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Abstract: EEG-based deep learning models have trended toward models that are designed to perform
classification on any individual (cross-participant models). However, because EEG varies across
participants due to non-stationarity and individual differences, certain guidelines must be followed
for partitioning data into training, validation, and testing sets, in order for cross-participant models
to avoid overestimation of model accuracy. Despite this necessity, the majority of EEG-based cross-
participant models have not adopted such guidelines. Furthermore, some data repositories may
unwittingly contribute to the problem by providing partitioned test and non-test datasets for reasons
such as competition support. In this study, we demonstrate how improper dataset partitioning
and the resulting improper training, validation, and testing of a cross-participant model leads to
overestimated model accuracy. We demonstrate this mathematically, and empirically, using five
publicly available datasets. To build the cross-participant models for these datasets, we replicate
published results and demonstrate how the model accuracies are significantly reduced when proper
EEG cross-participant model guidelines are followed. Our empirical results show that by not
following these guidelines, error rates of cross-participant models can be underestimated between
35% and 3900%. This misrepresentation of model performance for the general population potentially
slows scientific progress toward truly high-performing classification models.

Keywords: EEG; deep learning; non-stationarity; individual differences; inter-subject variability;
covariate shift; cross-participant; inter-participant

1. Introduction

EEG analysis has been a useful tool in neuroscience for decades in both clinical settings
and the medical research community, proving to be useful for numerous applications such
as classifying sleep patterns, epilepsy, identifying patterns of attention deficit hyperactivity
disorder (ADHD), levels of mental workload [1,2], and emotion recognition [3]. EEG has
also been useful for neural engineering with Brain–Machine Interfaces (BMIs), primarily
due to EEG being used in combination with machine learning. Over the past decade, deep
learning (DL) has been increasingly used to improve performance within models, allowing for
automatic end-to-end processing and classification of the data, to include feature extraction
using sequence models. Despite these improvements in model selection, the challenges of
EEG’s non-stationarity and inter-participant variability are still present [4,5] pp. 499–502.

One of the most significant challenges in building EEG classification models that are
intended for use on any individual’s EEG (cross-participant model) is accounting for the
covariate shift that occurs due to EEG’s non-stationarity and inter-participant variabil-
ity [6–10]. Covariate shift in machine learning is a difference in the input distributions
of the training and testing datasets [11]. This difference can significantly affect model
performance, as a general guideline and assumption that is used in supervised machine
learning is that these two input distributions are independent and identically distributed
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(i.i.d. assumption). Without this assumption, many theoretical guarantees and bounds
on minimizing the test error are lost. For EEG cross-participant classification models, this
covariate shift and its effects will always be present when the model classifies EEG data
belonging to a participant that the model has not seen. However, models should be tested
with data, which is representative of the data they will predict upon in the real world, and
thus, EEG cross-participant models should be tested with unseen participants. Therefore,
as a best practice in reporting accurate model performance for models intended to classify
any individual’s EEG, EEG cross-participant models should always be validated and tested
using EEG data that comes from participants the model has not trained upon.

Despite previous work showing that EEG has inter-participant variability [5] pp. 499–
502, and that this inter-participant variability leads to covariate shift when EEG models
are tested with an unseen participant [6–10], the majority of EEG studies built to classify
any individual’s EEG do not follow this best practice of testing the model with unseen
participants. In a recent literature review of deep learning-based EEG models by Roy
et al., only 23 out of 108 cross-participant models utilized some method of proper dataset
partitioning to ensure the model was tested with a participant that was not used for
training [3]. This same literature review also compared the number of studies exploring
models built for a specific individual (within-participant) versus cross-participant, and
they found that since 2016, the growing trend has shifted toward building cross-participant
models, with the latest ratio of studies researching cross-participant models to within-
participant models being over 5:1 [3]. With this ever-growing popularity in EEG cross-
participant models, it is critical that the body of research corrects its trend by properly
using EEG data from unseen participants for validation and testing. By not following this
best practice, the research pool may become increasingly diluted with studies reporting
model performance metrics that are unrealistic and unrepresentative of the model’s true
ability. Additionally, data repositories that split data into training and testing datasets
prior to being made available for download, such as Kaggle [12] and the University of
California, Irvine (UCI) machine learning data repository [13], should also take this best
practice into account. In this paper, we aim to present to the reader the importance of
proper dataset partitioning.

This paper has the following structure. First, in Section 2, a well-established back-
ground is presented to ground the reader in regard to covariate shift and inter-participant
variability within EEG; then, we fully articulate the problem of improper dataset partition-
ing using this background knowledge. Next, in Section 3, we demonstrate the effects of
covariate shift and inter-participant variability both mathematically and in simple models,
presenting evidence for the effects of these phenomena at a fundamental level. Finally, in
Section 4, we utilize five publicly available datasets to present empirically the difference in
model performance when following and not following this best practice of proper model
validation and testing. We close with discussion in Section 5 and conclusions and future
work in Section 6.

2. Background
2.1. Covariate Shift

For supervised machine learning, a standard guideline is that the training input
distribution PTR(x) is equivalent to the test input distribution PTE(x) [11]. However, when
these two distributions are not equivalent PTR(x) 6= PTE(x), then there is typically a decrease
in performance for most machine learning models. This form of dataset shift is referred
to as covariate shift. This can happen for a number of reasons, such as the training and
testing data being drawn from different populations, a lack of randomness in the number of
trials/observations, an inadequate amount of them, or other biased sampling measures; in
the case of EEG, covariate shift is due to individual differences and non-stationarity [10,14].

Below, in Figure 1, we see a simple example of covariate shift. Here, there is a
classification boundary between two different classes, one represented by circles, and the
other represented by triangles, with the classification boundary following the function
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y = −x3. The training dataset is marked in red and the test dataset is marked in blue.
If we train a machine learning algorithm on only the training dataset and then test it on
similar data such that PTR(x) = PTE(x), then the model will be able to perform very well
when tested, since the classification boundary is well defined between the two classes. In
fact, many functions could easily define a reasonable boundary in this case; for example,
y = x2/3 or y = 2|x| would yield good performance at discriminating the two classes of
the training set shown in Figure 1. However, if we trained the model using only the red
training data and tested with the blue testing data, the machine learning algorithm would
have been trained with different data than it would be tested with (PTR(x) 6= PTE(x)), and it
is unlikely that during training, the machine learning algorithm would have been able to
discover the more complicated underlying discriminator function y = −x3 having used
only the red training data. Thus, the model trained only on the training data would perform
poorly for classification of the test data, because the data distribution of the features from
the training data and the distribution of the features from the test data are different.

Figure 1. Simple example of covariate shift in classification data. Two classes of data are represented
by circles and triangles, with the training dataset marked in red and the test dataset marked in blue.
The true decision boundary between the two classes follows the function y = −x3.

There are a number of different methods that can be used to detect if covariate shift
is present due to the input distributions from two datasets being different. Given two
datasets, PTR(x) and PTE(x), one method is to calculate how different the two probability
distributions of the two datasets are,

DKL(PTR||PTE) = Ex∼PTR

[
log PTE(x)

PTR(x)

]
= Ex∼PTR [log(PTR(x))−

log(PTE(x))].

Another method for covariate shift detection is through visualization of the distri-
butions in low-dimensional space using dimensionality reduction techniques. Manifold
learning techniques such as t-Distributed Stochastic Neighbor Embedding (t-SNE), multi-
dimensional scaling (MDS), IsoMap, and others, are useful for this as they capture non-
linear information in the data [15] pp. 209–226. t-SNE is an unsupervised machine learning
algorithm that is widely used for data visualization as it is particularly sensitive to local
structure and reduces the tendency to crowd points toward the center of low-dimensional
space [16]. As an unsupervised machine learning algorithm, t-SNE does not use labels
of data for its learning, and it solely uses the features of each observation to perform
its algorithm. It does this by first constructing a probability distribution for all pairs of
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observations in high-dimensional space such that similar observations (observations that
are closer to one another in feature space) are assigned a higher probability of being neigh-
bors, and dissimilar observations (observations that are further apart in feature space) are
assigned a lower probability of being neighbors. Then, a new dataset is created with the
same number of observations, but it is now spread randomly in low-dimensional feature
space. It uses a Student’s t-distribution to compute the similarity between all pairs of
observations in low-dimensional space to create a second probability distribution and then
uses gradient descent to iteratively shift the observations such that the KL divergence
between the two different distributions is minimized. The main limitations of t-SNE are
that it is computationally expensive and that the algorithm uses a non-convex objective
function (KL divergence minimized using gradient descent, but initiated randomly), mean-
ing multiple executions of the algorithm can lead to different embeddings (mappings of
high-dimensional space to low-dimensional space). The dimensions of t-SNE are also
difficult to interpret, as they are arbitrary distances that represent that closer neighboring
points in low-dimensional space are likely to be neighbors in high-dimensional space [17].

Figure 2 shows an example of previous work utilizing t-SNE for high-dimensional
data visualization outside of the EEG domain, with t-SNE performed on the well-known
MNIST dataset, with the clusters corresponding to different input distributions within the
data, and the colors corresponding to different classes [16,18].

