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Abstract: Attentional biomarkers in attention deficit hyperactivity disorder are difficult to detect
using only behavioural testing. We explored whether attention measured by a low-cost EEG system
might be helpful to detect a possible disorder at its earliest stages. The GokEvolution application
was designed to train attention and to provide a measure to identify attentional problems in children
early on. Attention changes registered with NeuroSky MindWave in combination with the CARAS-R
psychological test were used to characterise the attentional profiles of 52 non-ADHD and 23 ADHD
children aged 7 to 12 years old. The analyses revealed that the GokEvolution was valuable in
measuring attention through its use of EEG–BCI technology. The ADHD group showed lower levels
of attention and more variability in brain attentional responses when compared to the control group.
The application was able to map the low attention profiles of the ADHD group when compared to
the control group and could distinguish between participants who completed the task and those who
did not. Therefore, this system could potentially be used in clinical settings as a screening tool for
early detection of attentional traits in order to prevent their development.

Keywords: attention; brain–computer interface (BCI); prevention; early detection; ADHD; neuro-
feedback

1. Introduction

Attention deficit hyperactivity disorder (ADHD) is a multidimensional disorder char-
acterised by a mixed pattern of symptoms that can be divided into two categories: (1) lack
of attention and (2) hyperactivity plus impulsiveness. The latter includes behaviours such
as a lack of attention to details, excessive talking, and excessive motor activity [1]. ADHD
children display these characteristics early in their development, causing a negative impact
on the social, emotional, and cognitive aspects of their normal development [2,3]. The
prevalence of ADHD is estimated at approximately 5% for children, and this diagnosis per-
sists in adulthood in 2.5 to 4.5% of cases [4]. ADHD includes inattention, hyperactivity, and
impulsive subtypes that constitute separable but substantially correlated dimensions [5].
The criteria used by current diagnostics are based on symptoms, requiring the patient or
their relatives to evaluate the frequency, intensity, and duration of symptoms. Due to the
absence of biological markers of the disorder, the diagnosis might be subjective. In this
regard, brain signal studies have been developed in order to overcome this issue and to
achieve a diagnostic based on quantitative data [6,7].

Attention can be defined as the ability to focus continuously on a particular action,
thought, or object. Several physiological markers can be used to indicate attention levels:
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regional cerebral blood flow, which increases during attentional tasks such as reading,
naming, etc. [8]; pupil diameter [9] and blinking rate [10], which increase or decrease respec-
tively as attention increases; and, finally, markers derived from electroencephalographic
activity [11]. EEG studies have shown with accuracy several wave patterns associated
with ADHD, detecting a high percentage of patients with attentional problems [11,12].
The main drawback of these techniques is that complex EEG–BCI systems require several
electrodes placed on the scalp [13] and are not portable, which might be a problem if
measures need to be done outside the lab. Furthermore, a traditional EEG has complex
technical requirements, is costly, and is time-consuming to set up. Although in recent
years there have been some attempts to use a simplified or low-cost version of an EEG
for clinical purposes [14], the development of these technologies has risen exponentially
for controlling devices [15,16]. Technology based on brain–computer interfaces (BCI) is re-
cently being used to perform studies in natural contexts, which might likely be of practical
value for clinical use in the near future. Some companies, such as Emotiv and NeuroSky,
have released portable, wireless, consumer-oriented BCI headsets. Comparative research
between both low-cost systems revealed that NeuroSky is more user-friendly and easier to
set up and maintain [17]. These features are advantageous for clinical purposes, especially
when it comes to preventing diseases or helping in diagnoses. The NeuroSky MindWave
(NSMW) device has the potential to make the assessment of participants, especially chil-
dren, more accessible and efficient. Additionally, the EEG signal recorded with the NSMW
is comparable with a medical-grade EEG with limitations related to noise and spectral
differences at low frequencies [18].

