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Abstract: The rapid development in wireless technologies is positioning the Internet of Things (IoT)
as an essential part of our daily lives. Localization is one of the most attractive applications related to
IoT. In the past few years, localization has been gaining attention because of its applicability in safety,
health monitoring, environment monitoring, and security. As a result, various localization-based
wireless frameworks are being presented to improve such applications’ performances based on
specific key performance indicators (KPIs). Therefore, this paper explores the recently proposed
localization schemes in IoT. Initially, this paper explains the major KPIs of localization. After that,
a thorough comparison of recently proposed localization schemes based on the KPIs is presented.
The comparison includes an overview, architecture, network structure, performance parameters, and
target KPIs. At the end, possible future directions are presented for the researchers working in this
domain.

Keywords: Internet of Things (IoT); Location of Things; target localization; wireless sensor network
(WSN); review

1. Introduction

The Internet is a necessity for billions of people worldwide who need it to complete
their daily tasks [1,2]. Furthermore, it provides various entertainment applications such
as movies, music, and gaming. One estimate states that more than 58% of the world’s
population has access to the Internet to perform such daily tasks. The popularity and
growth of the Internet exponentially increased (roughly 1170%) from 2000 to 2020 [3]. It is
transforming the world into a global village where people can connect and communicate
worldwide using the Internet.

The Internet allows different devices and appliances to connect and communicate,
which led to a new domain called the Internet of Things (IoT) [4–8]. The IoT architecture
consists of three layers: the physical layer, the network layer, and the application layer, as
shown in Figure 1. The physical layer consists of various sensors attached to the subject.
These sensors collect the data/information from the subject. Generally, the nature of data
depends on the IoT application requirements. For example, localization-based applications
require monitoring and collection of the locality information of the subject. Likewise,
telehealth applications need to monitor the vitals of patients, and agricultural applications
measure the temperature. The physical layer forwards the data to the network layer.

The network layer is the middle layer between the application and sensor layer in IoT
architecture. The network layer aims to transmit the data/information from the sensors to
the application layer. The medium of data transmission (wireless or wired) varies based
on the application and requirements. Furthermore, the network layer tries to reduce the
network’s data traffic and overheads using optimization techniques. The application layer
is the top layer that controls the services provided to the applications. This layer offers
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an interface to the user to control and manage the IoT devices. Furthermore, it provides
services to the application depending on the nature of the application.
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Figure 1. IoT architecture.

IoT is an extension of the Internet that envisions connecting all daily devices to
the Internet for communications through interactions or sensing devices. These sensing
devices are connected to form a network, termed a wireless sensor network (WSN) [9].
The IoT consisting of WSNs is essential for transforming the world into a smart world [10].
According to the Cisco Annual Internet Report [11], the number of IoT devices will rise from
6.1 billion to 14.7 billion by the end of 2023. Among those 14.7 billion devices, more than
48% of them will assist users in performing daily tasks, such as home automation, security,
and tracking applications. Therefore, they act as building blocks in smart cities, smart
homes, smart transportation, smart healthcare, smart grids, and smart industry [12–16].

However, there exist numerous challenges in the development of such IoT applica-
tions. For example, health-related applications require rapid and reliable data transmission.
Monitoring applications in smart environments require energy-efficient and robust proto-
cols [17]. Similarly, there are challenges associated with cost, connectivity, and hardware
limitations [18]. However, localization is one key challenges that needs to be addressed in
the majority of smart applications. It is the process of acquiring an object or user’s location
through intelligent devices (sensors) in an indoor or outdoor environment. It is a critical
requirement in most smart applications [19,20]. An exponential increase in smartphones,
wristwatches, and other intelligent wireless IoT devices is motivating researchers to de-
velop efficient localization schemes. As a result, we are witnessing a significant rise in
localization schemes intended to operate in healthcare, agriculture, environmental work,
and habitat monitoring [21–23]. Therefore, this paper investigates the IoT-based localiza-
tion and the proposed schemes [24,25]. The overall contributions of the paper are listed
as follows.

1. It provides an overview of localization and its key performance indicators (KPIs).
2. It provides a comprehensive and thorough survey of the recent indoor and outdoor lo-

calization schemes. In addition, it highlights the aim and purpose of each localization
scheme.

3. It evaluates each scheme with different KPIs such as localization accuracy, energy
efficiency, target prediction, target recovery, and security. This evaluation is beneficial
for readers aiming to develop a specific localization application.

4. The analysis presents a discussion on IoT localization and highlights the challenges
faced by IoT-based localization.
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IoT is an extension of the Internet that envisions connecting all daily devices to
the Internet for communications through interactions or sensing devices. These sensing
devices are connected to form a network, termed a wireless sensor network (WSN) [9].
The IoT consisting of WSNs is essential for transforming the world into a smart world [10].
According to the Cisco Annual Internet Report [11], the number of IoT devices will rise from
6.1 billion to 14.7 billion by the end of 2023. Among those 14.7 billion devices, more than
48% of them will assist users in performing daily tasks, such as home automation, security,
and tracking applications. Therefore, they act as building blocks in smart cities, smart
homes, smart transportation, smart healthcare, smart grids, and smart industry [12–16].