Figure 2. Example of 2D visualization using t-SNE on the MNIST dataset [16,18]. The dimensions of
t-SNE are arbitrary distances that represent that closer neighboring points in low-dimensional space
are likely to be neighbors in high-dimensional space.

t-SNE can also be used to visually detect covariate shift. A common example of
covariate shift is when the testing data is partitioned from a subset of the clusters (i.e.,
participants for EEG), and the training data is partitioned from a different and separate
subset of clusters; e.g., if in Figure 2 class 0 (red) was selected as the test data and classes 1–9
were selected as the training data. Cluster analysis algorithms such as k-means clustering
or fuzzy c-means clustering can be utilized to identify if the training and testing data
belong to separate clusters [19]; however, a simpler method to detect this is through visual
inspection of the t-SNE graph. One can separately label the training and test data in the
graph (e.g., with different colors) and then visually inspect to see if the training and test
data correspond to separate clusters within the graph (covariate shift). Visual inspection
for clusters involves identifying that for the majority of observations in one class, the
majority of the nearest neighbors for those observations also belong to the same class, with
a clear boundary between its class (cluster) and another class, meaning there is little to no
overlap. This simple method of visual inspection also provides the benefit of visualizing
the high-dimensional data in 2D.
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2.2. Non-Stationarity and Individual Differences

One of the significant challenges associated with EEG analysis and classification
is that EEG is both non-stationary [4] and that there are individual differences in EEG
signals across individuals that result in inter-participant variability [5] pp. 499–502. EEG
non-stationarity is due to a variety of internal and external causes, such as brain activity
causing continual changes in states of neuronal assemblies [20], user attention levels, user
fatigue, sensor equipment used, and scalp placement of electrodes [21]. Similar to non-
stationarity, the individual differences in EEG signals are also due to a variety of factors,
such as differences in variability in frequency peaks for individuals due to differences in
personality traits [22], genetic variations [23–25], gamma–aminobutyric acid concentrations
in the brain [26,27], and memory task performance [28].

These individual differences are underlying shifting covariates across participants,
and they result in a change in the input distributions across all participants, while the
conditional distribution of the output class y given the input feature vector x stays the
same, resulting in a covariate shift for cross-participant machine learning models when
they are tested upon EEG from participants that the model has not seen [6,7]. Thus, because
of this inherent inter-participant variability in EEG signals, different strategies need to
be used when performing EEG analysis [5] pp. 499–502 and training of cross-participant
models [29].

2.3. Approaches to Data and Problem Formulation

When developing an EEG classification model, it is likely that it will belong to one
of two main types of EEG models, either within-participant (a.k.a. intra-subject) or cross-
participant (a.k.a. inter-subject) [3]. A within-participant model is one that intends to
perform accurate classification of EEG for one individual and is thus built using only data
from one participant. A cross-participant model is one that intends to perform classification
on multiple individuals and is thus built using data from multiple participants. By training
on data from multiple individuals, the goal is that the model becomes invariant to inter-
participant variability, learning a function that accurately maps EEG input to the desired
output label for most people. Additionally, cross-participant models can be built for
different purposes and goals, such as for specific populations or for the general population.
For example, the goal of a cross-participant BMI model could be to perform classification
on only those specific individuals that use that specific BMI machinery. However, a more
typical cross-participant model is one in which results are reported as though they are
indicative of the model’s ability to perform classification on the general population and
thus any individual.

Each of these model types require different approaches to data partitioning across
participants in order to report results that are accurate for their intended goal and target
population. The within-participant model is more straightforward, as there is only one
participant for both training, validation, and testing. However in cross-participant models,
there are data from multiple participants, and because of the inter-participant variability
that is inherent in EEG from individual to individual, how participants are used in cross-
participant models for training, validation, and testing can have significant effects on model
performance due to the differences in input distributions from individual to individual [6,7].
For example, if a cross-participant model is tested using data from an unseen participant,
then the model’s classification performance will be reduced due to the resulting covariate
shift of this individual’s unseen data. If a cross-participant model is only intended to
perform classification on the same population that it is training upon and not also unseen
individuals, as is in some BMI models, then ensuring the model is tested with unseen
individuals is not necessary. However, for cross-participant models in which the model
is intended for the general population and therefore unseen individuals, data should be
prepared such that participants that are used for training are not also used for validation
or testing, and participants used for validation are not also used for testing; otherwise, the
model’s performance will not accurately reflect its intended purpose of classification upon
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unseen individuals. This means that if participant A is used for training, then not even
a single observation from participant A should be used for validation or testing, and if
participant B is used for validation, then not even a single observation from participant
B should be used for testing. An example of this method of proper vs. improper dataset
partitioning for general population cross-participant models is depicted in Figure 3. It is
also worth noting that proper validation of general population cross-participant models
does not exclude the use of cross-validation (CV) as a performance evaluation technique.
Instead, CV merely needs to be modified so that for each fold, participants used in training
are not also used for validation, such as a Leave-One-Participant-Out approach or a Leave-
N-Participants-Out approach.

Figure 3. Two examples of creating the training, validation, and testing datasets with data from
five participants. Numbers correspond to unique observations within each participant’s dataset,
with “1–60” referring to observations #1 through #60, “61–80” referring to observations #61 through
#80, etc. The top illustrates improper dataset partitioning: data from each participant are used for
all three datasets. In the top panel, while no unique observation is in more than one subset, each
participants’ data is still present in each subset. The bottom illustrates proper dataset partitioning:
each participant’s data are present in no more than one of the subsets.

Cross-participant models have significantly grown in popularity in recent years [3];
however, the majority of studies using cross-participant models do not follow this proper
method of dataset partitioning. In Roy et al.’s literature review of deep learning-based
EEG models, out of 108 studies using cross-participant models, only 23 utilized some
method of proper dataset partitioning with a Leave-N-Participants-Out approach or a
Leave-One-Participant-Out approach [3]. This results in the majority of studies having
overestimated performance metrics—suggesting readers use models which, when used in
scenarios involving the general population, may not perform as well as they were reported
to have performed in the research. To obtain meaningful estimates of performance in the
general population, cross-participant models need to follow proper dataset partitioning, as
shown in Figure 3. Alternately, if the intent is not to use the model in the general population
and is instead a tailored model designed for a specific population subset, the study should
specifically state that the model’s intended goal is only to perform classification upon the
individuals it has been trained upon, to prevent the reader from incorrectly believing its
efficacy would be similar in the general population.
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In the following sections, we demonstrate in greater detail how covariate shift occurs,
as well as its effects, in both simple model examples (Section 3), and in real-world, publicly
available datasets (Section 4).

3. Initial Demonstration

To build understanding for how covariate shift manifests in any data, we utilize
an initial demonstration of its effects in three settings: (1) first, we define covariate shift
mathematically and illustrate how its effects on the expected loss of the test distribution
can be accounted for; (2) next, we depict covariate shift using t-SNE, specifically using
EEG data; and (3) finally, we demonstrate how we can affect covariate shift in EEG data by
reducing the inter-participant variability through data transformations, thus increasing the
model accuracy of properly validated EEG cross-participant models.

3.1. Defining and Estimating the Effects of Covariate Shift

In order to understand covariate shift at its fundamental level, we first define super-
vised learning. Supervised learning is the task of learning a function ƒ(x), which maps an
input vector x to a labeled output y, typically done by estimating the conditional probability
p(y|x) [30] pp. 102–104. In order to estimate this function ƒ(x), a loss function `(ƒ(x),y)
provides a measure of the difference between the true output y and the estimated ŷ for the
input vector x, with the loss function producing smaller values if ŷ is correct and larger
values if ŷ is incorrect. Thus, the task of learning involves minimizing the expected loss of
`(ƒ(x),y) over the probability density p(x,y|λ) (parameterized by λ), i.e., minimizing the
loss `(ƒ(x),y) over all possible inputs x [31],

E(x,y)∼p(x,y|λ)[`( f (x), y)] =
x

`( f (x), y)p(x, y|λ)dxdy. (1)

However, in practice, the distribution p(x,y|λ) is unknown and thus replaced by the
empirical distribution, which can be estimated from training samples. If there is the set of
samples L drawn from p(x,y|λ), then Equation (1) becomes the objective of minimizing the
empirical loss [31],

E(x,y)∼L[`( f (x), y)] =
1
|L| ∑

(x,y)∈L
`( f (x), y). (2)

After minimizing the empirical loss and a prediction model is learned, the model is
tested with the set of test samples T drawn from p(x,y|λ), where T does not contain any
samples from L that were used to minimize the empirical loss.