The NSMW has been developed as a non-invasive tool and involves placing a dry
electrode on the left side of the frontal area corresponding to the Fp1 position. It provides
information through a Bluetooth connection that can be classified according to three levels
of processing [19]. From the lowest to higher levels, they are: (1) the raw EEG signal; (2)
power bands (alpha, beta, theta, delta, and gamma); and (3) eSense brainwave patterns
of attention and meditation. Power bands and eSense signals help to reduce the pre-
processing of raw signals in external devices and allow the use of digital systems with
low computation resources, also minimising the cost and time of the analysis in contrast
to other technologies such as virtual reality (VR) [20]. Attention and meditation values
are reported on a relative scale ranging from 1 to 100. The proprietary algorithms used
to compute attention and meditation meters are based on both temporal and frequency
domains. The exact algorithm has not been published, but the manufacturer asserts that
the former has more emphasis on beta waves, whereas the latter has more emphasis on
alpha bands. Several researchers have included the NSMW in their studies, showing the
feasibility and reliability of using this technology in detecting or measuring emotional
states [5,21,22], attention [23–26], and meditation states [25,27]. It has been shown that the
NSMW provides accurate readings regarding attention as well as a positive correlation
between the attention level reported on the device and the self-reported attention levels of
the participants [26]. A similar study concluded that the NSMW accurately measured the
overall level of mental attention [28]. Several studies have reported significant variations
in the theta, alpha, and beta bands in the EEG recordings for several types of ADHD
patients [29,30]. Therefore, the existence of a relationship between the attention indexes of
NSMW and ADHD is highly probable.

Due to the lack of handy and attractive tools to evaluate attentional biomarkers
in children, researchers have been developing games based on neurofeedback (NF) for
training attention [31]. For instance, in an EEG study [32], two sets of electrodes were used
to control the position of an object on a computer screen by means of attention. Results
showed that a high percentage of participants (70%) in the experiment could control the
game using only one electrode, which shows the feasibility of detecting attention with a
reduced number of electrodes. Another study found that there is a significant improvement
in children with ADHD when NF is included in their treatment [33]. The theta/beta ratio
and slow cortical potentials (SCP) were combined as the control signal for NF. Moreover,
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two games were developed with the same NF control signals [34]. In one of them, a boy
on a rope moved ahead if the participant had reduced theta activity and increased beta
activity simultaneously for a period of time. In the other game, a ball moved upwards or
downwards according to the participant’s SCP. With each successful attempt, a part of the
covered picture became visible. Results showed that theta/beta training decreased the
posterior midline theta activity, whereas the SCP training increased the central midline
alpha activity. Both facts are associated with improvements in the German ADHD rating
scale. Using the theta/beta ratio and electrical muscular activity as control signals in a
game [35], children were trained in several tasks, such as keeping a ball above a cone. The
training benefited ADHD children by improving their attention and reaction times. The
results of these studies suggest that the attention indexes of NSMW are related to ADHD.
In all these studies, the number of sessions needed to make the NF treatment effective
was high. Here, we use an NF application game and the EEG–BCI technology to obtain
markers for ADHD with a low number of sessions, minimising the influence of the NF in
the measure of the marker.

The present study analysed the attention parameter recorded from the cortex in a
cohort of participants with and without an ADHD diagnosis. In order to evaluate possible
attentional biomarkers between participants showing differences in attentional skills, we
designed an application video game through GokEvolution. We tested sustained attention
by analysing the EEG–BCI index provided by the NSMW device while participants played
the GokEvolution game. This video game allowed us to catch the attention of children and
to encourage a good performance while the clinical assessment process was completed.

2. Materials and Methods
2.1. Participants

In total, 52 control (32 boys, 20 girls, mean age 8.98 years, std 1.25) and 23 ADHD
(18 boys, 5 girls, mean age 9.5 years, std 1.55) children were evaluated. All the participants
had normal or corrected-normal vision. The study was approved by the Comité Coordi-
nador de Ética de la Investigación Biomédica de Andalucía, Junta de Andalucía (Spain)
with the code (1221-N-17). Participation in the study was voluntary, and participants
gave informed consent to partake in the experimental procedure. A convenience random
recruiting of control subjects was conducted for this study. ADHD was the only clinical
condition with which the participants in the experimental group were diagnosed. None
of the children with ADHD were on medication during the experiment. Children taking
methylphenidate (MPH) had been off medication for 24 h, as the duration of MPH action
ranges from 3–6 h for the immediate-release formulation, to 8–12 h for the extended-release
alternatives [36]. No medication other than MPH was used for the subjects.