However, there exist numerous challenges in the development of such IoT applica-
tions. For example, health-related applications require rapid and reliable data transmission.
Monitoring applications in smart environments require energy-efficient and robust proto-
cols [17]. Similarly, there are challenges associated with cost, connectivity, and hardware
limitations [18]. However, localization is one key challenges that needs to be addressed in
the majority of smart applications. It is the process of acquiring an object or user’s location
through intelligent devices (sensors) in an indoor or outdoor environment. It is a critical
requirement in most smart applications [19,20]. An exponential increase in smartphones,
wristwatches, and other intelligent wireless IoT devices is motivating researchers to de-
velop efficient localization schemes. As a result, we are witnessing a significant rise in
localization schemes intended to operate in healthcare, agriculture, environmental work,
and habitat monitoring [21–23]. Therefore, this paper investigates the IoT-based localiza-
tion and the proposed schemes [24,25]. The overall contributions of the paper are listed
as follows.

1. It provides an overview of localization and its key performance indicators (KPIs).
2. It provides a comprehensive and thorough survey of the recent indoor and out-

door localization schemes. In addition, it highlights the aim and purpose of each
localization scheme.

3. It evaluates each scheme with different KPIs such as localization accuracy, energy
efficiency, target prediction, target recovery, and security. This evaluation is beneficial
for readers aiming to develop a specific localization application.

4. The analysis presents a discussion on IoT localization and highlights the challenges
faced by IoT-based localization.

5. It provides open research issues for the researchers working in the localization domain.
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A list of acronyms is given in Table 1. The rest of the paper is organized as follows.
Section 2 discusses localization and its KPIs. The overall methodology for paper selection
is explained in Section 3. Section 4 provides a detailed review of select papers. The
discussion is in Section 5. Finally, Sections 6 and 7 present the future directions and the
conclusion, respectively.

Table 1. List of important acronyms.

Acronym Extended Meaning Acronym Extended Meaning

WSN Wireless Sensor Network SN Sensor Node

AN Anchor Nodes IoT Internet of Things

NH Neighbourhood Heuristics ETX-NH Expected Transmissions with Neighbourhood Heuristics

PF-DLSTA Particle Filtering based Dynamic Lookahead Tree Based
Tracking Algorithm WSHAN Wireless Sensor Hole Aware Network

BCTT Boundary Static Clustering Target Tracking SCDCH Static Cluster and Dynamic Cluster Head

KPI Key Performance Indicator ML Machine Learning

PPHD-
MMA

Particle filter based Probability Hypothesis Density
incorporated with Multipath-to-Measurement Association VGTR Virtual Grid-based Target Recovery

FSM Fuzzy Sensing Model DCTC Dynamic Convoy Tree-based Collaboration

RFID Radio frequency identification GPS Global Positioning System

JPDA Joint Probablistic Data Association PUESRF Particle wise Update version of Ensemble Square Root Filter

IPAH Improved Prediction based Adaptive-Head DCTT Distributed Cluster-based algorithm for Target Tracking

PCTT Prediction-based Clustering algorithm for Target Tracking PSO Particle Swarm Optimization

ASMT Augmented State-based Multi-target Tracking GTPM Game Theory Payoff Matrix

SRPTT Secure and Reliable Prediction-based Target Tracking Protocol AEKF Adaptive Extended Kalman Filter

DHSCA Dual Head Static Clustering Algorithm ACDF Adaptive Consensus based with the Distributed estimator Filter

UKF Unscented Kalman Filter 4WS4WD Four-wheel-steering and four-wheel-driving

HNTA Hybrid Network Tracking Algorithm POMDP Partially Observed Markov Decision Process

EEA-IAH Energy-Aware Improved Adaptive-Head LPPT Low Prediction Precision requirement Target tracking

CLTA Cooperative Localization and Tracking Algorithm FTS Fuzzy Tree System

DMGIF Distributed Multiple Gaussian Information Filter ARIMA Auto Regressive with Moving Average

ELM Extreme Learning Machine LEMon Localization Employing a location-unaware MObile unit

RSSI Received Signal Strength Indication LEMon-M LEMOn for localization Matching

TS PM-PHD Two Steps Product Multi-sensor Probability Hypothesis Density MC-SSN Mission Critical Sensors and Sensor Networks

AIE-
MCMCDA

Augmented Input Estimation Markov Chain Monte-Carlo
Data Association CS-BnB Convex hull Sampling based Branch and Boun

AMCL Adaptive Monte Carlo Localization IMM Interactive Multi Model

2. Key Performance Indicators in Localization

Localization is one of the essential applications of smart IoT. Sensor nodes (SNs)
keep track of the target and report the location to the user’s application in localization.
It requires a single SN or the collaboration of multiple SNs for the tracking of an object.
In general, localization is divided into two types: range-based and range-free localization.
Range-based localization schemes calculate the distance using multiple geometric and
cross grid overlapping techniques such as received signal strength indicator (RSSI), angle
of arrival (AoA), and time of arrival (ToA). The anchor nodes’ (AN) positions are known in
this technique, and SN determines their locations with reference to AN [26]. In contrast,
range-free schemes use hop-count and distance between AN to SN. Furthermore, it uses
geometric methods and estimation for localization [27].

