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Abstract: Since conventional screening tools for assessing frailty phenotypes are resource intensive
and unsuitable for routine application, efforts are underway to simplify and shorten the frailty
screening protocol by using sensor-based technologies. This study explores whether machine learning
combined with frailty modeling could determine the least sensor-derived features required to identify
physical frailty and three key frailty phenotypes (slowness, weakness, and exhaustion). Older
participants (n = 102, age = 76.54 ± 7.72 years) were fitted with five wearable sensors and completed
a five times sit-to-stand test. Seventeen sensor-derived features were extracted and used for optimal
feature selection based on a machine learning technique combined with frailty modeling. Mean
of hip angular velocity range (indicator of slowness), mean of vertical power range (indicator of
weakness), and coefficient of variation of vertical power range (indicator of exhaustion) were selected
as the optimal features. A frailty model with the three optimal features had an area under the
curve of 85.20%, a sensitivity of 82.70%, and a specificity of 71.09%. This study suggests that the
three sensor-derived features could be used as digital biomarkers of physical frailty and phenotypes
of slowness, weakness, and exhaustion. Our findings could facilitate future design of low-cost
sensor-based technologies for remote physical frailty assessments via telemedicine.

Keywords: physical frailty; frailty phenotype; machine learning; digital health; sit-to-stand test;
wearable technology; older adults; remote assessment; telemedicine

1. Introduction

According to the World Health Organization, by 2050, approximately 22% of the
global population will be 60 years or older [1]. Physical frailty, which is defined as the state
of increased vulnerability in reserve and function across multiple physiological systems,
is common in older adults [2]. The condition can increase the risk of adverse health
outcomes, such as falls, poor quality of life, hospitalizations, mortality, etc. (see [3] for
review). Although physical frailty is typically chronic and progressive in nature [4,5], it
can be ameliorated or potentially reversed if identified and treated early [6–8]. Therefore,
identification of older adults with physical frailty or at risk of becoming physical frailty
plays an important role in monitoring health conditions, planning for appropriate health
services, and designing and implementing interventions [9].
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The medical profession generally relies on two common techniques to identify those at
risk of physical frailty: a frailty phenotype and a frailty index. The Fried frailty phenotype
assesses unintentional weight loss, slowness, weakness, exhaustion, and low physical
activity [10]. A pre-frail/frail individual is identified when one or more of the five phe-
notypes are detected. The frailty index assesses health deficits (e.g., symptoms, signs,
disabilities, diseases, etc.) [11]. The frailty index is represented as a ratio between the
number of presented deficits and the number of considered deficits. However, the tools
used for physical frailty assessment are resource intensive [12], and thus they are largely
unsuitable for telehealth assessments and monitoring. Primary healthcare providers also
need simpler tools to administer physical frailty assessments [13,14].

Wearable sensors, the internet of things (IoT), mobile technology, and cloud computing
have encouraged medical device design engineers and researchers to use technology for
frail-related developments [15]. We recently tested the effectiveness of five wearable sensors
for a five times sit-to-stand test (5×STS) [16]; the sit-to-stand test is widely used in research
and clinical practice to assess physical frailty and motor performance [17–19]. In our
previous study [16], we found a strong correlation between sensor-based and manually-
recorded 5×STS durations, and we first identified eight sensor-derived features as digital
biomarkers for physical frailty and three key frailty phenotypes (slowness, weakness,
and exhaustion). Despite these promising results, the use of five wearable sensors to
extract eight sensor-derived features may have limited applications because of cost and
computational burden.

Acknowledging this limitation, the present study explores whether a machine learn-
ing technique combined with frailty modeling could determine the least sensor-derived
features needed for identifying physical frailty and three key frailty phenotypes (slowness,
weakness, and exhaustion). We hypothesize that: (1) a machine learning technique com-
bined with frailty modeling can determine the optimal features required for identifying
physical frailty and three key frailty phenotypes (slowness, weakness, and exhaustion),
and (2) fewer sensors can be used for determining the optimal features.