If the training data and testing data are independently and identically distributed
(i.i.d.), meaning that every single observation of training and testing data are sampled
independently and from the same distribution of p(x,y|λ), then we expect that minimizing
the expected training loss will in general also minimize the expected test loss [31]. This
is an assumption that is common for many predictive models and is referred to as the
i.i.d. assumption. However, many models are developed under conditions such as non-
stationary signals or covariate shift. In these conditions, the i.i.d. assumption no longer
holds, as the training and testing data come from different distributions, e.g., p(x,y|λ)
(parameterized by λ) for the training data, and p(x,y|θ) (parameterized by θ) for the testing
data. As we no longer have the assumption of i.i.d. data, then we can no longer expect that
minimizing the expected training loss also in general minimizes the expected test loss,

argmin
f

E(x,y)∼p(x,y|λ)[`( f (x), y)] 6= argmin
f

E(x,y)∼p(x,y|θ)[`( f (x), y)]. (3)

One method to address this lack of minimizing the expected test loss under covariate
shift is through loss rescaling. Shimodaira proposed that if the training and test distribu-
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tions are known, that the expected test loss could be minimized by appropriately weighting
the training loss for each x with instance-specific weights p(x|θ)

p(x|λ) [31,32],

E(x,y)∼θ[`( f (x), y)] = E(x,y)∼λ

[
p(x|θ)
p(x|λ) `( f (x), y)

]
. (4)

This loss rescaling results in larger loss values for instances of x where there are
fewer training samples than test samples (weight ratio > 1), and smaller loss values for
instances of x where there are more training samples than test samples (weight ratio < 1).
Thus, in a dataset without covariate shift between training and test, more weight ratios’
magnitudes would be close to unity because the features of the training data have a similar
distribution to the features of the test data. Conversely, in a dataset with covariate shift
between training and test, fewer ratios would be closer to 1.0, and more weight ratios
would have magnitudes differing further from 1.0 because the training distribution and
test distribution differ in their feature distributions.

While loss rescaling could be used to adjust machine learning performance outcomes,
implementing loss rescaling can be difficult to achieve. As can be seen in Equation (4), for
each instance of x with positive p(x,y|θ), there must also be a positive p(x,y|λ); otherwise,
there is a zero denominator, meaning this loss rescaling can only occur if the training
distribution covers the entire support of the test distribution [31]. In high-dimensional
data, it is more difficult to have this coverage due to the curse of dimensionality, i.e., that
the sparsity of the data increases exponentially as the number of dimensions (e.g., number
of features) increase. High-dimensional data are common in EEG datasets due to the
nature of recording brain activity with high numbers of channels (i.e., scalp electrodes),
and additionally, if spectral features are utilized, there are multiple frequency bands that
could be extracted for each channel; it is not uncommon to collect spectral energy from five
frequency bands across 64 electrodes for a total of 320 features in x.

While loss rescaling is unlikely to be useful for determining better estimates of perfor-
mance in real-world EEG machine learning models, it can be useful for exploring effects of
covariate shift in low-dimensional spaces. Next, we present a low-dimensional transforma-
tion of EEG datasets using Principal Components Analysis (PCA) in order to explore the
performance differences between improper and proper partitioning of datasets for machine
learning models.

We demonstrate the effects of these loss-rescaling weight ratio values p(x|θ)
p(x|λ) [31,32]

using the spectral features of the Driver Fatigue dataset [33] described in Section 4.1. First,
the input vectors are log transformed to reduce skew, and the dataset is partitioned into
two separate training and test datasets using the proper and improper methods:

• For improper dataset partitioning, all participant data were shuffled together and
one-twelfth of the data were randomly selected for the test set, with the remaining
data selected for the training set.

• For proper dataset partitioning, one participant was selected for the test set, and the
remaining 11 participants were selected for the training set.

Then, PCA was applied separately to the improper and proper datasets in order to reduce
the dimensionality of the data to its first two principal components, with the amount of variance
explained by the first two components being 0.72 for improper and 0.73 for proper. PCA dimen-
sionality reduction is applied to both datasets so that the training distribution is more likely to
cover the entire support of the test distribution [31]. Figure 4a,b depict the graphs for improper
and proper dataset portioning: red dots representing training data observations, and blue dots
representing test data observations. Note that in Figure 4a (improper), the test distribution
is more uniformly spread throughout the training distribution, as all 12 participants are
included in the test distribution, while in Figure 4b (proper), the test distribution is more
clustered due to the entire test distribution belonging to a single participant.
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Figure 4. PCA projection of the first two principal components for (a) Improper and (b) Proper
methods of dataset partitioning for spectral features of the Driver Fatigue dataset [33]. Red dots
represent training data observations, and blue dots represent test data observations. Note that in the
improper (a) that the test distribution is more uniformly spread throughout the training distribution,
as all 12 participants are in the test distribution, while in the proper (b), the test distribution is more
clustered due to the entire test distribution belonging to a single participant. These graphs are newly
generated from the data obtained in the Driver Fatigue dataset [33].

Recall that the loss rescaling weight ratios represent a multiplier on the loss function
in order to better estimate the expected real loss function from the loss estimate produced
during evaluation of a model when there was a covariate difference between the test
(p(x,y|θ)) and training sets (p(x,y|λ)) used for machine learning. Ratios with values
higher than 1 imply that there are more test data than training in this region; thus, the
importance of the loss value in this region needs to be magnified; conversely, in regions
with ratios smaller than 1, there is less test data than training data, meaning the loss values
in this region are less important and their contribution to overall performance should
be suppressed.

To calculate the loss rescaling weight ratio values p(x|θ)
p(x|λ) [31,32] within these datasets,

some method of density estimation of the marginal input distributions is required; for the
purposes of visualization and discussion, we utilize two-dimensional histogram estimators
generated across a 7 × 7 grid of bins for each dataset (# of bins = 49). To help visualize
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this, imagine a 7 × 7 grid placed over the observations in each graph of Figure 4a and b,
with the grid extending from the minimum values within the dataset, to the maximum
values within the dataset, for both the X and Y axes. The number of training and testing
observations within each histogram bin are calculated and normalized, providing our
density estimation for the marginal input distributions, and subsequently the weight
ratio values p(x|θ)

p(x|λ) for each bin. To better display the magnitude of difference in these

weight ratio values, we display them in log scale, with a small value (ε = 1.0× 10−5)
added to the ratio values to avoid undefined values of log(0). This results in the log-
transformed heat maps seen in Figure 5a–c, with Figure 5a being the log-transformed weight
ratio values for the proper dataset ( log(proper + ε)), Figure 5b being the log-transformed
weight ratio values for the improper dataset (log(improper + ε)), and Figure 5c being the
difference between the log transformed weight ratio values for proper minus improper
(log(proper + ε)− log(improper + ε)).

Weight Ratio Values for Proper Minus Improper (Log Scale) 

•

= 

v ••• 

• 
0 

-1 

-2 

-3 

•• 
--4 

-5 

=• • 
-6 

-7 

--8 

(c)

Figure 5. Heat maps for the log-transformed weight ratio values generated using two-dimensional histograms for (a) Proper
(log(proper + ε)) and (b) Improper (log(improper + ε)) (ε = 1.0× 10−5 ) methods of dataset partitioning for spectral features
of the Driver Fatigue dataset [33]. Graph (c) depicts the difference in log-transformed weight ratio values between the
proper and improper methods (log(proper + ε)—(log(improper + ε)), with labels for each bin indicating approximately
equal weights (=), a significant negative delta (v), or a significant positive delta (+). These heat maps are newly generated
from the data obtained in the Driver Fatigue dataset [33].
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Figure 5a depicts that for the proper dataset partition, there are few bins (≈7) with a
weight ratio close to 0, and many bins that are less than 0 (with many equal to−5, i.e., log(ε))
or greater than 0. In contrast, Figure 5b depicts that for the improper dataset partition,
there are more bins (≈14) with a weight ratio close to 0, and fewer bins that are less than 0
or greater than 0. Bins that are less than 0 for proper are also darker blue than bins that
are less than 0 for improper, indicating the training data have a more similar distribution
to the test for improper vs. proper. In Figure 5c, the difference of the log-transformed
weight ratio values between the two heat maps (proper minus improper) indicates that
approximately half of the bins have a delta of 0, and the other half of the bins have a delta
that is significantly less than 1.0 or significantly greater than 1.0. This signifies that there
can be significant differences in the weights required to rescale the loss depending on how
the data are partitioned, with significantly more loss rescaling being required for the proper
method of dataset partitioning vs. the improper method. This significant difference in loss
rescaling between the two methods is indicative of proper dataset partitioning resulting in
a covariate shift, and because the only difference in partitioning between the two methods
is how participants are distributed, it is also indicative of an unseen participant resulting in
covariate shift.

3.2. Covariate Shift in EEG

In Section 2.1, we discussed how t-SNE can be utilized in order to detect covariate
shift in data, and in Section 2.2, we discussed how covariate shift is inherent in EEG models
due to the nature of EEG’s non-stationarity and the individual differences that result in
inter-participant variability. Here, we utilize t-SNE to visually showcase why this inter-
participant variability leads to the effect of covariate shift in EEG cross-participant models.
As mentioned previously, t-SNE allows one to inspect for covariate shift in the data by first
applying the unsupervised technique and then visually exploring the data in 2D space,
examining it to see if the clusters of training data and testing data are isolated from one
another through visual inspection.

