
Q-approximator
st = st+1

end
end
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5. Simulation and Results
5.1. Environment Setup, Hyper Parameters, and Evaluation Metrics

To evaluate our proposed system, a simulation platform with moving target obser-
vation of 16 sensor devices is considered with four subareas, where each subarea consists
of 200 m × 200 m. We allocated four sensors in each subarea, and each sensor can cover
an area of up to 50 m × 50 m. Thus, 16 sensors cover a total area of 800 m × 800 m.
Furthermore, the distance between each sensor was the same in each subarea. We assume
one target in a particular subarea and extend it to four targets in four different subareas at
a specific time. The environmental details are listed in Table 3.

Table 3. Details of the proposed environment.

Parameters Value

Total number of subareas (N) 4
Size of a subarea (XN) 200 m × 200 m

Number of sensors in a subarea (XN) 4
Total number of sensors in 4 subareas 16

Each sensor tracking range 50 m × 50 m
Power of sensor in working mode (powsensor) 5 watts

Tracking time of sensor per meter (ttrack) 2 s
Number of target (each subarea) 1

Total number of targets in 4 subareas 4
Targets initial positions [0, 0]–[200, 200]–[400, 400]–[600, 600]
Target initial velocity [0.1 m/s, 0.2 m/s]

Target initial acceleration [5 m/s2, 5 m/s2]

During our simulation, we assumed that the total number of episodes was 500, where
each episode consisted of 100 time steps. In each time step, the target positions are
updated using the Kalman filter method. Thus, we can utilize 100 different states for our
proposed LSTM-DQN-epsilon-greedy system in one episode. Figure 6 shows a sample of
data during the experiment that contains measured values. Moreover, Figure 7 shows a
sample of different state values in one area after applying the normalization (i.e., mini-max
normalization, which was described in Section 4.2) at the time of the experiment. Here,
d1, d2, d3, and d4 represent the normalized distance values between the four sensors
and the target. The normalized state was near zero when the moving target passed near
a particular sensor. Conversely, the particular distance values were greater than 0 and
gradually increased to 1 when the target moved far behind the sensor. The figure clearly
shows that the initial value of d1 (i.e., the distance between the first sensor and the target) is
zero as the target moves very close to the first sensor. The same is true for the other sensor
distance values during the simulation period.

Figure 6. Some samples of measurement during simulation.
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Figure 7. Normalized state value for each time step during the experiment.

Note that we restart each episode when the number of steps reaches 100, and targets
again start moving from the initial position. Moreover, some useful hyperparameters were
set during the training session, as presented in Table 4. These parameters are used to tune
the proposed LSTM-DQN-epsilon-greedy scheme to achieve a more stable output. These
hyperparameter values were chosen by a trial and error process. We performed simulations
using Python 3.7.7 [49]. TensorFlow 2.0.0 and Keras 2.3.1 were used to implement the
LSTM Q-approximator [50,51].

Table 4. Hyperparameters for LSTM-DQN-epsilon-greedy during training.

Hyperparameter Value

Optimizer adam
Loss categorical crossentropy

Batch Size 16
Size of experience replay memory (E) 50

Learning rate (∂) 0.001
Discount factor (γ) 0.9

Maximum epsilon (εmax) 1
Minimum epsilon (εmin) 0.01

Epsilon decay (εdecay) 0.995

The mathematical formulas to evaluate our proposed method are shown in Table 5.
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Table 5. A list of evaluation metrics.

Definition Formula

Cumulative rewards
(described in Section 5.2.1) cr = ∑101

t=1 rt

Best sensor selection accuracy.
here, TBestASD

= total number of predicted

best sensor and
TWrongASD

= total number of predicted

wrong sensor
(described in Section 5.2.2) AccSD = (

TBestASD

TBestASD
+ TWrongASD

)× 100

Average cumulative reward.
here, ep denotes the episode
and X1, X2, X3, and X4 are

four system subareas.
(described in Section 5.3.1) avgcr =∑501

ep=1
crX1

(ep)+crX2
(ep)+crX3

(ep)+crX4
(ep)

4

The categorical crossentropy loss convergence.
here, yj = rt + γ max(Q(st+1, at+1; θ′)),

y′j = Q(st, at; θ) and

s = size of the action space
(described in Section 5.3.2) CCLoss = −∑s

js=1 yj log(y′j)

Average best sensor selection accuracy
here, D is the total number of sensor

(described in Section 5.3.3) avgAcc =
∑D

SD=1
AccSD

D
Average cumulative energy consumption

(described in Section 5.3.4) avgEcon = ∑501
ep=1

EconactionX1
(ep)+EconactionX2

(ep)+EconactionX3
(ep)+EconactionX4

(ep)

4

5.2. Results
5.2.1. Cumulative Rewards

In our proposed LSTM-DQN-epsilon-greedy method, we first measure the cumulative
rewards (cr) as shown in Table 5 for each episode. The estimation of the cumulative reward
is important because it indicates the agent’s learning performance during interaction with
the target tracking environment. The proposed agent receives a reward of 1 when the agent
successfully selects the best sensor, as discussed briefly in Sections 4.3 and 4.4. In Figure 8,
the cumulative reward is shown per episode for each subarea. It shows that the cumulative
reward is less than 35 for each subarea and does not reach the highest value in the first
two episodes (200 steps), as it initially explores the environment. In general, the explo-
ration duration depends on the epsilon parameter values (i.e., εmax, εmin, and εdecay) given
in Table 3.