2. Materials and Methods
2.1. Participants and Experimental Protocols

This is a retrospective analysis of sensor data from 102 community dwelling older
adults or Veterans, who participated in our previous work [16]. All participants were
ambulatory volunteers aged 65 years or older, and they had no significant medical or
psychiatric conditions and did not use assistive devices while standing and walking [16].
The study protocol was approved by the Institutional Review Board at the local institutional
review boards including the Michael E. DeBakey Veterans Affairs Medical Center, Baylor
College of Medicine, and the University of Arizona. All participants read and signed the
informed consent form.

The Fried frailty phenotype assessed participants’ physical frailty from 0 to 5 based on
five criteria (weight loss, weakness, slowness, exhaustion, and low physical activity) [10].
Based on the results, participants were classified into a robust group (RG, Fried frailty
phenotype less than 1) or a pre-frail/frail group (FG, Fried frailty phenotype greater than
or equal to 1).

Before performing the 5×STS, both groups were fitted with five wireless wearable
sensors (LegSys+™, BioSensics, Watertown, MA, USA) [20] attached with Velcro to elastic
belts worn on the trunk, left and right thighs, and left and right shanks. Each sensor
had a tri-axial accelerometer and gyroscope, a Bluetooth module, a microcontroller, and a
rechargeable battery. For the 5×STS, participants were instructed to sit on an ordinary chair,
and fold their arms across their chest. After given the “go” instruction by a clinician, they
performed the 5×STS as quickly as possible without resting their back or legs on the chair
between the repetitions [21]. All participants completed the 5×STS successfully, and there
were no system malfunctions during any of the experimental trials. Each sensor wirelessly



Sensors 2021, 21, 3258 3 of 12

transmitted quaternion data to the custom software installed on a standard laptop at a rate
of 100 Hz.

2.2. Sensor Data Processing and Feature Extraction

Detailed information about the raw sensor signal processing and the determination
of sensor-derived features for the three key frailty phenotypes (slowness, weakness, and
exhaustion) are available in our previous work [16]. Briefly, sensor-based 5×STS duration
and primary features were extracted from the five wearable sensors.

The eight primary features were hip angle range, hip angular velocity range, hip
power range, knee angle range, knee angular velocity range, knee power range, vertical
velocity range, and vertical power range. The eight primary features were computed for
each STS cycle, and their mean and coefficient of variation (CV, defined as the standard
deviation divided by the mean) were computed across 5×STS cycles. Therefore, the total
number of sensor-derived features was 17 (i.e., sensor-based 5×STS duration + 8 primary
features × 2 feature types (mean and CV)). Hip and knee angle, hip and knee angular
velocity, and vertical velocity were computed by the raw sensor signal processing [16].
Angular power was computed from moment of inertia (I), angular velocity (ω), and angular
acceleration (α) as:

Angular power = I·α·ω = τ·ω (1)

Hip and knee moment of inertia were estimated using adjusted Zatsiorsky-Seluyanov’s
segment inertia parameters [22], and hip and knee angular acceleration were computed
as the time derivative of hip and knee angular velocity. Vertical power was computed
as a product of body mass, vertical velocity, and vertical acceleration. Vertical force was
computed as a product of body mass and vertical acceleration. Scaled power considering
weight and height was computed as:

Scaled vertial power =
vertical power

m·g·
√

g·h
(2)

where m is body mass, h is height, and g is gravitational acceleration. A scaled vertical
power is unitless, and its computation is similar to the application of segment inertia
parameters for calculating moment of inertia.

Consistent with our previous work [16], the indicators of slowness were the mean
of hip angular velocity range, mean of knee angular velocity range, and mean of vertical
velocity range; the indicators of weakness were the mean of hip angle range, mean of hip
power range, mean of knee angle range, mean of knee power range, and mean of vertical
power range; and the indicators of exhaustion were the CVs of the eight primary features.

2.3. Optimal Feature Selection and Evaluation of Frailty Modeling

To determine the features for optimal feature selection, either the one-way analy-
sis of variance (ANOVA) or the Mann–Whitney U test was applied to the 17 sensor-
derived features, depending on each sensor-derived feature’s normality as confirmed by
the Shapiro–Wilk test. Eight of the 17 sensor-derived features showed a significant dif-
ference between the RG and FG, and thus they were used as independent variables for
optimal feature selection.