We perform t-SNE on spectral features of the PTSD [34], Schizophrenia [35], and
Driver Fatigue datasets [33], as well as entropy features for the Driver Fatigue data [33],
with results shown in Figure 6. This is done to showcase that inter-participant variability
is present across many tasks and participant populations and demonstrates it visually to
complement the quantitative empirical results within Section 4. For each of the graphs in
Figure 6, we see that the majority of the data are clustered by participant, meaning that
most of the participant data belong to its own unique input distribution, with some overlap
and similarity between participants. However, there are some limitations of t-SNE that are
worth noting and that are not obvious, and without their understanding, they can lead to
incorrect assumptions about the underlying structure of the data. One limitation is that
the cluster sizes in a t-SNE plot do not relate to distance between points of the cluster,
as the algorithm adapts “distance” to each of the local clusters in the dataset, meaning
dense clusters are expanded and sparse clusters are contracted [17]. This means that the
sparsity of the cluster cannot be implied to have meaning. Another limitation is that
the global geometry of the plot is not reliable as a source of information, meaning that
the distances between clusters may or may not be accurate methods of interpreting the
high-dimensional data in 2D space. While it is possible to dial in the hyperparameters to
the correct values so that the 2D space does accurately represent the global geometry of
the data in high-dimensional space, this requires a priori knowledge of the underlying
structure of the high-dimensional data, which is unavailable. The implication of these
limitations is that when interpreting t-SNE plots, the focus should be on simply the number
of clusters present in the data and how they relate to the training dataset and the testing
dataset. Any other information within the plot should not be taken as evidence of the
underlying structure of the data in high-dimensional space. These limitations are important
in understanding the data presented in the next section.
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Figure 6. Example of using t-SNE for 2D dimensionality reduction and visualization of datasets utilized within this research,
with colors corresponding to participants within the datasets, showcasing that inter-participant variability is present across
different tasks and participant populations. Datasets depicted here are spectral features of the (a) PTSD, (b) Schizophrenia,
(c) and Driver Fatigue datasets; and (d) Entropy features of the Driver Fatigue dataset. The dimensions of t-SNE are
arbitrary distances that represent that closer neighboring points in low-dimensional space are likely to be neighbors in
high-dimensional space.

3.3. Reducing Inter-Participant Variability

As mentioned in Section 2.2, current approaches to EEG modeling are classified
as either within-participant or cross-participant. Due to inter-participant variability,
cross-participant models tend to always have lower classification accuracies than within-
participant models, despite the fact that more participants typically also result in a larger
training dataset for the model.

In order to demonstrate these effects of inter-participant variability within cross-
participant models, we study the phenomenon with synthetically altered data through
transformation. To generate the data, we utilize two mutually exclusive, independent
applied data transformations named shifted Heaviside (our own naming for the transforma-
tion for the purpose of discussion) and shift to median. The goal of these transformations
is to reduce the inter-participant variability of the data while still preserving the local
structure of each participant’s EEG data. In this manner, it can then be seen that as inter-
participant variability is reduced and participants become more similar and no longer have
different input distributions, classification performance improves because the effect of the
covariate shift has been reduced. The purpose of this exploration is to demonstrate this
performance-affecting relationship of inter-participant variability and covariate shift; we
do not recommend utilizing these transformations in practice for the purpose of improving
model performance.

The apparent performance improvement that occurs when data are transformed to
reduce inter-participant variability implies that there will likely be overestimated classifi-
cation performance in cross-participant models that are improperly validated and tested.
When a model uses the same participants for both training and validation or testing, the
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higher measured performance is due to the reduced inter-participant variability between
the training dataset and the validation or testing dataset—essentially masking the true
differences that would exist between the people the model was trained on and the people
the model was intended to be used on in the future. Similarly, when we apply transforma-
tions to reduce inter-participant variability, the goal is to transform the data in a manner
such that multiple participants appear as if they belong to a single participant, and we can
induce the effect of masking the true differences.

The transformation shifted Heaviside is both participant-based and feature-based. As
mentioned at the beginning of this section, the name shifted Heaviside is the name we
use in this paper to refer to this transformation proposed by Arevalillo-Herraez et al.
in [36], based on the Heaviside function, as this transformation was not named by its
originators. It was proposed by Arevalillo-Herraez et al. specifically for the use of reducing
inter-participant variability in EEG data, and it does so by using the median value for
each feature of each participant in order to map the original feature vector into a binary
feature vector of the same size [36]. The effect of this transformation can be thought of as
having the effect of shifting the data to the different corners of a hypercube. To create the
mapping, first, the median value of each feature of each participant is calculated. Then,
the original feature vector data are converted to a binary encoded vector where each
feature value is transformed to a 1 if the value is greater than the median of the feature
vector, or a 0 if less than or equal to the median (akin to a shifted Heaviside function).
Specifically, they formulate their algorithm as follows: for pth participant, for all feature
vectors xp,j, j = 1, 2, . . . , np in the set of training samples Xp, compute the median vector x′p.
Then, transform all feature vectors u for the same participant p according to Equation (5),
where [k] denotes the kth element (feature) of the corresponding vector.

u[k] =

{
1 u[k] > x′p[k],
0 u[k] ≤ x′p[k],

(5)

The shift to median transformation involves calculating a center point for each output
class y across all participants in feature space and then shifting by class y each partici-
pant’s data closer to those class center points so that each participant’s data distribution
moves closer together (toward the calculated class centers), while still preserving dif-
ferences within each participant’s individual data observations. The goal is to reduce
inter-participant variability by shifting all participants to a similar range in feature space,
while still preserving local structure within each participant, including class effect. The
effect of this transformation can be thought of as shifting each participant’s entire cluster of
data by a certain amount so that it is re-centered on a new point (performed by class y).
Using the same symbols in the previous paragraph, we have the following algorithm.

Shift to Median—Variables are defined as follows: y represents class, j represents the ob-
servation, p represents the participant, and N represents the total number of training samples.

1. ∀y Calculate median vector C̃y across all feature vectors xp,y,j of all participants p = 1,
. . . , P

a. C̃y =

{
xy, N+1

2
N odd

1
2

(
xy, N

2
+ xy, N+1

2

)
N even

2. ∀p ∀y ∀xp,j Calculate median centroid c̃p,y of p

b. c̃p,y =

{
xp,y, N+1

2
N odd

1
2

(
xp,y, N

2
+ xp,y, N+1

2

)
N even

3. ∀y ∀xp,j Compute shifted vector x′p,y,j = xp,y,j +
(

C̃y − c̃p,y

)
This results in three different datasets: original dataset, shifted Heaviside transforma-

tion, and shift to median transformation. Employing t-SNE on the datasets allows us to
view the local clusters within the data. For EEG specifically, this typically allows us to
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identify clustering by participant, showcasing the inter-participant variability inherent
across participants. To demonstrate this clustering as well as the EEG data transformations
described above, we utilize the Driver Fatigue dataset [33] described in Section 4.1.

This dataset contains both entropy and spectral features. In information theory, the
entropy of a time series quantifies its regularity and predictability over time [37], and
the entropy features extracted for use include approximate entropy (AE), sample entropy
(SE), and fuzzy entropy (FE) features [38]. The spectral features were extracted using
Morlet wavelet transforms in MATLAB to determine the frequency-domain mean power
of two of the five clinical frequency EEG bands: alpha (12–15 Hz) and beta (16–22 Hz) ([5]
pp. 151–174). Two frequency-spectral-power features extracted from EEG were computed
for each of the 30 channels. This results in 60 features for the spectral feature space and
90 features for the entropy feature space (three entropy measures across all 30 channels).

Figures 7a and 8a both illustrate the results of applying t-SNE to the untransformed
Drive Fatigue datasets for the entropy and spectral feature spaces, respectively. It can be
seen that in these high-dimensional data spaces of 90 and 60 features each that there is
significant clustering by participant, with coloring corresponding to a participant’s data.
Note that this coloring has no effect on the t-SNE algorithm itself and is applied afterwards
for visualization. As mentioned earlier in Section 3.2, due to the limitations of t-SNE,
we cannot reliably interpret any information from the 2D plot outside of the number of
clusters. Clusters found within t-SNE should only be treated as such: that they are localized
clusters that exist within the high-dimensional data. After a data transformation, if t-SNE
is unable to find local clustering despite hyperparameter tuning, then local clustering does
not exist [17]. For these datasets, a lack of local clustering means that the inter-participant
variability has been reduced to the point that t-SNE can no longer distinguish between
participants in the feature space.

Figure 7. Results of visualizing the data using t-SNE for the entropy feature space before and after various data transforma-
tions: (a) Before any transformations; (b) After applying shifted Heaviside transformation; (c) After applying shift to median
transformation. Colors correspond to different participants, with the same color applied to the same participant in each
figure. Note in (b,c) that there is a lack of local clustering, implying that inter-participant variability has been reduced due
to the transformations. The dimensions of t-SNE are arbitrary distances which represent that closer neighboring points in
low-dimensional space are likely to be neighbors in high-dimensional space.
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Figure 7b,c reveal the different data transformation’s effects on local clustering within
the entropy feature spaces and Figure 8b,c show the transformation’s effects on the spec-
tral feature spaces. For the entropy feature space, we see that each transformation has
reduced the inter-participant variability to the point where t-SNE no longer finds local
clustering within the data. Similarly, for the spectral feature space, we see that the shifted
Heaviside transformation has the same result, while the shift to median transformation largely
reduces local clustering within t-SNE, but not to the same effect as the shifted Heaviside
transformation.

To demonstrate the effects of reducing inter-participant variability on classification
accuracy in cross-participant models, cross-participant models were also built using each of
these three datasets of data within both of the feature spaces (entropy and spectral). As this
is the Driver Fatigue dataset, models were trained according to the methodology specified
in Section 4.1. For each of the three subsets of data within both of the feature spaces of
entropy and spectral features, separate models were trained and tested according to both
the improper and proper methods of cross-participant model generation. For proper model
generation, we follow the guidelines specified in Section 2.3, resulting in 12-fold LOPO CV.
As mentioned in Section 4.1, for improper model generation, in order to match the number
of folds (and data per fold) in LOPO CV, 12-fold CV was used with all participant data
shuffled together and split across 12-folds. Together, this results in 12 models generated for
each method.