A single SN often causes rapid energy depletion, high computation, and low accuracy,
which can be resolved by employing multiple SNs [28]. The IoT unifies multiple transmis-
sion techniques, such as Zigbee, Bluetooth, Infrared, WiFi, and the Internet, for efficient
target localization and tracking. The choice of SNs may vary concerning applications such
as radio frequency identification (RFID) in indoor tracking and acoustic sensors array for
underwater localization. This inter-linkage and smooth cooperation among IoT devices is
the cornerstone for its efficient and reliable working. Hence, the IoT-based network is very
heterogeneous in SNs and communication protocols [29,30]. It gives rise to several chal-
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lenges due to non-standardization or unifying of different protocols. However, depending
on the target application, these SNs have several KPIs: energy consumption, rapid power
depletion, computation, and security. The scope of this review is to highlight and evaluate
only the localization KPIs in IoT devices. Therefore, we have not considered KPIs related
to other IoT applications. The critical KPIs of target localization are illustrated in Figure 2.
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2.1. Network Coverage

Coverage is associated with the sensing range of the WSN. In localization, it is the
extent of a target in a network under the surveillance of a SN. Therefore, it ensures the
uniformity of the SNs and avoids black holes in the overall network.

2.2. Security

Generally, the WSN is deployed in an external environment such as a forest, a building,
or a battlefield. It transmits information over the wireless channel vulnerable to various
security attacks such as jamming, spoofing, misdirection, and Sybil attacks. Therefore,
security ensures information reliability, authentication, and integrity, and avoids security
attacks such as flooding and spoofing.

2.3. Target Recovery

Sometimes, a target gets lost due to a prediction error, a communication error, a black
hole, or an SN failure. It leads a target to pass through a specific region undetected and
compromise overall tracking accuracy. Target recovery tries to retrieve such target(s) in
minimum time using an optimal number of sensors to ensure overall energy efficiency.

2.4. Target Prediction

The prediction in localization aims to predict the location of the mobile target. It results
in improving the efficiency of target localization. In general, this parameter measures the
overall probabilities of true-positive and false-negative results.

2.5. Localization Accuracy

Localization accuracy specifies the accuracy by which the position of the target is
determined. In localization, the location of the SN is critical, as a minor location error
generates worthless data.
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2.1. Network Coverage

Coverage is associated with the sensing range of the WSN. In localization, it is the
extent of a target in a network under the surveillance of a SN. Therefore, it ensures the
uniformity of the SNs and avoids black holes in the overall network.

2.2. Security

Generally, the WSN is deployed in an external environment such as a forest, a building,
or a battlefield. It transmits information over the wireless channel vulnerable to various
security attacks such as jamming, spoofing, misdirection, and Sybil attacks. Therefore,
security ensures information reliability, authentication, and integrity, and avoids security
attacks such as flooding and spoofing.

2.3. Target Recovery

Sometimes, a target gets lost due to a prediction error, a communication error, a black
hole, or an SN failure. It leads a target to pass through a specific region undetected and
compromise overall tracking accuracy. Target recovery tries to retrieve such target(s) in
minimum time using an optimal number of sensors to ensure overall energy efficiency.

2.4. Target Prediction

The prediction in localization aims to predict the location of the mobile target. It results
in improving the efficiency of target localization. In general, this parameter measures the
overall probabilities of true-positive and false-negative results.

2.5. Localization Accuracy

Localization accuracy specifies the accuracy by which the position of the target is
determined. In localization, the location of the SN is critical, as a minor location error
generates worthless data.
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2.6. Energy Efficiency

SNs run on batteries that are non-rechargeable and sometimes located in a non-
changeable environment [31]. Some SNs consume more energy during the localization due
to idle listening, overhearing, and packet collision. The energy efficiency and lifetime of
SNs pose severe issues in WSN, specifically in sensitive target tracking applications.

This paper aims to analyze the recent localization schemes based on the KPIs men-
tioned above. A detailed methodology of paper selection is presented in the next section.

3. Methodology

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
approach is used in this review [32]. An overview of the proposed methodology is pre-
sented in Figure 3. The overall methodology consists of four phases:

• Identification.
• Screening.
• Eligibility.
• Selection.
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The identification process consists of the initial selection of the papers based on the
abstracts. Different science libraries, such as Google Scholar, IEEE Xplore, Pub Med, and
Science Direct, were used using various strings. Table 2 provides the list of strings for
searching desired papers. Based on the above-mentioned strings, more than 1000 docu-
ments were obtained from multiple academic databases. Only documents newer than 2010
were considered in the identification process. The obtained documents were filtered out
based on the title in the initial screening process. A total of 249 papers were selected after
applying various screening filters, such as the English language. The 21 duplicates were
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The identification process consists of the initial selection of the papers based on the
abstracts. Different science libraries, such as Google Scholar, IEEE Xplore, Pub Med,
and Science Direct, were used using various strings. Table 2 provides the list of strings
for searching desired papers. Based on the above-mentioned strings, more than 1000
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documents were obtained from multiple academic databases. Only documents newer than
2010 were considered in the identification process. The obtained documents were filtered
out based on the title in the initial screening process. A total of 249 papers were selected
after applying various screening filters, such as the English language. The 21 duplicates
were also removed, which resulted in 228 documents for the eligibility check criteria. All
the papers in this phase were read carefully, and the following parameters made them
eligible for the selection process:

• The paper should be published in journal or conference.
• The papers should consider the target tracking.
• The papers should present a concrete methodology and results.

Table 2. Strings used in search engines.