Optimal feature selection used a recursive feature elimination technique with logis-
tic regression modeling. The modeling used a frailty status (0 (robust) or 1 (frail)) as
a dependent variable and the eight significant sensor-derived features as independent
variables. The recursive feature elimination technique, which enables ranking the most
effective features, was used to determine the least number of features that produce an
optimal performance [23]. The bootstrapping technique, which enables testing any possible
combinations of participants with different sample sizes, was used to generalize the logistic
regression modeling [24,25]. Considering the number of participants (sample size; n = 102),
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the optimal feature selection used 2000 bootstrap iterations to optimize the robustness of
logistic regression modeling, which is recommended in the literature [25].

Figure 1 shows the flow chart of optimal feature selection using the recursive feature
elimination technique and the bootstrapping technique. The bootstrapping technique
splits participants’ data into 2000 pairs of training and validation datasets, which enables
calculating a 95% confidence interval (CI) for optimal feature selection. The five steps for
recursive feature elimination are: (1) logistic regression models are created at each iteration
loop. The number of logistic regression models is the number of significant sensor-derived
features considered in each recursive loop (i.e., the first recursive loop considers the eight
significant sensor-derived features, and they decrease by 1 after each recursive loop). For
all logistic regression models, the dependent variable is the frailty status (i.e., 0 (robust) or
1 (frail)). For the nth logistic regression model, the independent variables are all significant
sensor-derived features except for the nth feature; (2) for each model at each iteration loop,
the receiver operating characteristic (ROC) curve and area under the ROC curve (AUC) are
calculated because the AUC is a widely accepted performance measure to evaluate ranking
predictions [26]; (3) AUC values across 2000 iterations are averaged for each model; (4) a
sensor-derived feature with the lowest AUC value is removed; and (5) steps 1–4 repeat until
only one sensor-derived feature remains (i.e., steps 1–4 correspond to one recursive loop,
for a total execution of eight recursive loops is executed). Recursive feature elimination
incorporating bootstrapping (i.e., 2000 pairs of resampling) runs 70,000 loops in total.
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Model performance was evaluated by its AUC, sensitivity, specificity, and accuracy.
Sensitivity and specificity are the ability of logistic regression models to identify participants
with and without frailty, respectively. Accuracy is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

where TP (true positive) and TN (true negative) represent the number of correctly identified
frailty and the number of correctly identified non-frailty, respectively, and FP (false positive)
and FN (false negative) represent the number of non-frailty identified incorrectly as frailty
and the number of frailty identified incorrectly as non-frailty, respectively.

After determining the least optimal features, the performance of the logistic regres-
sion model with the least optimal features was evaluated. For AUC, sensitivity, speci-
ficity, and accuracy, mean and 95% CI were calculated from the validation datasets (i.e.,
2000 iterations).

3. Results

Table 1 reports participants’ demographic characteristics for both groups, including
statistical results. Statistical analysis found that weight and BMI were significantly higher
for the FG than for the RG. However, age, gender, and height were not significantly different
between the groups.

Table 1. Demographic data for robust group (RG) and pre-frail/frail group (FG).

No./Total No. (%) by Group p-Value
RG (n = 42) FG (n = 60)

Age, years 74.79 ± 6.64 76.57 ± 8.00 0.085
Female, n (%) 34/42 (81.0) 39/60 (65.0) 0.079

Height, cm 162.09 ± 7.34 164.90 ± 10.77 0.230
Weight, kg 66.77 ± 12.21 78.61 ± 19.95 0.001 *

BMI, kg/m2 25.40 ± 4.23 28.70 ± 5.79 <0.0001 *
Values are presented as mean ± standard deviation (SD) or n (%). Asterisks denote the significant difference
between groups.

3.1. Significant Sensor-Derived Features

Statistical analysis showed that the eight sensor-derived features were significantly
different between RG and FG. Figure 2 shows the results of the three sensor-derived
features for indicators of slowness, including the statistical significance. Sensor-based
5×STS duration, mean of hip angular velocity range, and mean of knee angular velocity
range were significantly slower for the FG than for the RG.

Figure 3 shows the results of the two sensor-derived features for indicators of weak-
ness, including the statistical significance. Compared to the RG, mean of hip power range
and mean of vertical power range were significantly lower for the FG.