Following the exploration stage, the proposed agent starts exploiting the environ-
ment through a greedy approach for selecting the best sensor to track the target. In this
case, the agent selects the suboptimal action based on the maximum predicted action-Q
value. During the greedy process, the cumulative reward gradually increased after the
second episode for all subareas. As we have 100 different states in each episode, therefore,
the maximum cumulative reward is 100. The proposed agent needs to obtain the highest
cumulative reward as early as possible to reduce the energy consumption of the sensor.
With the proposed method, the highest cumulative reward up to 100 was achieved before
reaching 100 episodes for all subareas. The flow of maximum cumulative rewards is
significantly stable, showing outstanding performance while selecting the best sensor.



Sensors 2021, 21, 3261 16 of 22

0 100 200 300 400 500
Episode

10

20

30

40

50

60

70

80

90

100

C
um

ul
at

iv
e 

R
ew

ar
ds

 
Area-1
Area-2
Area-3
Area-4

Figure 8. Cumulative rewards for each area.

5.2.2. Best Sensor Selection Accuracy

As a result that sensors have a limited battery lifetime, it is essential to reduce energy
consumption as much as possible. In the proposed scheme, the system selects the four best
sensors at a particular time within an area of 800 m× 800 m divided into Areas 1, 2, 3, and 4,
as shown in Figure 2. Due to having different ranges of state values, it is difficult to achieve
better accuracy of best sensor selection by our proposed LSTM Q-approximator. As a result,
our proposed agent selects the energy-efficient sensor based on normalized state, which has
been described in Section 4.2. Furthermore, the accuracy of selecting the best sensor affects
energy consumption during the tracking target because the best sensor selection is based on
the minimum energy consumption described in Section 4.3. Figure 9 shows the best sensor
selection accuracy for the 16 sensors (as formulated in Table 5). This demonstrates that the
proposed LSTM-DQN-epsilon-greedy system has a significant accuracy of approximately
99% for sensors 1, 8, 12, 14, and 16. Similarly, the system achieved an accuracy of 98% for
sensors 4, 5, 6, and 10. Moreover, the proposed system provides more than 90% accuracy
in the case of all other sensors, leading to promising results.

5.3. Comparative Analysis

The proposed LSTM-DQN-epsilon-greedy system is also compared with three bench-
mark schemes: LSTM-DQN-softmax, Dense-DQN-epsilon-greedy, and Dense-DQN-softmax
in terms of average cumulative reward, loss convergence, average best sensor selection
accuracy, and cumulative energy consumption. In DQN, the LSTM and dense-based Q-
approximator are used frequently for the dynamic environment. However, LSTM exhibits
better performance in handling such an environment because of memory features. We also
utilized different action-selection strategies (e.g., epsilon-greedy and softmax) compared
with our scheme.
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(a) (b)

(c) (d)

Figure 9. Best sensor selection accuracy: (a) Sensor selection accuracy for Area 1; (b) Sensor selection
accuracy for Area 2; (c) Sensor selection accuracy for Area 3; (d) Sensor selection accuracy for Area 4.

5.3.1. Average Cumulative Reward

The key designed method deployment objective is to increase the average cumulative
reward (avgcr ) as described in Table 5 to measure the agent’s performance. Figure 10 shows
the average cumulative reward per episode for the four DQN-based schemes. The figure
shows that our proposed model and the LSTM-DQN-softmax model both achieved the
highest average cumulative reward, which was up to 100 during the simulation period.
However, LSTM-DQN-epsilon-greedy reached achieved the highest value faster in 63
episodes compared to the LSTM-DQN-softmax, which reached that level in 115 episodes.
The efficiency of our proposed system is that the epsilon-greedy action selection strategy
directly learns from the action-Q-value function, which is suitable for discrete action space.
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Figure 10. Average cumulative rewards per episode.
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Furthermore, the comparison has been extended to the other two Dense-DQN-based
schemes: Dense-DQN-epsilon-greedy and Dense-DQN-softmax. The performance of both
LSTM-DQN-based approaches is better than that of Dense-DQN methods because of the
long-term memory dependencies. Therefore, both the Dense-DQN-epsilon-greedy and
Dense-DQN-softmax schemes are unable to reach the highest average cumulative reward
over the entire 500 episodes, and the average cumulative reward increase of both methods
is much slower than the proposed LSTM-DQN-epsilon-greedy scheme.