2.2. Clinical Instruments

The Test on Perception of Differences CARAS-R [37] was used to identify attentional
skills as sustained and selective attention and impulsivity behaviour in children from
6 to 12 years old. The main task of the test is to identify differences between similar
elements. We used it to analyse two measures of our interest: 1) effectiveness related
to attention, and 2) impulsivity. Effectiveness in attention (AE) is based on the number
of correct answers (A) and errors (E) made during the test. The AE index evaluates the
participant’s performance during the test, penalised by the number of errors, which is
subtracted from the number of correct answers. The impulsivity measurement is defined as
the index of impulsivity ICI that indicates the proportion of effective and total performance.
It is calculated by using this formula: ICI = (A − E)/(A + E) × 100%

The combination of the effectiveness and impulsivity variables expressed in en-
neatypes allowed us to classify the children into two groups: the effective and non-
impulsive group, and the effective and impulsive group.
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2.3. Design of GokEvolution Application Game

An attractive and colourful character was chosen in designing this application. We
used evolutions of the character (different hair colour and shape) as markers of the level
of the game (Figure 1). The game was originally designed as a neurofeedback software.
The NSMW sends the attention data to the software, and to progress in the game the
subject has to maintain a high level of attention. In a later stage, we defined the different
levels and the parameters needed to progress through them in collaboration with clinical
psychologists who specialised in children with ADHD. The game was codified under an
Android format that could be downloaded on devices such as mobile phones or tablets
from https://github.com/jaimegucu/EEGMindroidGokEvolution (accessed on 28 April
2021). It had simple instructions and a customisable level of difficulty.
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Figure 1. Screenshot of the GokEvolution application. The bars at the top indicate the level of attention recorded by the
NeuroSky using the EEG sensor (top) and the achievement on the current level (bottom). The figure represents the character
at level 2 (out of 4). If the attention level is higher than 50%, the character is “recharging energy” and the progress on the
level increases. When level progress reaches the maximum (the whole bar) the game increases the level, changing the
appearance of the character.

2.4. Training Protocol for GokEvolution

The game had five difficulty levels increasing from level 0 to level 4 wherein the
character appears with a different hair colour and shape, representing his evolution. The
aim of the game is to achieve the complete evolution of the character through five difficulty
levels. The main screen of the game shows the level of attention (NSMW index) and the
accumulated points gained in each level (Table 1). During the five minutes the game lasted,
the participant’s left frontal lobe activity was recorded using NSMW, which also recorded
the attention and meditation parameters at a rate of 1 Hz. The attention level demanded by
the game increased as the difficulty level did.

Table 1. Values added/subtracted to global score in each level of the game according to the level
of attention.

Level 0 1 2 3 4

Attentive +18 +16 +14 +12 +10
Inattentive −2 −3 −4 −5 −6

In each level, the character shows his evolution with a different hair colour and shape.
To progress in the game, players had to gain points by paying as much attention as possible;
otherwise, they could lose points. No other interaction with the game was available other
than the EEG data from the NSMW, therefore, to progress in the game, players had to

https://github.com/jaimegucu/EEGMindroidGokEvolution
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maintain an attentive state during play time. The level of the game determined how much
time in an attentive state was needed to pass to the next level. The game considered that
the player was in an attentive or inattentive state when the attention meter sent by NSMW
ranged from 50 to 100, or from 0 to 50, respectively. According to the difficulty level, the
number of points added/subtracted to/from a global score changed. Table 1 summarises
the quantities used in each level. Please note that, as the difficulty level increased, a lesser
number of points were added when in the attentive state, and a greater number of them
were subtracted when inattentive. In order to continue to the following levels, the player
had to accumulate a certain number of points that also changed according to the level. A
player who managed to stay in an attentive state throughout the whole game would finish
the five levels in 5 s, 9 s, 14 s, 20 s, and 70 s respectively. This means that it would take
approximately 2 min to complete the evolution of the character with a perfect performance.

Importantly, players could monitor their performance in real time (neurofeedback)
through the main screen of the game that shows two horizontal bars indicating the level of
attention (NSMW meter) and the accumulated points gained in each level (Table 1). Both
bars were scaled in a range between 0 and 100. Once the game was over, we obtained the
average of attention per level (per participant).