Figure 8. Results of visualizing the data using t-SNE for the spectral feature space before and after various data transforma-
tions: (a) Before any transformations; (b) After applying shifted Heaviside transformation; (c) After applying shift to median
transformation. Colors correspond to different participants, with the same color applied to the same participant in each
figure. The dimensions of t-SNE are arbitrary distances that represent that closer neighboring points in low-dimensional
space are likely to be neighbors in high-dimensional space.
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Table 1 contains the classification accuracy results for each of the 12 models. It can be
seen that for both the entropy and spectral feature spaces that improper model testing did
not benefit from the data transformations. Intuitively, this makes sense, as these models
are tested improperly; thus, the model has seen each participant’s input distribution,
and therefore, a reduction of inter-participant variability is not impactful to the model.
However, for proper model testing, we see that for both the entropy and spectral feature
spaces that the shift to median transformation results in a dominance in accuracy of the 95%
confidence interval (CI) from the transformation in comparison of the 95% CI’s. While the
shifted Heaviside transformation did result in a reduction of inter-participant variability for
both feature spaces as shown in Figures 7b and 8b, this reduced inter-participant variability
did not result in any significant effects on cross-participant model performance, suggesting
that this transformation may be best suited for only certain datasets which its developers
Arevalillo-Herraez et al. work with.

Table 1. Classification accuracies for the 12 models generated from transformed and non-transformed
driver fatigue data. Improper models were generated with the improper method of cross-participant
model generation utilizing 12-fold CV with all participant data shuffled together and split across
12 folds, and proper model generation utilized 12-fold LOPO CV. The purpose of this table is two-fold.
One is to depict that improper model generation typically results in overestimated model accuracy as
can be seen with increased accuracies for improper vs. proper. The other is to depict the results of the
proper method on untransformed data versus the proper method on the two transformed datasets.
Bold signifies dominance in accuracy of the 95% confidence interval from the transformation in
comparison of the 95% confidence intervals.

Entropy Spectral

Improper
Untransformed 0.91 (0.89, 0.93) 0.82 (0.79, 0.85)

Shifted Heaviside 0.72 (0.68, 0.76) 0.66 (0.62, 0.70)
Shift to Median 0.91 (0.89, 0.93) 0.82 (0.79, 0.85)

Proper
Untransformed 0.50 (0.46, 0.54) 0.50 (0.46, 0.54)

Shifted Heaviside 0.50 (0.46, 0.54) 0.47 (0.43, 0.51)
Shift to Median 0.80 (0.77, 0.83) 0.72 (0.68, 0.76)

4. Empirical Demonstrations in Diverse EEG Case Studies

In this section, we utilize five publicly available datasets to empirically demonstrate
the difference in machine learning performance results of using proper versus improper
methods of dataset partitioning during training, validation and testing. These five datasets
were selected to encompass diversity across the research activities using machine learning
and EEG, to demonstrate the importance of following the proper methodology in many
situations. The domains of the five datasets differ substantially in both tasks performed
during data collection and subsequent classification using EEG, including both classi-
fication of different mental states within an individual: mental fatigue (Driver Fatigue),
emotions (Confused Students), as well as determining of the existence of longer-term chronic
conditions in individuals: mental disease (Alcoholism), psychological conditions (PTSD),
and mental disorders (Schizophrenia). In the chronic condition datasets, each participant
(and all of the observations corresponding to that participant) are either in the chronic
condition class or the class representing normal. Summary details of these datasets can be
seen in Table 2.
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Table 2. Details for the publicly available datasets. All datasets are binary classification tasks, and all
datasets are balanced except for the Alcoholism dataset. This gives chance accuracy for Alcoholism
defined as 0.64 and 0.50 for all other datasets.

Dataset Year Collected Binary Classification Task # of Participants

Driver Fatigue [33] 2017 Normal vs. Fatigue 12
Confused Students [12] 2013 Confused vs. Not Confused 10

Alcoholism [13] 1999 Alcoholic vs. Non-Alcoholic 122

PTSD [34] 2018 Pre-Treatment vs.
Post-Treatment 12

Schizophrenia [35] 2014 Schizophrenia vs. Healthy
Control 30

Model architectures used are selected based on research papers with top performance
in their respective dataset and/or domain, with replication performed as closely as possible.
In some cases, research papers were missing details about hyperparameters and other
model details, and these details had to be selected using best practices of machine learning.
With architecture and hyperparameters selected, two models are then created and evaluated
separately using the same architecture and hyperparameter sweep (grid search utilized):

• Improper: trained, tuned, and evaluated during tests using all participant data.
• Proper: trained and tuned using data from a subset of the participants, then, during

the test, evaluated using only data from participant(s) that were not used to train or
tune the model.

Then, results of the two methods are contrasted and compared, with error rates
displayed in a summary table in Section 5. It is also worth noting that the amount of
data used for training and validation/testing is kept consistent across both the proper and
improper methods, meaning that both models have the same quantity of observations to
train upon, and additionally, both models are validated and tested with the same number
of observations. This ensures that there is minimal difference between the two models in
terms of architecture, hyperparameter sweeps, or the amount of data used for training,
validation, or testing, and that the only difference between the models is the restriction
surrounding which participants are used for training, validation, and testing for the proper
method vs. the improper method.

The next five subsections are structured as case studies for each of the five datasets,
and they are in the following order: Driver Fatigue, Confused Students, Alcoholism, PTSD,
and Schizophrenia. Each case study first discusses the purpose of the experiment, how it
was conducted, and what EEG data were collected (pre-processing details are provided
in Appendix A). Then, information on the model architecture and its methodology are
provided, as well as the results previous researchers had achieved using that methodology.
Then, we detail our own methodology to include having to fill any gaps missing from
their architecture or hyperparameter selection, as well as how we perform both improper
and proper training, validation, and testing for the two different models. Finally, we state
results achieved with both models and compare them.

4.1. Driver Fatigue

This dataset is available on Figshare [33] through a link provided in Min et al.’s paper,
which details both the experiment and the subsequent deep learning performed [38]. Their
experiment consisted of collecting EEG recordings during a driving simulator for the
purpose of using these signals to develop a model that could detect driver fatigue using
EEG signals. Twelve participants used the driving simulator for 1–2 h in a highway setting
with low traffic density, with EEG recorded in two phases during the session. The first
phase consisted of 20 min of continuous driving, with the last 5 min of this 20-min segment
recorded and labeled as the normal state. The second phase consisted of driving that lasted
for 40–100 min until the participant’s self-reported questionnaire indicated that they were
fatigued (surveys used were Lee’s Subjective Fatigue Scale [39] and the Chalder Fatigue
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Scale [40]), in which the last 5 min of driving were recorded in the EEG and labeled as
the fatigue state. EEG was recorded using a 32-channel electrode cap, with two of the
channels being reference channels linked to mastoid electrodes. The 5 min of EEG from
each phase were epoched into 1 s segments for 300 epochs per phase per participant,
resulting in a total of 3600 trials for the normal state and 3600 trials for the fatigue state.
Then, the data were randomly split into training and testing datasets at a 50/50 ratio,
without participants taken into account, thus resulting in improperly created datasets for
cross-participant models. Feature extraction included several entropy measures, which
were extracted for each trial and then normalized. In information theory, the entropy of a
time series quantifies its regularity and predictability over time [37], with the measures
extracted including approximate entropy, sample entropy, and fuzzy entropy [38].

In Min et al.’s work, these entropy features were then utilized for multiple classifiers,
with the classifier that achieved the highest accuracy being an artificial neural network
(ANN) [38]. The ANN had three layers, each with 20 hidden units and sigmoid activation
functions. Gradient descent was used with mean squared error (MSE) for the loss the func-
tion, and the Levenberg–Marquardt function was used as the optimization function [41].
Leave-One-Out Cross-Validation (LOOCV) was utilized to report test classification accu-
racy, with their reported test accuracy being 0.968 or an error rate of 0.032.

The architecture above was followed for training both of our models; however, 12-fold
CV was utilized, as there are 12 participants and Leave-One-Participant-Out (LOPO) CV
results in 12-fold CV. Thus, for improper training and validation, 12-fold CV was used
with all participant data shuffled together and split across 12-folds, and for proper training
and validation, LOPO CV was used. Using this configuration, for improper testing of the
cross-participant model, the best accuracy we obtained was 0.83, which was much lower
than Min et al.’s reported test accuracy of 0.968 with their 50/50 training/testing split. In an
effort to improve upon this, a hyperparameter sweep was conducted across hidden units
(20, 30, 40, and 50), dropout rate (0.0, 0.1, 0.2), different learning rates (0.01, 0.001, 0.0001),
and the reduce_lr callback of reducing the learning rate based on the number of epochs
trained. The configuration with the highest classification accuracy for the improper method
was one of 50 hidden units, 0.2 dropout rate, 0.001 learning rate, and reduce_lr callback
was utilized. This hyperparameter sweep was also conducted for the proper method, with
the configuration with the highest classification accuracy for the proper method being
40 hidden units, 0.2 dropout rate, 0.001 learning rate, and reduce_lr callback being utilized.
Then, these configurations were used for improper and proper training and validation of
the cross-participant models, respectively.