5.3.2. Loss Convergence

The loss convergence depreciation to the minimum level is also vital, along with the
system stability. To estimate the loss of our proposed Q-approximator, we use categorical
crossentropy because it is suitable for multiclass classification problems (as presented in
Table 5). The proposed LSTM-DQN-epsilon-greedy system signifies good convergence
behavior around 200,000 epochs and is more stable, as illustrated in Figure 11. Moreover,
the LSTM-DQN-softmax convergence also appeared around 200,000 epochs, but was less
stable than our proposed scheme. Furthermore, Dense-DQN-epsilon-greedy and Dense-
DQN-softmax methods show unstable behavior and converge at 500,000 epochs, which is
time-consuming. Therefore, the proposed LSTM-DQN-epsilon-greedy algorithm is efficient
and stable, leading to promising results.

(a) (b)

(d)(c)

Figure 11. Loss convergence per epoch during training: (a) loss convergence for proposed epsilon-greedy-LSTM-DQN;
(b) loss convergence for softmax-LSTM-DQN; (c) loss convergence for epsilon-greedy-Dense-DQN; (d) loss convergence
for softmax-Dense-DQN.
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5.3.3. Average Best Sensor Selection Accuracy

In this section, we compared the average best sensor selection accuracy (as described
in Table 5) of the proposed system with that of the other three DQN methods, as presented
in Figure 12. In our study, the agent selects the best sensor that has minimum energy con-
sumption when the target moves in any particular area. The critical task is to significantly
enhance the best sensor selection accuracy to reduce the average energy consumption.
As shown in Figure 12, the proposed system agent selects the best sensor with a slightly
higher average accuracy than LSTM-DQN-softmax. Furthermore, the proposed LSTM-
DQN-epsilon-greedy scheme achieved significantly higher best sensor selection accuracy
than the Dense-DQN-epsilon-greedy and Dense-DQN-softmax methods.
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Figure 12. Average best sensor selection accuracy.

5.3.4. Average Cumulative Energy Consumption

Our designed system was also utilized to reduce the average cumulative energy
consumption while tracking the target. We already mentioned in Sections 5.3.1 and 5.3.3,
that a higher average cumulative reward effectively enhances the best sensor selection
accuracy and reduces the average cumulative energy consumption. The average cumulative
energy consumption (avgEcon ) is obtained using a formula, which is shown in Table 5.

Figure 13 shows the average cumulative energy consumption in 500 episodes. It can
be observed from the figure that the average cumulative energy consumption for each
method is higher, particularly in the first 100 episodes. The reason behind it is that initially,
the agent has no experience with the environment. However, as the number of episodes
increases, the average cumulative energy consumption decreases significantly for both
LSTM-DQN- and Dense-DQN-based schemes.

In contrast, both LSTM-DQN-epsilon-greedy and LSTM-DQN-softmax methods have
much lower average cumulative energy consumption compared to Dense-DQN-epsilon-
greedy and Dense-DQN-softmax because the LSTM Q-approximator can regulate the
information flow in memory in the long and short term. Furthermore, both the LSTM-
DQN-epsilon-greedy and LSTM-DQN-softmax schemes approximately reduce the same
average cumulative energy consumption in each episode except 1 to 200. However, the pro-
posed LSTM-DQN-epsilon-greedy method shows a faster and better reduction of the
average cumulative energy consumption than LSTM-DQN-softmax, particularly in the
first 100 episodes. Thus, our designed LSTM-DQN-epsilon-greedy method significantly
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reduced the average cumulative energy consumption compared to the other three methods
by selecting the best energy-efficient sensor in our designed target tracking environment.
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Figure 13. Average cumulative energy consumption.

6. Conclusions and Future Directions

Sensors are widely used in IoT applications (e.g., tracking and attaining target location
information). In such scenarios, energy consumption optimization is a critical challenge
because of the sensor battery lifespan. For this reason, an adequate learning method with
Deep RL has been proposed to overcome the problem of energy consumption. The pro-
posed idea is based on selecting the best sensor with minimum energy using the proposed
Deep RL agent at a particular time to collect the target location information. The Kalman
filter and LSTM-DQN-epsilon-greedy algorithms have been utilized to predict the target
position and best sensor selection, respectively. Furthermore, we compared our proposed
LSTM-DQN-epsilon-greedy system with the other three benchmark schemes: LSTM-DQN-
softmax, Dense-DQN-epsilon-greedy, and Dense-DQN-softmax. A comparative analysis
was performed in terms of average cumulative reward, loss convergence, average best
sensor selection accuracy, and cumulative energy consumption. Our proposed LSTM-
DQN-epsilon-greedy method addresses the problem of best sensor selection and converges
the energy consumption issue efficiently, which is significantly improved in our tracking
environment than the other three methods.

The limitation of the proposed scheme is that we only considered the linear target
information using the Kalman filter. However, the target position can be non-linear, which
is out of scope of this study. Moreover, the framework is unable to track multiple targets in
one subarea at a particular time. To track the multiple targets information simultaneously,
we need to activate more than one sensor in one subarea. The framework will be extended
to use multi-agent-based Deep RL in future work to control the multiple sensors efficiently.
Finally, the system could also leverage hardware in the future to carry out real-time
hardware experimentation.
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