Figure 4 shows the results of the three sensor-derived features for indicators of ex-
haustion, including the statistical significance. CV of hip angular velocity range, CV of
vertical velocity range, and CV of vertical power range were significantly higher for the FG
than for the RG.
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3.2. Optimal Feature Selection and Evaluation

Figure 5 shows the model performance assessed by AUC, sensitivity, specificity, and
accuracy as a function of the number of ranked sensor-derived features based on the
recursive feature elimination technique with logistic regression modeling. Table 2 reports
the rankings of the eight significant sensor-derived features and an associated indication of
the frailty phenotype. Based on the selection criteria (the presence of slowness, weakness,
and exhaustion, and an AUC > 0.8 (an AUC of 0.8 to 0.9 is considered excellent [27])),
mean of hip angular velocity range, mean of vertical power range, and CV of vertical
power range were selected as the optimal features. A logistic regression model with the
selected features had an AUC of 85.20% (95% CI = 85.04–85.36), a sensitivity of 82.70%
(95% CI = 82.43–82.96), a specificity of 71.09% (95% CI = 70.72–71.46), and an accuracy of
78.35% (95% CI = 78.16–78.54). The equation of a logistic regression model for the optimal
features is:

g(p(ph)) = ln
(

p(ph)
1 − p(ph)

)
= β0 + β1ph1 + β2ph2 + β3ph3 (4)

where g and ln is the logit function and the natural logarithm, respectively, p (ph) is the
probability that the dependent variable equals the frailty status (i.e., robust or frail), and
probability p (ph) ranges between 0 and 1. ph1, ph2, and ph3 indicate mean of hip angular
velocity range, mean of vertical power range, and CV of vertical power range, respectively,
and β0 is an intercept (2.722), and β1, β2, and β3 are constant coefficients (β1 = −0.022,
β1 = 0.243, and β3 = 0.055), respectively.
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Table 2. Ranking sensor-driven features.

Rank Sensor-Driven Features Phenotype Sensor Configuration

1 Mean of hip angular velocity range Slowness Trunk/Thigh
2 Mean of vertical power range Weakness Trunk
3 Coefficient of Variation (CV) of vertical power range Exhaustion Trunk
4 CV of vertical velocity range Exhaustion Trunk
5 Mean of hip power range Weakness Trunk/Thigh
6 Sensor-based 5×STS duration Slowness Trunk/Thigh/Shank
7 Mean of knee angular velocity range Slowness Thigh/Shank
8 CV of hip angular velocity range Exhaustion Trunk/Thigh

Table 3 reports the results of model validation. The mean values for an AUC, a sensi-
tivity, a specificity, and an accuracy are 82.18%, 79.37%, 67.20%, and 73.91%, respectively.

Table 3. Model validation.

Validation Metric Mean 95% Confidence Interval

AUC (%) 82.18 81.93 to 82.43
Sensitivity (%) 79.37 78.92 to 79.84
Specificity (%) 67.20 66.64 to 67.76
Accuracy (%) 73.91 73.63 to 74.19

AUC: area under the receiver operating characteristic curve.

4. Discussion

This study demonstrated the effects of the machine learning technique combined with
frailty modeling (i.e., logistic regression modeling) for determining optimal sensor-derived
features that is required to identify physical frailty and three frailty phenotypes (slowness,
weakness, and exhaustion). The machine learning technique selected the mean of hip
angular velocity range (indicator of slowness), mean of vertical power range (indicator
of weakness), and CV of vertical power range (indicator of exhaustion) as the optimal
sensor-derived features. The performance of the machine learning technique showed
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excellent AUC (85.20%) and high sensitivity (82.70%), specificity (71.09%), and accuracy
(78.35%). Different from the published literature [28–30], this study first showed that the
FG had a slower, weaker, and more exhausted performance of the 5×STS compared to
the RG.

Physical frailty is reversible when identified and treated early (see [7] for review),
and a routine and accurate assessment of physical frailty is a crucial part of intervention
and treatment [2,10]. Although a variety of physical frailty assessment tools exist [12,13],
the Fried frailty phenotype and frailty index are widely used for in-person assessment
and monitoring. They are inadequate, however, for remote assessments via telemedicine.
For example, the frailty phenotype requires equipment for weakness assessments (e.g.,
handgrip dynamometer) and enough physical space for slowness assessments (e.g., 4.57 m
walking test) [5], and the frailty index relies on patient-reported outcomes that are relatively
subjective compared to the frailty phenotype [6]. Additionally, trained health professionals
must administer assessments in person and interpret the results. Given poor compliance,
increased medical costs, and stress on family or caregivers, sensor-based physical frailty
assessment tools offer a simple, fast, and objective physical frailty assessment protocol
irrespective of physical setting.