Academic
Library Search String

Google
Scholar

⇒ Target Tracking
⇒ Target Localization in wireless Network
⇒ Routing protocol for target tracking
⇒ Target recovery in wireless networks
⇒ Target Localization and artificial intelligence
⇒ Single Target Tracking
⇒Multi Target Tracking
⇒ Target Tracking Using Machine Learning
⇒ Prediction Based target Tracking
⇒ Energy Efficient Tracking
⇒ Target Tracking Applications

IEEE Xplore

⇒ (((“All Metadata”:target) AND “All Metadata”:tracking) OR “All Metadata”:wireless networks)
//Filters Applied: 2010–2020
⇒ (((“All Metadata”:target) AND “All Metadata”:tracking) OR “All Metadata”:target localization)
//Filters Applied: 2010–2020
⇒ (((“All Metadata”:target tracking) OR “All Metadata”:single target) OR “All Metadata”:multi target)
//Filters Applied: 2010–2020
⇒ (((“All Metadata”:target tracking) AND “All Metadata”:efficient) OR “All Metadata”: prediction)
//Filters Applied: 2010–2020

PubMed

⇒ target[Title/Abstract] AND tracking[Title/Abstract] OR wireless networks[Title/Abstract] AND
("2010/01/01"[PDAT]: “2020/01/01”[PDAT])
⇒ target[Title/Abstract] AND tracking[Title/Abstract] OR efficient [Title/Abstract] AND
(“2010/01/01”[PDAT]: “2020/01/01”[PDAT])
⇒ target[Title/Abstract] AND tracking[Title/Abstract] OR machine learning [Title/Abstract] AND
(“2010/01/01”[PDAT]: “2020/01/01”[PDAT])

Science Direct
⇒Target Tracking’ and Wireless Networks or prediction. Limited to research articles, conference abstracts.
⇒Target Tracking’ and Wireless Networks or efficient. Limited to research articles, conference abstracts.
⇒Target Tracking’ and Wireless Networks or applications. Limited to research articles, conference abstracts.

Finally, a total of 40 papers were selected after eliminating the papers based on the
above-mentioned criteria. These papers were used as a part of the review and further
analyzed. The following section provides a complete analysis of selected publications
using this methodology.

4. Review of Location Aware Schemes in IoT

A comparison of the state-of-the-art studies is given in Table 3. From the table, it is
clear that most of the existing surveys target a particular localization domain, i.e., outdoor
or indoor.

The main focuses of already published surveys were accuracy, energy efficiency, target
prediction, and security. They lack some critical KPIs, such as recovery, prediction, security,
and localization with smart gadgets, i.e., smartphones. Only 28% of publications covered
prediction; 35% covered security and localization with smartphones. Simultaneously, no
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published survey covered the target recovery KPI, which is an important indicator that
affects the overall performance of the IoT-based localization scheme.

Furthermore, these surveys lacked detail and generic discussion in terms of protocols
and techniques for localization schemes. Therefore, there is a need for a cross-domain
survey that puts forward an in-depth discussion on the IoT-based localization scheme.
As mentioned in Section 3, a total of 40 papers were selected using the PRISMA approach.
The key ideas of the selected papers are presented in Table 4. In addition to that, the
selected studies were analyzed based on publishing details and target applications.

Table 3. Comparison between this paper and published surveys.

References Indoor
Localization

Outdoor
Localization

Smartphone
Localization Security Energy

Efficiency Accuracy Target
Recovery

Target
Prediction

[33] X X X
[34] X X X
[35] X X X
[36] X X X X X
[37] X X
[38] X X X
[39] X X X
[40] X X X X X
[41] X X X
[42] X X X X
[43] X X X X X
[44] X X X
[45] X X X X X
[46] X X X X X

Ours X X X X X X X X

Table 4. Key ideas of selected papers.

Name Overview

Delaney et al. [47]
This paper presents an energy efficient routing protocol using NHs model for tree structured WSN.
Apart from energy efficiency, the proposed solution has the ability to present good results in a lossy
network environment.

Alaybeyoglu et al. [48] This paper presents an efficient tracking scheme for high speed targets. Additionally, the proposed
scheme helps in reducing the target miss ratio during the whole tracking lifecycle.

Mirsadeghi et al. [49] This paper presents an energy efficient prediction based target tracking scheme for WSN. The node
closest to the object or with the highest energy is selected as a CH to prolong the network lifetime.

Patil et al. [50] This paper presents an energy efficient WSHAN to improve the efficiency of target tracking
target recovery.

Rouhani et al. [51] This paper presents a solution to resolve the boundary target tracking issues using static clustering.
The proposed solution is energy efficient, reasonably accurate and reliable in terms of target tracking.

Wahdan et al. [52] This paper presents a hybrid solution of static networking clustering and dynamic CH. The dynamic
CH uniformly utilize the energy of member SNs to prolong the network lifetime and prediction.

Zhou et al. [53]

This paper presents a fusion of MMA and PPHD for multi-target tracking in an urban area.
Additionally, K-mean clustering is used to calculate the number of targets at any given time.
The proposed scheme results in the tracking of dynamically changing unknown numbers of targets in
urban areas.
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Table 4. Cont.

Name Overview

Amudha et al. [54]
This paper presents a multi camera based scheme for target tracking. In this scheme, the camera near
the mobile target is activated while all other cameras remain in a sleep state to conserve energy.
In contrast, all the cameras are activated when a target is lost to improve the tracking.

Bhowmik et al. [55]
This paper presents an algorithm is to improve the overall coverage and target tracking. In addition
to that, the proposed algorithm uses the FSM based RSSI tracking algorithm to make it more
energy efficient.