For improper training and validation of the cross-participant model using our con-
figuration above, the reported classification accuracy using 12-fold CV was 0.91 (95% CI:
0.903, 0.917) or an error rate of 0.09 (95% CI: 0.083, 0.097). While this result is significantly
lower than Min et al.’s error rate (0.09 vs. 0.032 [38]), our accuracy is still similar enough in
magnitude for our goal of contrasting proper and improper methods of model evaluation.
As such, when we built the model properly and trained and validated it using LOPOCV,
the resulting accuracy was 0.540 (95% CI: 0.528, 0.552) or an error rate of 0.46 (95% CI: 0.448,
0.472). This error rate is over five times as that of the error rate of the improper method,
illustrating how difficult classification of unseen participants is, and how significantly
overestimated test accuracies can become by following an improper methodology, which
does not account for the significance of inter-participant variability.

4.2. Confused Students

Participant data for this dataset are available on Kaggle [12] and come from an experi-
ment involving college students. The purpose of the experiment was to collect EEG from
college students while they were in a confused state and a not confused state and then build
a model that could determine if the student was confused or not confused using the EEG
signals. Researchers collected EEG while the students watched online education videos
in a confused state and a not confused state [42]. Ten young adult college students watched
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two-minute online education videos (lectures) on various topics, which were assumed to
not confuse an average college student, such as basic algebra and geometry, as well as
topics that would be confusing, such as quantum mechanics and stem cell research. Each
student watched five randomly selected videos from each category, and after each video,
students self-rated their confusion on a scale of 1 (least confused) to 7 (most confused).
EEG was recorded at a sampling rate of 512 Hz using a single-channel NeuroSky MindSet
device, which has a single electrode that rests over the middle of the forehead, and two
electrodes for ground and reference, each in contact with an ear. The first 30 s and last
30 s of each session’s EEG recording were removed in case the student was not ready;
the middle 60 s was available for analysis. Then, NeuroSky software was used to extract
features from the signal at 2 Hz to include the mean of the raw signal, mean power for the
five traditional frequency bands (to include alpha low/high, beta low/high, and gamma
low/high), and MindSet’s proprietary “attention” and “meditation” signals.

In addition to the experiment data, Kaggle also lists references with some of the latest
classification results to use these data for the purpose of binary classification of whether
a student is confused or not confused. The two references with the greatest classification
accuracies both use bidirectional Long Short-Term Memory (LSTM) models as their neural
network architecture [43,44], with the one we selected for replication being work from
Ni et al., as their work provided the most detail for replication [44]. For Ni et al.’s work,
each session consisted of a single trial as to provide sequence data for the recurrent neural
network (RNN). Sessions from all nine participants were merged together for a cross-
participant model, and 5-fold cross-validation was used across all participants (improper
method). EEG features used consisted of proprietary measures from the MindSet EEG
device labeled Attention (measure of mental focus) and Meditation (measure of calmness),
the raw EEG signal values, and mean values of eight different frequency regions in the
power spectrum. In addition to EEG signals, Ni et al. also opted to use the “Predefined
Label” of whether a session was confusing or not as a feature. The bidirectional LSTM
had 50 hidden units and used a tanh activation function, and it was followed by a fully
connected layer with a sigmoid activation function. Before the bidirectional LSTM, batch
normalization was used. No other architecture or hyperparameter methodology was
provided. The CV test accuracy varied between 0.71 and 0.74 for their work, with an
average 5-fold CV accuracy of 0.733.

To reproduce Ni et al.’s results for the improper model, the architecture above was
followed along with the hyperparameters provided, and all of the EEG features were uti-
lized, resulting in 11 total features used for training (in our replication of the research, the
non-EEG “Predefined Label” feature was omitted; we do not recommend including a class
label as a feature per standard practices of machine learning). In an effort to replicate their
methodology of hyperparameter selection for the proper model, a hyperparameter grid
search was performed across hidden units (40, 50, 60), dropout rate (0.0, 0.1, 0.2), and learn-
ing rate (0.001, 0.0001), with the highest performing proper model having hyperparameters
of 50 hidden units, 0.0 dropout rate, and 0.0001 learning rate; the same hyperparameters
Ni et al. and our improper model design used. This hyperparameter sweep ensures both
the improper and proper models have selected their best hyperparameters for their input
data. In an effort to increase the amount of training samples for the models, the EEG
data were also segmented using a sliding sequence window of 15 samples in length and
slides by 12 samples. Then, we built two separate cross-participant models using improper
training and testing for one and proper training and testing for the other. The improper
model utilized 5-fold CV for training and validation with all participant data shuffled
together, resulting in every fold including some data from every participant (exact same
method used by Ni et al.). The proper model also utilized 5-fold CV; however, it was
Leave-Two-Participants-Out CV. Outside of this change in how the folds were formed for
CV, all other variables remained the same between the models, to include architecture,
features used, hyperparameters, and the number of observations used for both training
and validation.
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For improper training and validation of the cross-participant model using 5-fold CV,
our replication of Ni et al.’s configuration [44] resulted in a test accuracy of 0.69 (95% CI:
0.654, 0.726), which was close to their reported test accuracy of 0.733, with a difference
in error rates of 0.31 (95% CI: 0.274, 0.346) vs. 0.267. However, our proper training and
validation of the proper cross-participant model using Leave-Two-Participants-Out CV
resulted in an accuracy of 0.584 (95% CI: 0.552, 0.628) or an error rate of 0.416 (95% CI:
0.372, 0.448). The error rate of the proper method is over 33% greater than the error rate
of the improper method, suggesting that improper training and testing of EEG data can
lead to overestimation of model performance on unseen participants and thus the human
population in general.

4.3. Alcoholism

Participant data for this dataset are available from both Kaggle [12] and the University
of California, Irvine (UCI) machine learning data repository [13], with this research utilizing
the Full Dataset from the UCI repository. The source of the data comes from one of a number
of experiments sponsored by the National Institute on Alcohol Abuse and Alcoholism
(NIAAA) in the early 1990s, which were conducted with the purpose of recording brain
activity during a task that was expected to elicit differences in the neural activity of healthy
participants and alcoholic participants [45,46]. In the control group, there were 45 male
participants, and in the experimental group, there were 77 alcoholic male participants.
The task used was a visual object recognition task: the participant was presented with a
sequence of two images and had to determine whether the second image was the same
as the first. Signals were recorded from 64 scalp EEG electrodes and 2 electrooculography
(EOG) electrodes, at a sampling rate of 256 Hz, and were referenced to node site Cz during
EEG measurement. This resulted in a sequence dataset with 64 features × 256 µV values
for each of the (approximately) 100 observations per participant.

Recently, the Full Dataset from the UCI repository was utilized by Farsi et al. to train
both ANN and LSTM classifiers, with their LSTM architecture having the best performance
with a reported test accuracy of 0.93 [47]. They used improper dataset partitioning, mixing
the participants data and selecting 80% of the data for training and 20% for testing. For
improper training and validation of the cross-participant model, we used 5-fold CV to
align with Farsi et al.’s 80% training 20% testing dataset preparation. For proper cross-
participant model evaluation, we utilized 5-fold Leave-N-Participants-Out CV, with N
equal to 24 or 25 depending on the fold. Although the paper provided an architecture,
it did not explicitly identify their choice of best hyperparameters that were selected for
their final LSTM model—they only provided a list of what hyperparameters were explored.
Therefore, in an effort to recreate their work, we utilized the architecture they specified
and performed a hyperparameter sweep across all of the hyperparameters that were
explored by the authors. This resulted in a 3-layer LSTM with layers and hidden units as
follows (100-(Dropout Layer)-32-1), and a hyperparameter sweep performed for activation
function (Relu, tanh, Sigmoid), dropout rate (0.2, 0.4), optimizer (Adam, SGD), batch size
(50, 150), learning rate (0.1, 0.0001), epochs (50, 100), and loss function (MSE, Binary Cross
Entropy). The resulting models from these hyperparameter sweeps performed poorly for
both improper and proper models, so we instead used a 3-layer LSTM architecture with
descending hidden units (H) across the three layers (H, H-50, H-100), dropout and recurrent
dropout activated for all three layers, with activation function tanh, recurrent activation
function sigmoid, batch size 256, optimizer Adam, learning rate 0.0001, and loss function
Binary Cross Entropy. Then, we performed a hyperparameter sweep for this architecture
across hidden units (200, 250, 300, 350), dropout rate (0.2, 0.3, 0.4), and epochs (200, 300,
400, 500). This architecture and its hyperparameter sweep had better performance, so we
opted to use it as our final architecture for both the improper and proper methods of model
creation. The best configuration for the improper model had hyperparameters of hidden
units 350, dropout rate 0.4, and epochs 500. The best configuration for the proper model
had hyperparameters hidden units 300, dropout rate 0.4, and epochs 400.
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The resulting improper model had a test accuracy of 0.84 (95% CI: 0.82, 0.86) or an
error rate of 0.16 (95% CI: 0.12, 0.18). While this result is significantly lower than Farsi
et al.’s error rate (0.16 vs. 0.07 [47]), our accuracy is still similar enough in magnitude for
our goal of contrasting proper and improper methods of model evaluation. The resulting
proper model had a test accuracy of 0.69 (95% CI: 0.67, 0.71) or an error rate of 0.31 (95% CI:
0.29, 0.33), which is close to chance accuracy of 0.64 or a chance error rate of 0.36, as this
dataset was imbalanced with a majority class of alcoholics. The error rate of the properly
data-partitioned model is almost twice as large as the error rate of the improper model,
again suggesting that if the goal is to build a model that can be used to make accurate
estimates on unseen individuals, then the EEG cross-participant model must be evaluated
properly by evaluating it only using data from participants not used during training or
validating the model.