Our results indicate that the frailty model with three optimal features (i.e., mean
of hip angular velocity range, mean of vertical power range, and CV of vertical power
range) had a lower AUC of 85.20% (95% CI = 85.04–85.36), a specificity of 71.09%
(95% CI = 70.72–71.46), and an accuracy of 78.35% (95% CI = 78.16–78.54) compared to
an AUC (87.64% (95% CI = 87.49–87.79)), specificity of 73.61% (95% CI = 73.25–73.97),
and accuracy (79.18% (95% CI = 78.98–79.39)) of the frailty model with eight sensor-
derived features, as shown in Figure 5. However, both models showed an excellent
AUC and a high specificity and accuracy [23,27] and had a similar sensitivity levels
(the model with three optimal features: 82.70% (95% CI = 82.43–82.96) and the model
with eight sensor-derived features: 82.44% (95% CI = 82.19–82.69)). Notably, the three
optimal features are sufficient to identify physical frailty and the three key frailty
phenotypes, and two wearable sensors (trunk and one thigh) can capture the three
optimal features. Compared to the use of a five-sensor configuration, a two-sensor
configuration has significant commercial advantages (e.g., cheaper to manufacture and
simpler to integrate), and the health care advantages include easier use and minimal
computation when analyzing and interpreting the results.

Compared to other function tests (e.g., walking and strength tests), the 5×STS is simple,
fast, safe, easily reproducible, and widely used in research and clinical practice [17–19,31]. The
5×STS is an important component of the Short Physical Performance Battery, a clinical tool
used for identifying physical frailty [32]. Therefore, sensor-based 5×STS could enable health
professionals to quickly identify slowness, weakness, and exhaustion, which can assist in
recognizing potential modifiable risk factors to improve health outcomes and strategies for
older adults [33,34].

The limitations of this study include: the possible mispredictions of physical frailty
and three frailty phenotypes, and a possible ungeneralizable frailty model. We speculate
that the possible mispredictions of physical frailty and three frailty phenotypes are due to
the differences between the 5×STS and the Fried frailty phenotype method. For example,
slowness of gait may not be indicated by slowly performing 5×STS, and weakness of grip
strength may not be indicated by weakly performing 5×STS. Our speculation is also sup-
ported by our previous findings that a rapid sensor-based elbow flexion/extension test with
a machine learning approach identified physical frailty and frailty phenotypes diagnosed
with the frailty index with an accuracy of above 80%, and possible mispredictions with less
than a 20% false rate [23]. In addition, we attribute the possible mispredictions of physical
frailty and three frailty phenotypes to the binarization of the Fried frailty phenotypes.
Future research will focus on improving prediction rates by including additional mea-
surements with sensors (e.g., gait speed) and by using a multiclass classification method.
Although we have used the bootstrapping technique to generalize logistic regression mod-
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eling, our current sample size (n = 102) and gender imbalance may not be sufficient, given
our cross-comparisons and combinations of participants. Therefore, future research will
use larger samples with balanced gender within and between groups. We also plan to use
a telemedicine camera (i.e., laptop or tablet integrated camera), which we are currently
developing to record older adults performing 5×STS without wearing sensors. Our aim is
to demonstrate that sensorless 5×STS could be an alternative when there is limited or no
access to sensors.

5. Conclusions

This study demonstrated that the mean of hip angular velocity range, mean of vertical
power range, and CV of vertical power range are the optimal features for identifying
physical frailty and three key frailty phenotypes (slowness, weakness, and exhaustion) with
sensor-based 5×STS in older adults. Of note, the three optimal features can be extracted
with the two-sensor configuration, which could facilitate the technological development
and commercial application of low-cost, easy-to-use, computationally efficient sensor-based
frailty assessment tools.

Reliance on telemedicine is expected to increase in the post-COVID era [35]. Our
sensor-based or sensor-less 5×STS would enable remote physical frailty assessments of
older adults performing the 5×STS at home. Older adults and their families and caregivers
should also benefit from remote physical frailty assessments via telemedicine.
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