Jinan et al. [56] This paper presents a multi-model framework based on the PUESRF and JPDA. It results in
improving the accuracy and precision of data that makes target tracking consistent.

Darabkh et al. [57]
This paper presents an adaptive CH algorithm with an aim to achieve a better target tracking by
efficiently electing CH and cluster members. The proposed algorithm is energy efficiency and
improves the network scalability.

Khakpour et al. [58]
This paper presents a fusion of DCTT and PCTT against vehicular tracking in a Vehicular Ad-hoc
Network. To improve the target prediction, The DCTT performs in a distributed manner while PCTT
is used for a centralized prediction algorithm.

Joshi et al. [59]
This paper presents a static cluster based target tracking for the prediction that is independent of
wireless network architecture (homogenous or heterogeneous). The proposed scheme uses a linear
prediction technique to calculate direction and speed to improve the target prediction.

Xiao et al. [60]
This paper presents a novel ASMT using Bayesian estimation to efficiently track multiple targets.
The ASMT provides high accuracy, precision based multi-target tracking, less computation and
solves the data association problem in WSN very efficiently by using location state and velocity state.

Silva et al. [61] This paper presents an energy efficient scheme with the ability to detect and highlight the fake node
positioning and bogus data flooding.

Oracevic et al. [62]
This paper presents a SRPTT algorithm to prevent the rouge SN from faking its location or flooding
the bogus packets in a WSN. The SRPTT maintains a balance between security and mobile target
tracking by employing a reputation concept.

Alshamaa et al. [63]
This paper presents a novel zoning based localization technique for indoor target tracking.
The proposed technique develops a belief function by combining fingerprint based target observation
and evidence associated with sensor mobility to improve the accuracy of target tracking.

Chen et al. [64] This paper presents an adaptive extended kalman filter to remove and update the noise covariance.
The proposed solution results in improving the accuracy and reliability of target tracking.

Panag et al. [65]
This paper presents a DHSCA to uniformly utilize sensors during the tracking. The proposed
algorithm simplifies the set-up phase time of the network resulting in reducing the overhead of
the network.

Zhang et al. [66]
This paper presents a dynamic clustering-based adaptive filtering scheme for target tracking in a
WSN. The proposed scheme consists of two stages hierarchal data aggregation technique, which
results in accurate and energy efficient target tracking.

Qian et al. [67]

This paper presents an AUKF algorithm to enhance the robustness and accuracy of the recovery
mechanism. The AUKF fine-tunes the noise covariance matrix to increase the accuracy and
robustness of the recovery mechanism. The vigorous scheduling of static and mobile SNs improves
the tracking probability with less energy consumption.

Zhang et al. [68]
This paper presents an algorithm based on a hybrid sensor network to estimate the target region via
static sensors. Additionally, a movement algorithm is presented for nodes to select the location.
The proposed solution results in conserving the energy by reducing the target tracking sensors.

Li et al. [69] This paper presents a sensor selection technique based on POMDP to reduce the sensor selection
lagging. It results in improving the target tracking accuracy and reliability.

Darabkh et al. [70]

This paper presents an error and Energy-aware cluster head selection algorithm to improve the target
localization. The proposed algorithm improves energy consumption and simplifies the selection of
cluster members. Additionally, it reduces the packets overhead by minimizing the transmission of
control messages.

Liu et al. [71] This paper presents energy efficient scheme with low prediction accuracy. Apart from energy
efficiency, it reduces the target miss rate probability.
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Table 4. Cont.

Name Overview

Luo et al. [72] This paper presents a scheme to improve the target tracking for an indoor environment using a CLTA.

Yu et al. [73] This paper presents a mobile node-based target tracking scheme to enhance the target tracking
accuracy and transmission reliability.

Vallas et al. [74]
This paper presents a Gaussian filter-based multi-sigma point filter to reduce the curse of
dimensionality in high dimension systems. Furthermore, it improves the efficiency of tracking the
multiple targets in a WSN.

Ghodousi et al. [75]
This paper presents an energy efficient tracking scheme using ARIMA and UKF. The ARIMA, after
observing target in equal interval, predicts its future location while UKF estimates the target location.
The proposed scheme preserves the energy of SNs and improves the network lifetime.

Liang et al. [76] This paper presents a trust-based distributed KF scheme for secure and reliable target tracking.

Khan et al. [77] This paper presents a dynamic clustering-based verifiable multi iteration scheme to improve target
tracking. The proposed scheme improves the accuracy and reliability of tracking.

Liu et al. [78] This paper presents an object localization scheme to provide better localization results on the
sequences undergoing shape deformation and illumination changes.

Nguyen et al. [79] This paper presents a solution to improve the accuracy of target tracking in harsh radio
environments. The proposed scheme is efficient in both indoor and outdoor environments.

Ullah et al. [80] This paper presents an underwater target tracking scheme intending to achieve energy efficiency and
tracking accuracy.

Alberto et al. [81]
This paper presents a multi-model tracking system by unifying fingerprint-based tracking with
neural networks. The proposed system also employs a Gaussian outliers filter with neural networks
to further improve the tracking accuracy.

Liu et al. [82] This paper presents a scheme for tracking multiple targets in a harsh environment accurately
and precisely.

Liu et al. [83]
This paper presents an AFS for accurate and efficient target tracking. The proposed scheme is robust
and fault-tolerant with a low target loss rate. Moreover, PSO is used to fine-tune and improve the
overall tracking performance.