2.5. Data analysis

A t-test was used to analyse differences in attention between the control and the
ADHD groups per level. The significance level was set to 0.05, corrected for the multiple
comparison with the Bonferroni correction for multiple tests. The levels were set from 0
to 4. As a final step, we correlated the NSMW indexes of attention with the behavioural
measures, effectiveness and impulsivity, from the CARAS-R psychological test.

3. Results
3.1. GokEvolution Application Game and NeuroSky

We developed the GokEvolution EEG–BCI application game to test children with
ADHD and those without. The goal of the game is to accumulate points by increasing the
level of attention (NSMW parameter). Both parameters are displayed in the main screen
during the game allowing players to monitor their performance in real time (NF).

According to the design of the present application, children were able to modulate
their brain activity using the NF while they were playing the video game. Thus, we
expected subjects with a high attentional level to complete the different phases of the game
faster than subjects with a low attentional level. Additionally, the game was developed
with the aim to increase attentional resources to proceed through the levels. Hence, the
higher the level of the game, the more time it would take to complete the phase. In order to
test our BCI application game in the control group, we plotted the attention average and the
total time to complete a level (Figure 2). Results met the expectations described above; that
is, a decrease in the percentage of success as the game level increased. To check for possible
attentional differences between the control group and the ADHD group, we calculated
the mean attention across all levels (Figure 3A). The ADHD group showed a lower and
more variable average attention than the control group across all levels of the game. The
differences between groups were significant in levels 0, 1, 3, and 4 (all ts(73) > 1.99; all
ps < 0.05) but not in level 2 (t(73) =1.42, p = 0.160).
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From the behavioural perspective, the inability to finish the game could be related
to a lack of attention to the game, since the participants had to maintain high levels of
attention during all levels in order to complete each stage. In this regard, level 4, the last
level, was the most difficult one to complete, and not all participants overcame it. In order
to analyse the attention parameter in this level, the control group was divided into two
subgroups: participants that completed all five levels of the game, and participants that did
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not complete the last level of the game. We compared the output of the attentional level
from the NSMW between these subgroups (Figure 3B) and found a different performance
between both groups. We observed significantly higher attention scores in the group that
completed all levels, including the levels finished by both groups. Statistical analyses
displayed significant differences in all levels (all ts(50) > 3.32; all ps < 0.001). In addition,
we found a better performance at the beginning of the game in the control classified as
non-impulsive than those classified as impulsive, even though both groups showed a
similar score in the rest of the levels.

3.2. Clinical Measurements

The clinical measurements, effectiveness (effective and ineffective) and impulsivity
(impulsive and non-impulsive), were obtained from a CARAS-R test. We analysed whether
effectiveness and impulsivity were associated with the completion of all levels. The
subgroups were the same as in Section 3.1. We compared the performance in the game in
the control group, divided according to the CARAS-R test in impulsive and non-impulsive
profiles (Figure 3C). We found significant statistical differences in level 0 (t(36) = −2.10,
p = 0.042) and level 3 (t(36) = −2.11, p = 0.042). In addition, there was a high variability in
the scores of effectiveness and impulsivity in the ADHD group, in particular due to the fact
that the groups were marginally reduced after the subdivision. The descriptive analysis of
effectiveness and impulsivity of this subdivision is presented in Table 2.

Table 2. Effectiveness and impulsivity in the subdivision of the ADHD and control groups in the
completed and uncomplete level.

Effective Ineffective Impulsive Non-impulsive TOTAL

ADHD
completed 3 7 9 1 10

ADHD
uncompleted 8 5 7 6 13

Total 11 12 16 7 23

Controls
completed 38 0 9 29 38

Controls
uncompleted 13 1 4 10 14

Total 51 1 13 39 52

4. Discussion

We developed a BCI application game in which the attention level, measured by
NeuroSky, was monitored and used to complete levels of differing difficulty. The NSMW
device proved to be sensitive to attentional changes while children played the GokEvolution
application video game. Our preliminary results showed that attention measures given
by the EEG–BCI device can be used as an attentional biomarker for the prevention of
risk factors associated with attention diseases. We found higher attentional levels in the
control group compared to the ADHD group, which would support the aforementioned
lack of attention in children with an ADHD diagnosis. The key levels of the GokEvolution
game for these differences were levels 0 and 4. Level 0 was the level where a larger
number of children showed the highest involvement of attention in both groups, and it was
significantly higher in the control group than in the ADHD group. Gradually, the number
of participants able to progress through the game to the last level (level 4) decreased with
each level. The reduced number of participants could be explained by the difficulty in
keeping concentration for a long time. In fact, several participants did not finish the game.