4.4. Post-Traumatic Stress Disorder (PTSD)

This publicly available PTSD dataset can be found on Figshare [34] through an ap-
pendix and link provided in Rahmani et al.’s paper, which details the experiment used
and their subsequent EEG analysis [34] (unrelated to machine learning). Researchers cap-
tured resting-state EEG from six healthy control (HC) participants and six combat-related
PTSD participants, while they had an MRI taken, with the goal being to find differences
between HCs and PTSD participants through analysis of the EEG. For this dataset, there
were 33 channels of EEG recorded, with two of the 33 channels being used for ground
and reference, and at a sampling rate of 5000 Hz. EEG preprocessing was performed in
both the proprietary software BrainVision Analyzer2 and within EEGLAB. ICA was used
to remove blink and saccade artifacts, and time periods containing motion artifacts from
observed participant head motion were also removed. After artifact removal, the EEG was
down-sampled to 250 Hz. Scans lasted 526 s, and the first 6 s were removed for steady-state
signals, resulting in 520 s of raw voltage value data per participant. However, only the
first continuous 50,000 data points without participant motion were used within Rahmani
et al.’s analysis, and this was subsequently the case with the data uploaded and made avail-
able to the public, resulting in 200 s of raw EEG per participant being available for machine
learning. Then, EEG signals were segmented into 1-s non-overlapping epochs, resulting
in 200 observations per participant. For feature selection, spectral features were extracted
for the 31 EEG channels using Morlet wavelet transforms in MATLAB to determine the
frequency-domain mean power of the five traditional frequency bands: delta (2–4 Hz),
theta (4–8 Hz), alpha (8–12 Hz), beta (15–30 Hz), and gamma (30–80 Hz) [5] pp. 151–174.
The mean power of these five bands for all 31 channels results in a total of 155 features
(31 × 5) for each of the 260 observations for each of the 12 participants.

Since this dataset has not yet been used for published research in the area of machine
learning, there is no machine learning workflow we are attempting to replicate; instead,
we utilize a standard fully connected multi-layer perceptron neural network (MLPNN) for
our architecture, which is a common and most fundamental ANN.

A hyperparameter sweep was performed to find a good model. The sweep was con-
ducted across the following hyperparameters: hidden layers (1, 2), hidden units (20, 30, 40,
50), dropout rate (0.0, 0.1, 0.2), and learning rates (0.01, 0.001, 0.0001) for both the improper
and proper methods of model evaluation, and the hyperparameter configuration that
resulted in the highest validation accuracy was selected for each method. The architecture
used ReLU activation functions for dense layers, a Sigmoid activation function for the
output layer, and ‘Adam’ for the optimizer; training was conducted for 50 epochs. For
training and validation of the improper model, 12-fold CV was used with all participant
data shuffled together and split across the 12-folds, and for training and validation of the
proper model, 12-fold LOPO CV was used.

The best configuration for the improper model consisted of 1 hidden layer, 50 hidden
units, a learning rate of 0.001, and a dropout rate of 0.2. This configuration resulted in
a 12-fold CV accuracy of 0.995 (95% CI: 0.9922, 0.9978) or an error rate of 0.005 (95% CI:
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0.0022, 0.0078). The best configuration for the proper model was similar in that it consisted
of the same parameters for everything except the hidden units being 40 instead of 50. This
configuration resulted in a 12-fold LOPO CV of 0.803 (95% CI: 0.7871, 0.8189) or an error
rate of 0.197 (95% CI: 0.1811, 0.2129). This results in an error rate that is over 39 times larger
for the proper method versus the improper method of training and validation, which is the
2nd largest difference between proper and improper partitioning within these case studies.
Relying on the overly optimistic, extremely low error rate measured in the performance of
the model trained using the improper training method would falsely drive overconfidence
in the model’s performance in future use. Once again, the evidence suggests that if the
intent is to estimate performance on new people, proper segregation of participants in the
partitioning of the training, validation, and test datasets is paramount.

4.5. Schizophrenia

This dataset is available on Kaggle [35] and was collected in an effort to study the dif-
ference in corollary discharge between participants with schizophrenia and those without
schizophrenia (HCs) [48]. The participant’s task was to either (1) press a button every 1–2 s
to deliver an 80 dB tone, (2) passively listen to that same tone, or (3) press a button that
did not produce a tone or any other effect other than the tactile response of depressing the
button. Each event condition occurred a total of 100 times for each participant, resulting in
300 trials per participant. In total, in the dataset there were 32 HCs and 49 patients with
schizophrenia; however, data from only 40 participants were available online (25 HCs and
15 diagnosed with schizophrenia).

Data were collected using a BioSemi ActiveTwo 64 + 2 electrode cap, with 64 scalp sites
and 2 references electrodes placed over the mastoids [48]. Data were sampled at 1024 Hz
and epoched at 3 s for each trial, with the start of each epoch being time-locked to 1.5 s
before button press. The EEG data were uploaded to Kaggle [35] in two different formats,
one in time-series as raw EEG voltage values, and the other with event-related potential
(ERP) features. In order to generate richer features for machine learning, spectral features
were extracted from the raw EEG voltage values for all 64 channels. This was done similarly
as done in the PTSD dataset, using Morlet wavelet transforms in MATLAB to determine
the frequency-domain mean power of the five traditional frequency bands: delta (2–4 Hz),
theta (4–8 Hz), alpha (8–12 Hz), beta (15–30 Hz), and gamma (30–80 Hz) ([5] pp. 151–174).
This resulted in 320 features for each observation (64 channels × 5 frequency bands =
320), with participants having between 280 and 290 observations each. Unfortunately, the
dataset was heavily imbalanced, with 25 participants being HCs, and only 15 participants
being diagnosed with schizophrenia. To alleviate this imbalance, only 15 of the 25 HCs
were randomly selected to be used for machine learning.

For our architecture selection for this dataset, we use both a neural network, as well
as a more traditional machine learning model—the random forest classifier. Buettner
et al. achieved high levels of accuracy for EEG classification of HCs vs. participants
with schizophrenia using an RFC [49] (albeit on a different EEG dataset), so they are a
proven model type for this domain, with the neural network architecture implemented
for additional investigation. The spectral features generated were utilized for both the
MLPNN and the RFC, and both architectures followed both the proper and improper
methods of model evaluation, resulting in four separate models generated. For improper
training and validation, 30-fold CV was utilized with all participant data shuffled together
and split across the 30-folds, and for proper training and validation, 30-fold LOPO CV was
used. As with the PTSD dataset, we did not have a published neural network methodology
to replicate for this dataset.

For the MLPNN architecture, a hyperparameter sweep was conducted across the
following hyperparameters: hidden layers (1, 2), hidden units (20, 30, 40, 50), dropout
rate (0.0, 0.1, 0.2), and learning rates (0.01, 0.001, 0.0001). This hyperparameter sweep
was conducted for both the improper and proper methods of model evaluation, and the
hyperparameter configuration that resulted in the highest validation accuracy was selected
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for each method. Other parameters of the architecture include using the ReLU activation
function for dense layers, a Sigmoid activation function for the output layer, and ‘Adam’
for the optimizer; the number of training epochs set to 50.

RFC hyperparameters selected for hyperparameter tuning included the maximum
depth of the trees and the number of features to consider. The number of estimators (trees)
was determined by incrementally increasing the number of estimators by 5 from a low
value of 50 until validation accuracy no longer improved. For this, maximum depth was set
to its default sklearn value of ‘None’ so that there was no limit to depth, and the maximum
features set to its typical recommended amount of m =

√
p where p equals the 320 features,

and thus, m =
√

320 = 18 [50]. By incrementally increasing the number of estimators
by 5 from 50 to 750 as described above, 110 was found to result in the best validation
accuracy, and this amount was used for both proper and improper methods of model
evaluation for the RFCs. From here, a hyperparameter sweep for the number of features
and the maximum depth was conducted, utilizing values from 1 to 25 for each. These
values were determined by going far above and below the typical recommended values for
these parameters (e.g., the square root of features for the number of max_features m) [50].
This resulted in a hyperparameter sweep of 252 = 625 models for both the improper and
proper methods of model evaluation, resulting in 1250 models in total generated during
hyperparameter search.

The best configuration for the MLPNN improper model consisted of 1 hidden layer,
50 hidden units, a learning rate of 0.001, and a dropout rate of 0.2. This configuration
resulted in a 30-fold CV accuracy of 0.992 (95% CI: 0.990, 0.9939) or an error rate of
0.008 (95% CI: 0.0061, 0.01). For the proper MLPNN model, there was no significant
difference between any of the configurations, and no model was able to perform better than
random chance (50%), illustrating how severe the effect of covariate shift can be in EEG
data, depending on the participants used. The best configuration for the RFC improper
model was maximum features set to 15 and maximum depth set to 24, resulting in a 30-fold
CV accuracy of 0.941 (95% CI: 0.936, 0.946) or an error rate of 0.059 (95% CI: 0.054, 0.064).
For the proper RFC model, similar to the proper MLPNN model, there was no significant
difference between any of the configurations, and no model was able to perform better
than random chance (50%). This final case study showcases the most significant effect of
covariate shift, resulting in models that are unable to perform better than random chance
due to the significant inter-participant variability that exists between the participants.