Mahmoudreza et al. [84] This paper presents a solution to tackle the multiple target tracking problems with accurate data
association. It results in the prevention of false alarms.

Li et al. [85] This paper presents a hybrid solution to provide accurate and reliable localization in harsh
manufacturing workshops.

Reisinger et al. [86] This paper presents an IMM tracking scheme unified with UKF to track the targets efficiently.

4.1. Distribution Based on Publishing Year

We aim to highlight the recent trends in target localization. Therefore, the papers
from the last seven years (2014 and onward) are considered. The yearly distribution of the
selected publications is presented in Figure 4. From the figure, it is depicted that there was
less interest in localization in earlier years. However, it started rising from 2017. The last
three years of research (2017–2019) comprised 67% of publications selected for this review.
2020 was just beginning when the papers were shortlisted. However, based on the trend,
more contributions are expected in this domain than in past years.

4.2. Distribution Based on Publication Venue

This section aims to highlight the publication venue distribution. Our study includes
various publication venues, such as IEEE, Elsevier, MDPI, and SAGE. The distribution
of publications concerning the venues is presented in Figure 5. It was found that IEEE
and Elsevier support most publications in the domain of target tracking—57.5% and 20%,
respectively. Therefore, these two venues are recommended for localization in IoT.
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4.4. Analysis Based on Localization KPIs

There are various localization KPIs, such as energy efficiency, localization accuracy,
target prediction, target recovery, and security. Every paper is trying to address single
or multiple KPIs. Table 5 lists the selected publications along with the target KPIs. The
lifetime of sensors is a major concern in WSNs, as battery replacement is a tiring and time-
consuming job. Additionally, low-battery or abandoned sensors can halt the performance
of the overall network in emergencies.

Furthermore, accurate predictions and identification of targets are desired in location-
aware schemes. Therefore, energy efficiency, tracking accuracy, and target prediction are
the most researched KPIs in target tracking of WSNs, as shown in Figure 7. In contrast,
target recovery and security were explored in only 11% of the papers selected. These are
also important aspects of localization that need the researcher’s attention in the future.
In addition to the above analysis, a general overview of all the papers, including the
proposed approach, network structure, number of targets, and performance parameters, is
presented in Table 6.
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Table 5. Cont.

Name Energy Efficiency Localization Accuracy Target Predication Target Recovery Security

Oracevic et al. [62] X X X
Alshamaa et al. [63] X
Chen et al. [64] X X
Panag et al. [65] X
Zhang et al. [66] X X
Qian et al. [67] X X
Zhang et al. [68] X X
Li et al. [69] X X
Darabkh et al. [70] X X
Liu et al. [71] X X X
Luo et al. [72] X
Yu et al. [73] X X
Vallas et al. [74] X X
Ghodousi et al. [75] X X X
Liang et al. [76] X X
Khan et al. [77] X X X
Liu et al. [78] X X
Nguyen et al. [79] X
Ullah et al. [80] X X
Alberto et al. [81] X
Liu et al. [82] X
Liu et al. [83] X X X
Mahmoudreza et al. [84] X X
Li et al. [85] X
Reisinger et al. [86] X X

Table 6. Overview of selected papers.

Ref. Proposed Approach Network Structure Number of
Targets

Performance
Parameters Tool

[47] ETX-NH Tree Single PDR: 96% TOSSIM

[48] PF-DLSTA Tree Single N/A NS2

[49] Low Power Target Prediction
Mechanism Dynamic Cluster Single MR: 0.69% N/A

[50] WSHAN Dynamic Cluster Single EE: 37% MATLAB

[51] BCTT Static Cluster Single EE: 48% Omnet++

[52] SCDCH Static Cluster Single N/A MATLAB

[53] PPHD-MMA Dynamic Cluster Multiple N/A N/A

[54] VGTR Dynamic Cluster Single TMR: 99% reduction MATLAB

[55] DCTC with Fuzzy Sensing Tree Single N/A TinyOS and nesC

[56] JPDA, PUESRF Dynamic Cluster Multiple N/A N/A
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Table 6. Cont.

Ref. Proposed Approach Network Structure Number of
Targets

Performance
Parameters Tool

[57] IPAH Dynamic Cluster Single EE: 40% improved,
LE: 52% improved MATLAB

[58] DCTT, PCTT Static Cluster Single N/A NS2 + TOSSIM

[59] Prediction based object
tracking algorithm Static Cluster Single PA: 99% NS2

[60] ASMT Static Cluster Multiple FR: >14% N/A

[61] GTPM Dynamic Cluster Single N/A NS2

[62] SRPTT Static Cluster Single N/A Java Simulator

[63] Extended observation model,
2nd mobility model Static Cluster Single N/A N/A

[64] AEKF Static Cluster Single RMSE: 32.53% N/A

[65] DHSCA Static Cluster Single N/A Fortran
PowerStation 4.0

[66] ACDF Dynamic Cluster Single N/A N/A

[67] AUKF Static Cluster Single N/A MATLAB

[68] HNTA Hybrid Cluster Multiple N/A N/A

[69] Adaptive sensor selection
algorithm with POMDP Dynamic Cluster Multiple N/A N/A