The game allows for us to identify attentional profiles based on the subjects’ perfor-
mance in the game. For instance, participants of the control group who completed all
levels could be a sample of typically developed children, especially when we compare the
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subgroups divided by the impulsivity criteria based on the CARAS-R test (Figure 3C). Even
though the impulsive group showed similar scores in levels 1, 2, and 4, they displayed
a worse performance at the beginning. That is, even though they reached the goal, they
did it with a lower score. On the other hand, we also found that the attentional level of
the group that completed the game was significantly higher than the group that did not
complete the game. This behaviour was observed in almost all levels of the game. We
might explain the data by differences in sustained attention between groups over time. A
better performance and completion of the game indicated an improvement in the control of
attentional resources. That would mean that the group who could not complete the game
outperformed the required scores of the first level of the video game application, but then
could not maintain attention through to the final levels of the game. Moreover, we suggest
that the subgroup of control subjects, who did not complete the last level, might have some
problems regarding sustained attention. In any case, this setup is intended for a quick and
massive screening of the population, therefore any possible disorder would then have to
be adequately diagnosed using proper clinical methodology.

Our study provides a preliminary framework that could help identify biological
markers of possible attentional problems and define specific endophenotypes. The de-
velopment of endophenotypes might be more adequate for the effective application of
pharmacological and behavioural treatments than traditional classifications of mental
diseases based on diagnosis scales [38]. The evidence from this study suggests that the
application videogame, in combination with the NSMW, could work as a pre-screening
diagnosis tool to detect disorders related to attention. Even though our study only used
one electrode (Fp1, more limited than a multichannel EEG device), we were able to measure
attention in a non-clinical environment, which holds potential for data accuracy.

The EEG–BCI video game preliminary results showed that the attention variability
could be used as an attentional biomarker that might have implications for early detection
of traits associated with inattention. The question we raised in this study was whether we
can correctly differentiate clinical cases using NSMW measurements while children play
a GokEvolution video game. We were able to detect the variability differences between
groups that completed and did not complete the game. Nevertheless, importantly, we were
able to distinguish groups that are in the limit zone or at the borderline between ADHD
and control attentional profiles.

The strength of the present study could increase the impact of digital tools used in a
clinical setting, allowing us to use this proposed biomarker for prevention purposes and, if
needed, in early detection for a more accurate behavioural and pharmacological treatment.
The fact that GokEvolution was developed to be used on a tablet device increases usability
of the training program. This video game application is fast to run, since it takes in total
a maximum of 15 min to prepare the entire setup and to carry out testing testing, and is
easy to perform while being fun for children. Another major advantage is the fact that the
training can also be carried out independently at hospitals, private centres, or schools. The
application can be used everywhere; there is no need for an internet connection during
training. Finally, the validation of the test could be adjusted for age ranges in the future.
Although our experimental setup consisted of an NSMW combined with a neurofeedback
game designed by our group, similar systems could be used instead of the one proposed in
the present study. More sophisticated low-cost EEG systems could be more adequate for a
clinical setup at the expense of a more limited usability [14].

Taken as a whole, we propose that levels of attention and behavioural measures could
help us characterise our participants in different populations. Studies carried out by our
research group have shown a clear correlation between attention deficit and levels of
impulsivity in an animal model [39]. These endophenotypes are based in different cue
processing, predict vulnerability to behavioural disorders [40], and could work as a model
to evaluate individual differences regarding impulsivity and attention factors [7].
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5. Conclusions

Our research underlined the importance of objective tests to evaluate features in early
detection for the prevention of risk factors in cognitive disorders. This new generation of
video games, in combination with behavioural tests, could be used to evaluate possible
risk factors in order to prevent the development of attention related disorders. Although
these results need to be replicated to achieve definitive conclusions, the development of
digital tools might support our knowledge of clinical interpretation, establishing a more
appropriate evaluation and pharmacological and behavioural therapy approach.
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