5. Discussion

Our empirical results show that improper dataset evaluation can lead to unrealistic and
overestimated accuracies for general population EEG cross-participant models. Table 3 specifies
the extent of these differences in error rates between improper and proper methods, ranging
from a 35% increase in error rate for the confused students dataset, all the way up to a 3900%
increase in error rate in the case of the schizophrenia dataset. As mentioned in Section 4,
the diversity of these datasets and the methods used provide evidence that performance
overestimation due to improper data partitioning is indeed a phenomenon of EEG that
is not unique to any one subset of experiment, task, participant, or equipment used, nor
is it merely an aspect of only certain EEG features or types of machine learning models.
Instead, the risk of performance overestimation is an inherent phenomenon of individual
differences in EEG that should always be considered when developing general population
EEG cross-participant models.
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Table 3. Validation results for the five case studies (95% CI). All datasets are binary classification
tasks, and all datasets are balanced except for the Alcoholism dataset. This gives chance error rate
for Alcoholism defined as 0.36, and 0.50 for all other datasets. Results should be compared within
datasets (left to right) between the improper and proper method. The proper method always reveals
a significantly greater error rate than the improper method, suggesting the risks of overestimation of
performance, which can result from using the improper method.

Dataset Architecture
Used

Error Rate–
Improper Method

Error Rate–
Proper Method

Driver Fatigue MLPNN 0.09 (0.083, 0.097) 0.466 (0.448, 0.472)
Confused Students Bi-LSTM 0.31 (0.274, 0.346) 0.416 (0.372, 0.448)

Alcoholism LSTM 0.16 (0.12, 0.18) 0.31 (0.29, 0.33)
PTSD MLPNN 0.005 (0.0022, 0.0078) 0.197 (0.1811, 0.2129)

Schizophrenia MLPNN 0.008 (0.0061, 0.01) 0.50 (0.44, 0.56)
Schizophrenia RFC 0.059 (0.054, 0.064) 0.50 (0.44, 0.56)

Proper care with EEG data preparation has been a subject of recent exploration by
Li et al. as well [51]. Li et al. demonstrated that due to EEG’s non-stationarity, proper
guidelines for the design of the experiment much be followed in order obtain model results
that are not overestimated, particularly in the block design of the experiment so that stimuli
of different classes are intermixed. If not followed, models instead learn to classify through
arbitrary temporal artifacts, giving the false appearance of high performance. Our findings
are synergistic with Li’s: we demonstrate the necessity of partitioning the data properly
when performing machine learning on collected data after the experiment is complete; due
to individual differences, proper care with EEG data partitioning by participant yields
more accurate estimates of model results on future data. Together, both Li et al.’s guidelines
for the design of the experiment and our guidelines for proper post-experiment dataset
partitioning should be followed in order to obtain results for EEG cross-participant models
that are representative of the model’s performance on the general population.

In Section 3, we demonstrated how t-SNE can be used to visualize covariate shift
between participants due to their inter-participant variability, and we also illustrated how
the shifted Heaviside and the shift to median transformations could be utilized to reduce this
inter-participant variability. Additionally, for the purpose of demonstrating the relationship
between this inter-participant variability and covariate shift, we explored the effect of these
transformations in improving cross-participant model accuracy for both improper and
proper model creation across two different feature spaces (entropy and spectral features).
As can be seen in Figures 7b,c and 8b,c, both transformations were successful in reducing
inter-participant variability for both feature spaces; however, only the shift to median trans-
formation resulted in a dominant increase in accuracy of the 95% confidence intervals for
both feature spaces for proper model creation, with the shifted Heaviside transformation
having no improvement in model accuracy. In contrast to the shifted Heaviside results,
Arevalillo-Herraez et al. (the originators of the shifted Heaviside transformation) had im-
provement of model accuracy in three different datasets they utilized, all of which were
affect recognition-based datasets with arousal and valence features [36]. In their research,
they also followed proper dataset partitioning guidelines and utilized LOPO CV. This
suggests that a transformation that results in a reduction or elimination of inter-participant
variability does not necessarily imply an improvement in cross-participant model accuracy.

6. Conclusions

As mentioned in Section 2, five out of six EEG deep learning models in research today
are cross-participant models, with only one out of those five models following some method
of proper dataset partitioning to ensure the model was tested with unseen participants [3].
Our empirical results show that models that utilize improper dataset evaluation have
overestimated and unrealistic accuracies for the general population, with the difference
in error rates for improper versus proper dataset evaluation ranging from a 35% increase
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in error rate up to a 3900% increase in error rate. These empirical findings suggest that if
this trend continues, the body of research for EEG cross-participant models will become
diluted with research that claims overestimated and unrealistic performance metrics, both
downplaying the true difficulty in creating a high-performing EEG cross-participant model,
and also slowing scientific progress of researching methodologies, which results in cross-
participant models that are truly high performing for the general population. Thus, it
is absolutely critical that the body of research corrects this trend and follows the proper
dataset partitioning guidelines described in this research. Specifically, it means that:

• Data from participants used for model training must not be used for model validation
or testing.

• Participants that are utilized for validation must not be used for testing.

This ensures the model is tested with unseen participants and reflects its intended purpose.
These findings extend beyond individual researchers. In addition, it is also impor-

tant that data contributors, and the owners and maintainers of dataset repositories (e.g.,
Kaggle [12] and the UCI machine learning data repository [13]) managing human data
ensure these guidelines are followed as well. Specifically, for these repositories, we recom-
mend that:

• Any EEG data that are made available for download should always have (de-identified)
participant labels available so that users may properly partition the data themselves.

• If the data contributors or maintainers decide to pre-partition the data into separate
training and test datasets (as is sometimes done for competitions of machine learning
models), then proper dataset partitioning guidelines should be followed for preparing
those training and test datasets before they are made available for download by the
general public.

We also recommend that the repository include these guidelines of proper dataset
partitioning with all hosted EEG datasets, as this would help spread the word in regard
to proper dataset partitioning and inform users who are unaware of inter-participant
variability and its effects.

Lastly, we strongly recommend that the “Neurotechnologies for Brain–Machine Inter-
facing” group of the Institute of Electrical and Electronics Engineers Standards Association
(IEEE SA) consider and adopt these guidelines for all future proposals of standards. In this
group’s most recent Standards Roadmap [52], stakeholders and experts across government,
academia, and industry identified the existing gap in the standardization of performance
assessment and benchmarking for BMI as a clear priority for standardization [53]. Specifi-
cally, the proposal should identify these guidelines as a minimal reporting requirement for
performance evaluation of EEG cross-participant models, leading to standardization in re-
porting how the data are partitioned, identifying their limitations, and curbing performance
claims accordingly.
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Appendix A

In this appendix, we include any pre-processing details that were provided by the
originators of the datasets used within this research.

Appendix A.1. Driver Fatigue Data

EEG was recorded using a 32-channel electrode cap, with two of the channels being
reference channels linked to mastoid electrodes [38]. Scan 4.3 software of Neuroscan was
used for preprocessing, with raw signals filtered by a 50 Hz notch filter and a 0.15 Hz to
45 Hz band pass filter in order to remove noise.

Appendix A.2. Confused Students Data

No known preprocessing information was provided by the originators.

Appendix A.3. Alcoholism Data

EEG correlates were sampled from 62 scalp electrodes and two EOG electrodes, at
a sampling rate of 256 Hz [13]. Sampling started at 190 ms before onset of stimulus in
order to record a pre-stimulus baseline, and EEG correlate durations provided in the
dataset were 1 s in duration. Sensor values were provided in µV, resulting in a sequence
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of 256 temporally organized values for each EEG channel. Trials with excessive eye or
body movements (>73.3 µV) were rejected online. Only artifact free EEG segments were
used to include eye blink artifacts. EEG electrodes were referenced to node site Cz during
EEG measurement.

Appendix A.4. PTSD Data

For this dataset, there were 33 channels of EEG recorded, with two of the 33 channels
being used for ground and reference, and at a sampling rate of 5000 Hz [34]. EEG prepro-
cessing was performed in the proprietary software BrainVision Analyzer2. MRI gradient
artifacts and cardio ballistic artifacts were removed using the template subtraction method.
Then, the EEG was down-sampled to 250 Hz and filtered with a 40 Hz low-pass filter. Then,
ICA was applied to remove residual cardioballistic artifacts as well as blink and saccade
artifacts. Time periods of head motion were removed.

Appendix A.5. Schizophrenia Data

Vertical EOG (VEOG) and Horizontal EOG (HEOG) were also collected for the purpose
of capturing eye movement and blinks [35]. Due to the size of the raw EEG signals,
preprocessing was already performed on the dataset prior to its upload for public use. This
preprocessing included re-referencing to the averaged mastoid channels, applying a 0.1 Hz
high-pass filter, interpolation of outlier channels, and rejection of outlier components and
outlier trials due to EEG artifacts using the FASTER artifact rejection method [54].
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