[70] EEA-IAH Dynamic Cluster Single N/A MATLAB

[71] LPPT Static Cluster Single Reduce MR: 36.34%,
EE: 5.2 times Omnet++

[72] CLTA Dynamic Cluster Single LE: 0.65 m MATLAB

[73] FTS Tree Single LE: >50 improvement MATLAB

[74] DMGIF Dynamic Cluster Multiple N/A N/A

[75] ARIMA, AUKF Dynamic Cluster Single N/A Opnet +
MATLAB

[76] Trust-based distributed
Kalman filtering. Dynamic Cluster Single N/A N/A

[77] Dynamic cooperative
multilateral sensing Dynamic Cluster Single LE: 19% improved MATLAB

[78] ELM compressive sensing Dynamic Cluster Single N/A MATLAB

[79] LEMon, LEMon-M Static Cluster Single Outdoor and Indoor LE:
10 m and 2 m improved N/A

[80] Distance and angle-based
localization Dynamic Cluster Single LE: 90% improved,

ABL: 104.9 m N/A

[81] SWiBluX Dynamic Cluster Single LE: 45% improved N/A

[82] TS PM-PHD Dynamic Cluster Multiple N/A N/A

[83] AFS for MC-SSN Tree Single LE: <0.2% N/A

[84] AIE-MCMCDA Dynamic Cluster Multiple LE: 0.39–4.12% N/A

[85] CS-BnB, BnB-AMCL Dynamic Cluster Single LE: 0.005 m/0.111 deg 4WS4WDr

[86] IMM, UKF Dynamic Multiple EE: 4 times N/A
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5. Discussion

The above section provides a review of the papers selected. In addition to that, we
have learned several lessons during our analysis. For example, a lot of research has been
done in pursuance of making WSNs smart and energy-efficient. A system that consumes
much energy is ill-suited for most applications. Therefore, energy consumption is one of the
core issues in terms of smart environment and localization. It is directly linked to the latency
and performance of localization. Some influential factors are the number of nodes and
transmission range. The number of SNs involved in the target localization will significantly
affect localization accuracy and energy consumption. The higher the involvement of SNs in
localization, the higher the localization accuracy and energy consumption. Hence, we must
maintain a balance between accuracy and overall energy consumption. The transmission
range is also a leading cause of energy consumption. Higher signal power results in
improving the signal range of the SN. However, it also results in quick energy depletion.
Thus, a trade-off between signal range and energy consumption is required. Some other
factors which affect energy consumption are interference and periodic beacon transmission.

Accuracy is fundamental in terms of localization and its applications. In recent years,
extensive research has been done to improve localization accuracy. However, most of
the schemes are environment-specific (indoor or outdoor), which affects their widespread
applicability. In an indoor environment, the efficiency and accuracy of localization show
notable reductions in the presence of objects, noise, and the multi-path effect. Hence, we
need such schemes to limit the effect of surrounding objects and the multi-path impact
on accuracy. Contrarily, the localization accuracy is primarily dependent on GPS and
radio frequency (RF) in outdoor scenarios. However, high accuracy is not achievable, and
batteries are depleted rapidly. The researchers are mainly focusing on indoor localization.
Thus, outdoor localization is still an open issue. There is a need to design a scheme that is
independent of the environment in terms of performance.

Different prediction algorithms are used to improve target localization. However,
these power-hungry algorithms reduce the lifetimes of SNs. In recent years, researchers
have presented different low duty cycle prediction schemes in which the SNs close to
the target remain functional, while others are kept in a sleep state [49,59]. However, the
prediction algorithm must be accurate because failure to accurately predict the next target
location might drastically affect the localization accuracy and performance. The error in
the prediction algorithm due to varying speed results in target loss. To recover the lost
target, all SNs should go in an active state to track and recover the lost target. However,
that results in the rapid depletion of energy. Hence, multiple energy-efficient recovery
schemes have been presented using different filters such as KF, UKF [54,64]. Furthermore,
some researchers have used the genetic algorithm for target tracking and recovery [83].

Security is also a major concern in mission-critical applications such as battlefield
monitoring, soldier monitoring, and telehealth monitoring. Often these SNs are deployed
in a hostile environment that can be easily corrupt and exploited by intruders. To overcome
this, some authors proposed k-mean clustering for node authenticity in [76], in which only
trustworthy SNs are used for localization and other operations. Some studies suggest
the use of cryptography or digital signature base security [62,84]. Network coverage is
one of the issues in WSN and directly related to localization performance. Non-uniform
distribution of SNs would result in holes in the region of SN deployment. Multiple network
techniques have been presented since. We differentiate network structures into two types:
tree structure; cluster structure. In a tree-based network structure, deployed SNs form a
logical tree architecture where data travel from leaf SN to root SN. This process preserves
energy by avoiding packet flooding and broadcasting.

However, all the nodes in a cluster structure are combined to form a cluster with
one or multiple cluster heads (CHs). Cluster-based topology improves the scalability and
bandwidth efficiency as compared to the other topologies. A CH reduces the packets
transmitted to a base station, improving energy consumption, bandwidth usage, and
security. Clustering can be either static or dynamic. Static clusters are created at network
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establishment time and remain fixed during the whole lifetime of the network. Apart from
its simplicity, it has several drawbacks, such as the life of the whole cluster being dependent
upon the CH. Additionally, it eliminates the possibility of data sharing and collaboration
among clusters. In contrast, dynamic clusters form on runtime as the target travels. They
are more flexible and energy-efficient than static clustering, because the clusters are formed
when the necessity arises. However, they face data redundancy and interference issues.

6. Future Directions

Localization and its applications have gained much attention from researchers in
the past few years. Different schemes have been presented to improve energy efficiency,
localization accuracy, target prediction, and security. Despite that, many aspects still need
improvements to enhance the capabilities of these applications. In this section, we discuss
the open research challenges and possible future directions in this domain.

• Environment Independence—The majority of studies focus on either indoor [87–90] or
outdoor localization [91–93]. This environment-centric application’s nature limits the
applicability and widespread use in real-life scenarios. Hence, there is a dire need for
environment-independent localization algorithms that are feasible for both indoor and
outdoor applications [94–96]. This will eventually improve the adaptability of these
applications in practical applications such as emergency evacuations, shipment/cargo
tracking, and mission-critical applications.

• Security and Privacy—Security is one of the least explored challenges in IoT-based
localization applications. However, this domain requires attention, as a user reveals
far more personal information (via wireless channels) when using such applications.
Compromising user location can be dangerous and life-threatening for some IoT
services and applications, such as health, industry, and defense. For example, in
an industrial environment, compromises in security and privacy might lead to a
violation of confidential information related to the company’s product. Henceforth,
the rapid increase in cybersecurity challenges and lack of standardization for basic
privacy mechanisms make it an open research problem [12,97]. Multiple authors have
suggested the embedding of deep learning techniques to improve the security in
IoT-based Localization applications [98–100]. Additionally, encryption algorithms and
digital signatures using public and private keys can improve the resilience against
external attacks [101,102]. However, the extent of security by using minimal resources
is still a big challenge.

• Energy Efficiency—Generally, the SNs are tiny with irreplaceable batteries that make
them resource-scarce. Due to this, energy consumption is one of the primary challenges
in localization applications. For that, some energy-efficient techniques [103–105]
have been presented. These SNs are mostly deployed in external environments,
which motivates the use of energy harvesting [106,107]. In this context, a few energy
harvesting techniques for the prolonging of network lifetime have been presented in
the literature [108–111]. Furthermore, machine learning (ML) algorithms integrated
with energy harvesting technology are also candidates for improving network lifetime
and performance by predicting the amount of energy to be harvested from ambient in
a specific duty cycle [112,113].

• Accuracy—Extensive research has been done on localization accuracy in IoT. However,
most of the proposed schemes neglect the resource-scarce nature of the SN, thereby
making them ineligible for real-life applications. For example, GPS and cellular data
improve accuracy but deplete the battery rapidly. Additionally, the accuracy is com-
promised by the shadowing effect. Therefore, the implementations of error-resilient
and vigorous mechanisms such as adaptive scheduling algorithms, prediction, and
localization optimization schemes can be developed to improve localization accu-
racy [114]. Cloud computing with better prediction algorithms (process at cloud) can
lead to accurate localization schemes while consuming minimal resources. In the liter-
ature, some authors proposed ML-based localization schemes [115–117] to improve
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the localization accuracy. By integrating ML with the localization, the progressive
likelihood surpassed the posterior likelihood. In addition to that, this could also assist
with predicting the target’s next possible location. Henceforth, it will activate only
those SNs which are closest to that prediction.

• Data Flow—The data flow varies from scenario to scenario, i.e., normal or emergency.
During a natural catastrophe/disaster, communication is an essential part of an emer-
gency evacuation. Likewise, IoT devices are commonly used in healthcare—e.g.,
remote monitoring [118,119] and body posture monitoring [120,121]. The interruption
in data flow can risk the patient’s life, which makes IoT inadequate for the health sector.
Therefore, such schemes need to be developed which can perform better in emergency
scenarios [42,122]. Priority-driven approaches have the potential to overcome such
problems. For example, the IEEE 802.15.6 WBAN standard and its compatible devices
can resolve this problem. This standard consists of eight priority levels, and the data
flow of emergency traffic is always prioritized [123].

• Data Association—Tracking multiple targets is a challenging task because of the differ-
ences in speed and direction of targets. Due to the presence of multiple targets, SNs
receive multiple pieces of target information [124–126]. The main hurdle is to differen-
tiate which information belongs to which target. This improbability in information
results in the data association problem. Therefore, distinguishing the data of specific
targets in the presence of multiple targets requires attention. Various classification
algorithms, such as support vector machines (SVM), decision trees (DT), and neural
networks offer the potential to resolve this problem.

7. Conclusions

IoT’s intrinsic nature makes it deployable everywhere—e.g., roads, homes, forests,
and even underwater. Localization is one of the widely used applications of IoT. It is used
in diverse fields, such as healthcare, security surveillance, monitoring, and vehicle tracking.
Localization offers application-oriented KPIs such as energy, target prediction, network
coverage, and security. Therefore, numerous studies/schemes have been presented in
the literature to address one or multiple KPIs. This paper presented a detailed review of
the recently proposed localization schemes. The review examined different localization
schemes, key ideas, propositions, network architectures, performance parameters, and
target KPIs. It is noted that the dynamic CH selection improves the flexibility and energy
efficiency of the scheme.

Furthermore, the paper showed that there is always a trade-off among various KPIs,
i.e., target recovery and energy efficiency. The review also highlighted that most of the
selected schemes improved the accuracy and energy efficiency of the localization applica-
tions. In contrast, security and target recovery were less explored. Lastly, we highlighted
the open research challenges to improving the performance of localization in IoT.
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